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Objective 

To develop and externally validate COVID-19 Estimated Risk (COVER) scores that quantify a 

patient’s risk of hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality 

(COVER-F) in the 30-days following COVID-19 diagnosis. 

Methods 

We analyzed a federated network of electronic medical records and administrative claims data 

from 14 data sources and 6 countries. We developed and validated 3 scores using 6,869,127 

patients with a general practice, emergency room , or outpatient  visit with diagnosed influenza 

or flu-like symptoms any time prior to 2020. The scores were validated on patients with 

confirmed or suspected COVID-19 diagnosis across five databases from South Korea, Spain and 

the United States. Outcomes included i) hospitalization with pneumonia, ii) hospitalization with 

pneumonia requiring intensive services or death iii) death in the 30 days after index date. 

 

Results 

Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 

predictors (history of cancer, chronic obstructive pulmonary disease, diabetes, heart disease, 

hypertension, hyperlipidemia, kidney disease) which combined with age and sex discriminated 

which patients would experience any of our three outcomes. The models achieved high 

performance in influenza. When transported to COVID-19 cohorts, the AUC ranges were, 

COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration was overall 

acceptable. 
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Conclusions  

A 9-predictor model performs well for COVID-19 patients for predicting hospitalization, 

intensive services and fatality. The models could aid in providing reassurance for low risk 

patients and shield high risk patients from COVID-19 during de-confinement to reduce the virus’ 

impact on morbidity and mortality. 
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Introduction 

The growing number of infections due to the Corona Virus Disease 2019 (COVID-19) has 

resulted in unprecedented pressure on healthcare systems worldwide, and a large number of 

casualties at a global scale. Although the majority of people have uncomplicated or mild illness 

(81%), some will develop severe disease leading to hospitalization and oxygen support (15%) or 

fatality (4%)
1,2

. The most common diagnosis in severe COVID-19 patients is pneumonia, other 

known complications include acute respiratory distress syndrome (ARDS), sepsis, or acute 

kidney injury (AKI)
1
. While there is currently no known cure or vaccine, the current approach to 

management of COVID-19 includes monitoring and controlling symptoms. 

 

In response to the global pandemic, many countries have implemented measures aimed to 

reduce the average number of people a person with COVID-19 will infect
3-6

. The purpose of this 

was to prevent the spread of the virus, or at least to slow the spread, a process known as 

flattening the curve
7
. However, strategies such as social distancing have impacted economies 

globally and economic worries are causing countries to consider lifting measures earlier than 

epidemiologists recommend
8
. There are worries that this may cause a second wave of 

infections, as seen historically in other pandemics
9
. Multiple governments are starting to 

release de-confinement strategies, for example the state of New York
10

, British
11

, and Dutch
12

 

governments have detailed plans to ease restrictions. However, they only concern population-

level effects of likely disease spread and contain no information on how an individual’s risk 

impacts their likely morbidity and mortality if they were to contract the virus. Research has 

shown that COVID-19 does not impact all ages and sexes equally
13

 and as such a more 
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personalised risk assessment can aid in improving outcomes. In a recent BMJ editorial
14

, the 

authors conclude that the COVID-19 response “is about protecting lives and communities most 

obviously at risk in our unequal society”. Quantifying a patient’s risk of having severe or critical 

illness when infected with COVID-19, could be used to help countries plan strategies to shield 

the most vulnerable patient populations. This is essential during the planning of de-

confinement strategies. 

 

The WHO Risk Communication Guidance distinguishes two categories of patients at high risk of 

severe disease: those older than 60 years and those with “underlying medical conditions” which 

is non-specific
15

. Using general criteria to assess the risk of poor outcomes is a crude risk 

discrimination mechanism as entire patient groupings are treated homogeneously ignoring 

individual differences. Prediction models can quantify a patient’s individual risk and data-driven 

methods could identify risk factors that have been previously overlooked. The number of 

studies developing prediction models for COVID-19 is still limited and of insufficient quality, as 

suggested in a recent systematic review 
16

. In a recent review the A-DROP model was 

recommend
17,18

, however this requires lab tests and thus requires a patient to be either in 

hospital or another setting to receive tests. Due to the high load on healthcare systems and the 

highly contagious nature of the disease, it is useful to have a model that can be used without 

this information. As such we propose three models that can assess based off historical and 

demographic information Previously published COVID-19 prediction models have been 

criticised for being i) poorly reported, ii) developed using small data samples, and iii) lacking 

external validation.  
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In this paper we aim to develop COVID-19 Estimated Risk (COVER) scores to quantify a patient’s 

risk of hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality (COVER-

F) due to COVID-19 using the Observational Health Data Sciences and Informatics (OHDSI) 

Patient-Level Prediction framework
19

. The research collaboration known as OHDSI has 

developed standards and tools that allow patient-level prediction models to be developed and 

externally validated rapidly following accepted best practices
20

. This allows us to overcome the 

previously identified shortcomings of previous COVID-19 prediction papers by reporting 

according to open science standards and implementing widespread external validation. To 

overcome the shortcoming of using small data for development, we made use of the abundant 

data from patients with influenza or flu-like symptoms to develop the models and then we 

tested whether the models transport to COVID-19 patients. Given the symptomatic similarities 

between the two diseases we hypothesized that the developed models will be able to transport 

between the two problem settings. 

Methods 

We performed a retrospective cohort study to develop COVID-19 prediction models for severe 

and critical illness. 

 

Source of data 

This study used observational healthcare databases from six different countries. All datasets 

used in this paper were mapped into the Observational Medical Outcomes Partnership 
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Common Data Model (OMOP-CDM)
21

. The OMOP-CDM was developed for researchers to have 

diverse datasets in a consistent structure and vocabulary. This enables analysis code and 

software to be shared among researchers which facilitates external validation of the prediction 

models.  

Consent to publish 

All databases obtained institutional review board (IRB) approval or used deidentified data that 

was considered exempt from IRB approval. Informed consent was not necessary at any site. 

The OMOP-CDM datasets used in this paper are listed in Table 1.  

Table 1 Data sources formatted to the Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) used in 

this research (data type: claims, electronic health/medical records (EHR/EMR), general practitioner (GP)) 

Database 

Database  

Acronym Country Data type 

Contains COVID-

19 data? Time period 

Optum© De-Identified 

Clinformatics® Data Mart 

Database 

ClinFormatics US Claims No 2000-2018 

Columbia University 

Irving Medical Center 

Data Warehouse 

CUIMC US EMR Yes Influenza: 1990-2020  

COVID-19: March-April 

2020 

Health Insurance and 

Review Assessment  

HIRA South Korea Claims Yes COVID-19: 1
st

 January- 

4
th

 April 2020 

The Information System 

for Research in Primary 

Care  

SIDIAP Spain GP and hospital 

admission EHRs 

linked  

Yes Influenza: 2006-2017 

COVID-19: March 2020 

Tufts Research Data 

Warehouse 

TRDW US EMR Yes Influenza: 2006-2020 

COVID-19: March 2020 
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Department of Veterans 

Affairs 

VA 

 

US EMR Yes Influenza: 2009-2010, 

2014-2019 

COVID-19: 1
st 

March-  

20
th

 April 

Ajou University School of 

Medicine Database 

AUSOM South Korea EHR No 1996 - 2018 

Australian Electronic 

Practice based Research 

Network 

AU-ePBRN Australia GP and hospital 

admission EHRs 

linked 

No 2012-2019 

IBM MarketScan® 

Commercial Database 

CCAE US Claims No 2000-2018 

Integrated Primary Care 

Information 

IPCI Netherlands GP Yes 2006-2020 

Japan Medical Data 

Center 

JMDC Japan Claims No 2005-2018 

IBM MarketScan® Multi-

State Medicaid Database 

MDCD US Claims No 2006-2017 

IBM MarketScan® 

Medicare Supplemental 

Database 

MDCR US Claims No 2000-2018 

Optum
©

>de-identified 

Electronic Health Record 

Dataset 

Optum EHR US EHR No 2006-2018 
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Participants 

For validation in COVID-19 we used a cohort of patients presenting at an initial healthcare 

provider interaction in a general practice (GP), emergency room (ER), or outpatient (OP) visit 

with COVID-19 disease. The initial healthcare provider interaction is used as index date, which is 

the point in time a patient enters a cohort. COVID-19 disease was identified by a diagnosis code 

for COVID-19 or a positive test for the SARS-COV-2 virus that was recorded after January 1
st

 

2020. We required patients to be aged 18 or over, have at least 365 days of observation time 

prior to the index date and no diagnosis of influenza, flu-like symptoms, or pneumonia in the 

preceding 60 days. 

 

For model development, we identified patients aged 18 or over with a GP, ER, or OP visit with 

influenza or flu-like symptoms (e.g. fever and either cough, shortness of breath, myalgia, 

malaise, or fatigue), at least 365 days of prior observation, and no symptoms in the preceding 

60 days. 

Outcome 

We investigated three outcomes of COVID-19: 1) hospitalization with pneumonia from index up 

to 30 days after index, 2) hospitalization with pneumonia that required intensive services 

(ventilation, intubation, tracheotomy, or extracorporeal membrane oxygenation) or death after 

hospitalization with pneumonia from index up to 30 days after index, and 3) death from index 

up to 30 days after index. 

The full details of the participant cohorts and outcomes used for development and validation 

can be found in the R packages. 
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Predictors 

When using a data-driven approach to model development, generally the resulting models 

contain a large number of predictors. We developed a data-driven model using age in groups 

(18-19, 20-25, 26-30, …, 95+), sex and binary variables indicating the presence or absence of 

recorded conditions and drugs any time prior to index. Missing records are thus effectively 

imputed as zero, exceptions are age and sex, which are always recorded in the OMOP-CDM. In 

total, we derived 31,917 candidate predictors indicating the presence of the 31,917 unique 

conditions/drugs recorded prior to the index date (GP, ER, or OP visit) for each patient. This 

may optimise performance, but a large number of predictors can be a barrier to clinical 

implementation. The utility of models for COVID-19 requires that they can be widely 

implemented across worldwide healthcare settings. Therefore, in addition to a data-driven 

model, we investigated two models that include fewer candidate predictors. 

The age/sex model used age groups and sex as candidate predictors. The COVER scores 

included 7 candidate predictors, in addition to age groups and sex, that corresponded to the 

following conditions existing any time prior to the index date (GP, ER, or OP visit): cancer, 

chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia 

and kidney disease (chronic and acute). Full details on how these 7 predictors were created as 

well as what constitutes a predictor can be found in Appendix 1A of the online supplement. 

Sample Size 

The models were developed using the Optum
©

 De-Identified Clinformatics® Data Mart Database. 

We identified 7,344,117 valid visits with influenza or flu-like symptoms, of which 4,431,867 
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were for patients aged 18 or older, 2,977,969 of these had >= 365 days observation prior to the 

visit, and 2,082,277 of these had no prior influenza/symptoms/pneumonia in the 60 days prior 

to index. We selected a random sample of 150,000 patients from the total population to 

efficiently develop models to address the current pandemic, while preserving the outcome 

proportion. This allowed us to perform model development on a large dataset of flu patients 

whilst also leaving ~2m patients for a validation to provide strong evidence of performance and 

reduce the probability the high performance achieved in the sample was due to over-fitting. 

Figure 1 is a flow chart demonstrating this. 

Statistical analysis methods 

Model development followed a previously validated and published framework for the creation 

and validation of patient-level prediction
19

. We used a person ‘train-test split’ method to 

perform internal validation. In each development cohort, a random split sample (`training 

sample’) containing 75% of patients was used to develop the prediction models and the 

remaining 25% of patients (`test sample’) was used to validate the models. We trained models 

using LASSO regularised logistic regression, using a 3-fold cross validation technique in the 

influenza training sample to learn the optimal regularization hyperparameter through an 

adaptive search
22

. We used R (version 3.6.3) and the OHDSI Patient-Level Prediction package 

(version 3.0.16) for all statistical analyses
19

. 

To evaluate the performance, we calculate the overall discrimination of the model using the 

area under the receiver operating characteristic curve (AUC), the area under the precision 

recall-curve (AUPRC), and the model calibration. The AUC indicates the probability that for two 

randomly selected patients, the patient who gets the outcome will be assigned a higher risk. 
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The AUPRC shows the trade-off between identifying all patients who get the outcome (recall) 

versus incorrectly identifying patients without outcome (precision) across different risk 

thresholds. The model calibration is presented in a plot to examine agreement between 

predicted and observed risks across deciles of predicted risk. Calibration assessment is then 

performed visually rather than using a statistic or numeric value as this provides a better 

impression of the direction and scale of miscalibration
23

. Summary statistics are reported from 

the test samples. 

 

We performed two types of external validation. A classical external validation in which we 

applied the models to identical settings across diverse patient populations with influenza or flu-

like symptoms prior to 2020 not used to develop the model, and a specific COVID-19 validation 

for databases containing COVID-19 data. To do this we assessed patients with confirmed 

COVID-19 in 2020. We examined the external validation using AUC, AUPRC and model 

calibration in the same way as internally. 

 

This study was conducted and reported according to the Transparent Reporting of a 

multivariate prediction model for Individual Prediction or Diagnosis (TRIPOD) guidelines
24

 and 

adhered to the open science principles for publicly prespecifying and tracking changes to study 

objectives, protocol and code as described in the Book of OHDSI
25

. For transparency, the R 

packages for the development and external validation of the models in any database with 

OMOP-CDM are available on GitHub at:  

https://github.com/ohdsi-studies/Covid19PredictionStudies 
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Role of the Funding source 
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This work was also supported by the Bio Industrial Strategic Technology Development Program 

(20001234) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and a grant 

from the Korea Health Technology R&D Project through the Korea Health Industry 

Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea 

[grant number: HI16C0992]. 

This project is part funded by the UNSW RIS grant. 

This research received funding support from the US Department of Veterans Affairs and the VA 

Informatics and Computing Infrastructure (VA HSR RES 13-457). The views and opinions 

expressed are those of the authors and do not necessarily reflect those of the Department of 

Veterans Affairs or the United States Government. 

Results 

Online results 

The complete results are available as an interactive app at: 

http://evidence.ohdsi.org/Covid19CoverPrediction 

 

Participants 

Table 2 describes the characteristics at baseline of the patients across the different databases 

used for development and external validation. Out of the 150,000 patients sampled with 

influenza or flu-like symptoms in the development database (ClinFormatics), there were 6,712 

patients requiring hospitalization with pneumonia, 1,828 patients requiring hospitalization and 

intensive services with pneumonia, and 748 patients died within 30 days. See Table 2 for the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2020. ; https://doi.org/10.1101/2020.05.26.20112649doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20112649
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

full outcome proportions across the databases included in this study. A total of 44,507 

participants with COVID-19 disease were further included for external validation. 

 

In the databases used for external validation, the patient numbers ranged from 395 (TRDW) to 

3,146,743 (CCAE). The datasets had varied outcome proportions ranging from 0.06-12.47 for 

hospital admission, 0.01-4.91 for intensive services, and 0.01-12.27 for fatality. Characteristics 

at baseline differed substantially between databases as can be seen in Table 2, with MDCR (a 

database representing retirees) containing a relatively old population of patients and a high 

number of comorbidities, and IPCI (a database representing general practice) showing a 

relatively low condition occurrence.  

Model specification 

The data-driven models for hospitalization, intensive services, and fatality contained 521, 349, 

and 205 predictors respectively. The COVER-H, COVER-I, and COVER-F scores are presented in 

Figure 2. These models are accessible online.  

Figure 2 also provides a risk converter, which allows for easy conversion between the risk score 

and predicted risk of the outcomes
=
. The scores can be converted to a probability by applying 

the logistic function: 1/(1+exp((risk score-93)/10)). Furthermore, we provide a plot of the 

probability distribution for the three models from patients in ClinFormatics to demonstrate the 

expected regions the probabilities fall into. To calculate the COVER scores using Figure 2, a 

clinician needs to identify which predictors the patient has. The points for each of those 

predictors are then added to arrive at the total score. For example, if a 63-year-old female 

patient has diabetes and heart disease, then her risk score for hospital admission (COVER-H) is 
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43 (female sex) + 4 (heart disease) + 3 (diabetes) + 15 (age) = 65. The risk scores for intensive 

services (COVER-I) and fatality (COVER-F) are 51 and 47, respectively. Using the risk converter in 

Figure 2, a score of 65 corresponds to a risk of 6%. Scores of 51 and 47 correspond to 1.5% and 

1%, respectively. 

Model performance 

The internal validation performance for each model is presented in Table 3. The external 

validation of the COVER scores on the COVID-19 patients is shown in Table 4. Full validation 

results can be seen in Appendix 1B of the online supplement. Receiver operating characteristic 

and calibration plots are included in Appendix 1C of the online supplement. 
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Table 2 Population size, outcome proportion and characteristics for the development database (influenza) and external validation in COVID-19 and influenza (N/A indicates this 

result is not available) 

 Developme

nt 

External validation: COVID-19 External validation: influenza 

 ClinFormati

cs 

CUIMC HIRA SIDIAP TRDW VA AUSOM AU-ePBRN CCAE IPCI  JMDC MDCD MDCR Optum EHR 

Number of 

participants 

2,082,277 2,731 1,985 37,950 395 1,446 3,105 2,791 3,146,801 29,132  1,276,478 536,806 248,989 1,654,157 

Hospitalization 

with 

pneumonia 

(Outcome 

proportion %) 

105,030 

(5.04) 

 

N/A 89 

(4.48) 

1,223 

(1.11) 

21  

(5.32) 

149 

(10.30) 

49  

(1.58) 

 

29  

(1.04) 

33,824  

(1.07) 

 

22 

(0.08)  

728 

(0.06) 

32,987 

(6.15) 

31,059 

(12.47) 

34,229 

(2.07) 

Hospitalization 

with 

pneumonia 

requiring 

intensive 

services or 

death 

29,905 

(1.44) 

134 

(4.91) 

22 

(1.11) 

N/A 5 

(1.27) 

38  

(2.63) 

5 

(0.16) 

3 

(0.11) 

4,856 

(0.02) 

24 

(0.08) 

65 

(0.01) 

7,226 

(1.35) 

3,628 

(1.46) 

7,368 

(0.45) 
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(Outcome 

proportion %) 

Death 

 (Outcome 

proportion %) 

11,407 

(0.55) 

335 

(12.27) 

43 

(2.17) 

406 

(1.07) 

1 

(0.25) 

43  

(2.97) 

5 

(0.16) 

4 

(0.14) 

965 

(0.03) 

24 

(0.08)  

75 

(0.01) 

2,603 

(0.48) 

1,354 

(0.54) 

3,513 

(0.21) 

Age (% above 

65) 

26.1 38.9 15.6 17.9 18.2 37.3 11.9 23.1 12.5 16.9  16.0 14.2 96.2 30.0 

Sex (%, male) 44.4 47.2 43.5 43.4 49.6 81.4 41.7 44.5 42.7 43.7  56.8 29.2 45.9 40.1 

Cancer (%) 12.6 17.1 9.8 6.3 11.6 17.0 7.7 8.2 6.2 3.7  2.5 8.9 35.2 10.6 

COPD (%) 10.2 9.3 4.9 2.5 6.3 20.5 2.7 3.1 2.7 2.7  0.5 19.8 26.6 7.6 

Diabetes (%) 20.5 30.9 23.1 8.0 19.7 35.2 3.8 13.0 11.4 6.7  8.3 27.4 36.1 15.3 

Heart disease 

(%) 

31.0 40.1 17.1 11.2 25.8 44.7 7.7 12.9 16.5 7.5  8.0 36.1 68.2 23.4 

Hypertension 

(%) 

44.2 51.6 26.3 14.8 38.5 63.0 13.9 27.0 29.1 12.4  11.4 49.8 80.4 36.1 

Hyperlipidemia 

(%) 

46.8 40.6 39.9 11.4 32.9 62.5 3.3 20.2 21.8 4.6  15.2 36.0 69.6 34.2 

Kidney disease 

(%) 

18.7 31.2 17.0 11.0 24.3 32.4 7.6 6.2 9.0 1.2  5.1 23.4 35.5 14.9 
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Table 3 The results for internal validation in ClinFormatics 

Outcome Predictors No. Variables AUC AUPRC 

Hospitalization with 

pneumonia 

Conditions/drugs 

+ age/sex  

521 0.852 0.224 

Age/sex 2 0.818 0.164 

COVER-H 9 0.840 0.120 

Hospitalization with 

pneumonia requiring 

intensive services or 

death 

Conditions/drugs 

+ age/sex 

349 0.860 0.070 

Age/sex 2 0.821 0.049 

COVER-I 9 0.839 0.059 

Fatality Conditions/drugs 

+ age/sex 

205 0.926 0.069 

Age/sex 2 0.909 0.037 

COVER-F 9 0.896 0.039 
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Table 4 COVID-19 validation of the COVER scores on COVID-19 patients with a GP, ER, or OP visit in 2020 (*Confidence interval is 

not reported as the number of outcomes is larger than 1000) 

Outcome Database AUC (95% confidence interval) AUPRC 

Hospitalization 

with pneumonia 

(COVER-H) 

HIRA 0.806 (0.762-0.851) 0.134 

SIDIAP 0.748*  0.072 

TRDW 0.731 (0.611-0.851) 0.132 

VA 0.689 (0.649-0.729) 0.179 

Hospitalization 

with pneumonia 

requiring 

intensive services 

or death 

(COVER-I) 

CUIMC 0.734 (0.699-0.769) 0.100 

HIRA 0.910 (0.889-0.931) 0.053 

VA 0.763 (0.708-0.818) 0.058 

Fatality 

(COVER-F) 

CUIMC 0.820 (0.796-0.840) 0.400 

HIRA 0.898 (0.857-0.940) 0.150 

SIDIAP 0.895 (0.881-0.910) 0.083 

VA 0.717 (0.642-0.791) 0.068 

 

Discussion  

Interpretation 

We developed and externally validated models using large datasets of influenza patients to 

quantify a patient’s risk of developing severe or critical illness due to COVID-19. In the 

development data, the 9-predictor COVID-19 Estimated Risk (COVER) scores were a good trade-
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off between model complexity and performance, as the AUCs were generally close to the large 

data-driven models. The COVER scores achieved an AUC of 0.84 when predicting which patients 

will be hospitalized or require intensive services and an AUC of 0.9 when predicting which 

patients will die within 30 days. When validated on 1,985 COVID-19 patients in South Korea the 

COVER-H score performed well (AUC > 0.8), and COVER-I and COVER-F performed excellently 

(AUC ≥ 0.9). The model performed similarly well when applied to 37,950 COVID-19 Spanish 

patients (COVER-H: AUC 0.75) and excellent performance when predicting fatality (COVER-F: 

AUC 0.89). When applied to US patients, the COVER-I and COVER-F models achieved good AUCs 

of 0.73 and 0.82 in CUIMC, VA performed similarly with AUCs of 0.76 and 0.72 respectively. The 

VA also achieved 0.69 for COVER-H. A visual assessment of calibration plots across validations 

showed reasonable calibration in HIRA, SIDIAP, and VA. There was slight overestimation of risk 

amongst oldest and highest risk strata in SIDIAP, and to a lesser extent in HIRA. The calibration 

was poor in CUIMC, often underestimating risk, but this may be due to CUIMC containing 

mostly hospitalized COVID-19 patients, so the CUIMC cohort are experiencing more severe 

COVID-19 as due to the setting they are mostly hospital admitted patients when tested. The VA 

showed some miscalibration in the lowest and highest risk strata. The variable calibration 

results suggest that the models performance should be assessed and potentially recalibrated 

when used in a new context. We also performed sensitivity analyses using more sensitive 

COVID-19 definitions which also included patients with symptoms, or symptoms and influenza. 

The results did not show much deviation from the specific definition (Online supplement 

Appendix B). 
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These results showed that training in large historical influenza data was an effective strategy to 

develop models for COVID-19 patients. We also validated the age/sex and data-driven models 

on the COVID-19 patients and the age/sex models already appear to do well. This shows that 

age and sex are strong predictors of disease severity in COVID-19. Our results show that 

quantifying a symptomatic patient’s risk based on a small selection of comorbidities as well as 

age/sex gives improved model performance. 

We identified one other model that addressed a similar problem setting. The COVID-19 

Vulnerability Index built from a 5% sample of Medicare claims data from 2015-2016 using a 

proxy for COVID-19. The model predicts hospitalization due to pneumonia (except when caused 

by tuberculosis), influenza, acute bronchitis, or other specified upper respiratory infections
26

. 

The model achieved an AUC of 0.73, but has not been validated on a COVID-19 cohort. Several 

other models have been proposed to predict severity of COVID-19
27-29

, but these only consider 

patients already hospitalized. 

Limitations 

Limitations of the study included being unable to develop a model on COVID-19 patient data 

due to the scarcity of databases that contain this information in sufficient numbers, however 

we were able to validate the models developed in COVID-19 and as such are confident the 

performance is transportable. In CUIMC, HIRA, SIDIAP, and VA COVID-19 databases we either 

reached or approached the threshold for reliable external validation of ~100 patients who 

experience the outcome of interest
30,31

. The results of TRDW are promising, but might not be 

reliable due to the low number of outcomes. As larger COVID-19 databases become available, 

training a model using these data may highlight predictors of severity amongst uncommon 
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influenza presentations, for example younger and healthier patients experiencing severe or 

critical illness.  

The calibration in some of the COVID-19 validations could benefit from recalibration which can 

be performed by either recalibration in the large
32

 or logistic recalibration
33

. This suggests that 

calibration can be an issue in some locations and as such ideally the models will be tested and 

recalibrated in these locations before use. 

Further limitations include misclassification of predictors, for example if disease is incorrectly 

recorded in a patient’s history, as well as in the cohorts through incorrect recording of influenza 

or COVID-19. We were unable to validate the COVER-H score in CUIMC as it mostly contained 

ER or hospitalized COVID-19 patients and the COVER-I score in SIDIAP due to a lack of 

information on intensive services in the database. A similar issue also meant we were not able 

to include some suspected disease predictors such as BMI/Obesity in the analysis due to the 

inconsistency with which these measures are collected and reported across the various 

databases included in the study. 

We used a 30 risk window which has a limitation that if a patient experiences an outcome after 

the time window, this will be recorded as a non-event. This is unlikely for a hospital or intensive 

services admission, both of which tend to happen within 2 weeks of initial symptomatic 

presentation. Death has a higher probability of occurring outside this window but the likelihood 

of this is still small and so is unlikely to impact the performance evaluation significantly. 
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Implications 

The results show we were able to develop models that use a patient’s socio-demographics and 

medical history to predict their risk of becoming severely or critically ill when infected with 

COVID-19. To our knowledge, this is the first study that has been able to extensively externally 

validate prediction models on COVID-19 patients internationally. The strong performance in 

COVID-19 patients of the COVER scores can be used to identify patients who should be shielded 

from COVID-19. This can have multiple benefits; i) it can help reassure low risk people who may 

be psychologically impacted by the stress of the virus, and ii) it can help identify which people 

would be at increased risk of severe or critical outcomes and as such should continue to be 

shielded during the first stages of de-confinement.  

Conclusion 

In this paper we developed and validated models that can predict which patients presenting 

with COVID-19 are at high risk of experiencing severe or critical illness. These models can be 

used to identify vulnerable patient populations that require shielding as they have the worst 

COVID-19 prognosis. This evidence can be particularly impactful as governments start to lift 

measures and could be used to aid strategic planning to help us protect the most vulnerable. 
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Cancer +2 +1 +3

COPD +6 +6 +4

Diabetes +3 +4 +2

Heart Disease +4 +4 +2

Hypertension +3 +5 +3

Hyperlipidemia -3 -4 -7

Kidney Disease +2 +4 +2

MEDICAL 
HISTORY

18 - 19 years -7 -10 -15

20 - 24 years -4 -2 -8

25 - 29 years -2 -1 -20

30 - 34 years -2 +0 -5

35 - 39 years +0 +0 +0

40 - 44 years +3 +3 -6

45 - 49 years +6 +5 +1

50 - 54 years +9 +10 +15

55 - 59 years +13 +12 +12

60 - 64 years +15 +16 +16

65 - 69 years +19 +22 +27

70 - 74 years +20 +21 +31

75 - 79 years +23 +22 +35

80 - 84 years +24 +21 +40

85 - 89 years +27 +25 +45

90 - 94 years +25 +21 +30

Age Score

AGE GROUPS

COVER-H COVER-I COVER-F

TOTAL SCORE
COVER-H COVER-I COVER-F

DETERMINE COVER SCORES

Risk of 
Hospitalization

Risk of 
Intensive Services

Risk of 
Fatality

LEARN THE RISKS1 2 3COMPARE THE RISK WITH OTHERS
Risk Score probability distributions in ClinFormatics

A digital version of this risk 
calculator is available in:
http://evidence.ohdsi.org/
Covid19CoverPrediction

Female +43 +27 +27

Male +46 +31 +31

Sex Score

SEX

Add all scores in 
rounded boxes

Hospitalization Intensive Services Fatality
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