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Abstract

Cross-reactivity to SARS-CoV-2 from previous exposure to endemic coronaviruses (eHCoV) is
gaining increasing attention as a possible driver of both protection against infection and severity of
COVID-19 disease. Here, we use a stochastic individual-based model to show that heterogeneities
in individual exposure histories to endemic coronaviruses are able to explain observed age
patterns of hospitalisation due to COVID-19 in EU/EEA countries and the UK, provided there is (i)
a decrease in cross-protection to SARS-CoV-2 with the number of eHCoV exposures and (ii) an
increase in potential disease severity with number of eHCoV exposures or as a result of immune
senescence. We also show that variation in health care capacity and testing efforts is compatible
with country-specific differences in hospitalisation rates. Our findings call for further research on
the role of cross-reactivity to endemic coronaviruses and highlight potential challenges arising from
heterogeneous health care capacity and testing.

Introduction

COVID-19 and its causative agent, SARS-CoV-2, have recently emerged as a global threat to
human health, forcing many countries to undertake unprecedented measures to contain its spread.
This disease displays a spectrum of iliness severity and fatality characterised by a marked age
gradient. Typically, cases under 20 years of age display mostly mild or no symptoms, while older
individuals are at increased risk of developing severe symptoms, including respiratory failure,
multiorgan dysfunction and death (1,2).

Understanding the determinants of severe symptoms is key to preparedness against COVID-19.
So far, cohort studies have identified a number of risk factors for severe illness in comorbidities
such as cardiovascular disease, diabetes mellitus and obesity (3-5). Meanwhile, there have been
extensive efforts to calculate aqe-specific odds of developing clinical and severe symptoms, as
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weIINas hospitalisation and fatality rates (6—8). These results have important implications for public
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health, influencing real-time management and strategic allocation of clinical resources.
Nonetheless, apart from a few notable exceptions (9—11), most modelling work assumes that
SARS-CoV-2 spreads across an entirely susceptible population. Consequently, the impact of
cross-reactivity between SARS-CoV-2 and other endemic human coronaviruses (eHCoVs),
remains largely unexplored.

SARS-CoV-2 is the seventh coronavirus known to infect humans. SARS-CoV and MERS-CoV
emerged in the past 20 years, while HCoV-229E, -NL63, -OC43 and -HKU1 are endemic to the
human population. Infection with eHCoVs is frequent but, contrary to emergent HCoVs, it is usually
associated with mild respiratory illness (12). Typically, the first exposure to any eHCoV occurs
early during childhood, but reinfection can occur (13) due to the waning of homotypic immunity
(14-17).

So far, a fully mechanistic explanation of COVID-19 severity, that accounts also for the
heterogeneous immune landscape in which SARS-CoV-2 spreads, is lacking. T cell and I1gG
antibody reactivity to SARS-CoV-2 has been observed in non-exposed individuals (18-25),
indicating that there is cross-reactivity between eHCoVs and SARS-CoV-2. It is still unclear,
however, whether pre-existing cellular and antibody responses to SARS-CoV-2 are protective or
pathogenic (26-32). In this study, we present a parsimonious model of eHCoV co-circulation to
explore the effect of these contrasting possibilities on the age distribution of COVID-19 severity.
The key assumption is that distinct life-histories of exposure to eHCoVs result in responses of
varying effectiveness upon challenge by SARS-CoV-2 and, eventually, distinct clinical outcomes.
We assume that the first infection with any eHCoV induces cross-protection against disease, but
this is reduced in subsequent infections which more readily induce strain-specific responses.
Furthermore, the risk of severe disease may increase with exposure to eHCoVs due to the
selective amplification through immune priming of harmful responses such as antibody- and/or
T-cell-mediated over-production of pro-inflammatory cytokines (33—-36). We contrast the results of
this model with one where risk of disease is exposure-independent (i.e. determined solely by
factors such as immune senescence) and outline the conditions under which they provide a good
fit to the age-specific hospitalisation rates in EU and European Economic Area (EEA) countries
and the UK.

Results

eHCoVs calibration and dynamics

We represent the dynamics of the system using a multi-strain epidemic model with 5 coronavirus
strains. We capture the immunological landscape prior to SARS-CoV-2 emergence by calibrating
the model to available epidemiological knowledge (Figure 1) regarding the 4 known eHCoVs,
HCoV-229E, -NL63, -OC43 and -HKU1; a fifth strain playing the role of SARS-CoV-2 is introduced
only at a later stage (see Methods for more details).

Epidemiological parameters characterizing eHCoVs and SARS-CoV-2 were informed, where
possible, from the literature. As reinfection is commonly observed in eHCoVs (15,37,38), we
assume that the recovery provides only partial protection against reinfection with the same strain;
in particular, we assume that exposure to a previously encountered strain results in infection with
probability p. The case p=0 corresponds to complete, life-long immunity upon recovery. We
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investigated the impact of the remaining parameters numerically, leveraging available
epidemiological knowledge about eHCoVs to guide our analysis. Values defining the
life-expectancy distribution were set to simulated age profiles matching average European
patterns (simulated age profiles are shown in Figure S1). Model parameters and their values are
briefly summarised in Table S1, while details about model implementation and calibration are
found in Supplementary Note S1.

Figure 1A-C shows typical realizations of our multi-strain model under baseline conditions
(parameter values indicated in bold in Table S1). The model captures annual patterns of eHCoV
spread (39), with seasonal differences in eHCoV seasonal epidemics dictated mostly by
stochasticity, population turnover and seasonal variation in transmissibility. At time 7,,, = 160 y we
introduce the emergent strain into the host population. As shown in the insets in Figure 1, the
invading strain rapidly spreads through the population thanks to its antigenic novelty, infecting a
large proportion of hosts.
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Figure 1: Simulated transmission of eHCoVs. (A-C) Stochastic realisations of the multi-strain model obtained using
baseline parameters. At time ¢ =T,,, = 160y we randomly infect 10 individuals with the emergent strain (red). Insets:
zoom on the first 100 days after introduction of the emergent strain. (D) Annual attack rate per 100 population by age

class for all four eHCoVs. The attack rate decreases and plateaus with age since individuals accumulate immunity
through consecutive infections with different eHCoVs.

We set susceptibility to reinfection to p=10.35 in order for our model to yield a realistic force of
infection (FOI) for eHCoVs. That is, we calibrated p in order to match empirical estimates of the
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age at first eHCoV infection (Figure 2), which is given by the inverse of the FOI (40). In our model,
the emergent strain shares the same value of p as that of endemic strains. This assumption is

compatible with recent work finding similar kinetics of antibody responses after both SARS-CoV-2
and eHCoVs infections (41).

We investigated the role of susceptibility to reinfection (p) on the dynamics of eHCoVs. Increasing
values of p (at fixed R, ) yield a larger force of infection (FOI) which, in turn, affects almost every
aspect of eHCoVs' epidemiology. Figure 2A shows, for instance, the effect of p on the age of first
infection with endemic strains: because of the relationship with FOI, larger values of p yield a
younger mean age at first infection. Figure 2A also shows that values of p in the range [0.1 - 0.45]
yield realistic values for the mean age at first infection with endemic strains, which is estimated to
be 4.8 [2.5 - 11.2 95%C.1.] years globally (42). Consequently, in accordance with previous studies,
our analysis rules out the possibility of complete, life-long complete immunity against reinfection by
eHCoVs (i.e. p=0) (42). Furthermore, very small values of p provide unrealistic age-specific
incidence profiles. In the extreme case p=0 (no reinfection), infections would occur only in
children and young adults, contradicting empirical evidence of eHCoVs infecting older age classes
(42). Finally, we note that values of p> 1/R, cause a shift from an epidemic SIR-like behaviour to
a stable SIS-like behaviour (43), suggesting values of p beyond p, (indicated with hatches in
Figure 2) are not epidemiologically plausible in the context of eHCoV dynamics.

Figure 2B also shows that our model reproduces reasonably short times between two consecutive
infection events. Specifically, for p>0.2 at least 5% of all reinfection events occur within 1 year
since the last infection event. Our results agree with previous challenge experiments and cohort
studies, which reported short-lived homotypic immunity (<1 year) against eHCoV reinfection in a
minority of individuals (14,15,38).
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Figure 2: Impact of p on eHCoV dynamics and emergent strain hospitalisation rates. (A) Mean age at first
infection with any eHCoV (black dots) and with a specific strain (red dots) as a function of p. The dashed line and band
represent respectively the mean and 95% C.I. for the age at first infection with any eHCoV obtained from a pooled
estimate (42). (B) 5th percentile of the time between consecutive infections by the same strain. Hatches indicate the
p > 1/R,region (for R, =2) where the dynamics are SIS-like (whereas for p < 1/R, we observe epidemic behaviour). It
should be noted that for p =0 reinfection still occurs in our model because of external introductions, which we have
assumed for simplicity to ignore pre-existing immunity to reinfection. Nonetheless, reinfection events induced by external
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introductions represent only a small fraction of all infection events. Epidemiological parameters are set to baseline
values.

Modeling age-specific COVID-19 hospitalisation rates under eHCoV exposure dependence

We model individual-level heterogeneities in the probability of developing COVID-19 severe
symptoms by assigning to each case a severity score w.

Exposure dependence is introduced by:
w=|a +[(nir4f >0)-exp(b- (nl.nf— D)H]-[1 = exp(=7- Az, )], (1)

is the time since the most recent

last

where n,,. is the number of previous infections to eHCoVs, Az
first infection by any eHCoV and I(...) is an indicator function that equals 1 if the condition in the
brackets is true and 0 otherwise. The two terms in square brackets reflect two distinct biological
assumptions about the risk of developing COVID-19 severe symptoms following infection by the
emergent strain:

1. Secondary infections with the same eHCoV do not provide any additional protection on the
assumption that reinfection enhances homotypic immunity at the expense of
cross-reactivity to SARS-CoV-2. After an individual encounters an eHCoV for the first time,
the severity score is reset to 0, but increases progressively with time at rate » (waning of
cross-protection) back up to the value a +exp(b - (n,,,—1)).

2. The severity score increases exponentially with the number n,,. of previous infections to

any eHCoV to reflect the potential build-up of homotypic immunity superseding heterotypic
immunity. The parameter 5 (boosting factor) quantifies the post-infection increment to the

score, while a (baseline risk) represents the score in HCoV-naive individuals.

In each simulation, we sample a fraction n of infected cases without replacement, with severity
scores representing sampling weights, and mark them as hospitalised (see Methods for additional
details). For this theoretical exercise, we consider only individuals infected up to 50 days after the
introduction of the emergent strain, i.e. those individuals that become infected during the early
phase of the epidemic, before containment measures would have a significant impact on the
epidemic. n is the overall fraction of cases hospitalised and thus represents the Infection
Hospitalisation Ratio (IHR) which effectively aggregates multiple factors affecting reporting, e.g.
visibility of symptoms, testing efforts, care-seeking behaviour and health care capacity.

Age-specific hospitalisation rates are shown in Figure 3 when varying a (baseline risk), b
(boosting factor), » (waning of cross-protective immune responses) and n (IHR). Figure 3A-D
shows that differences in the combination of these parameters can lead to widely divergent age
patterns in hospitalisation rates. First, we note that the hospitalisation risk increases at older ages
simply due to the dominance of strain-specific responses over cross-protective responses (i.e.
b = 0, panels AB). Second, for a >0, the risk of hospitalisation is not a monotonic function of
age. This is because when HCoV-naive individuals become infected with any eHCoV for the first
time, their severity score for COVID-19 drops from « to 0, as illustrated by time trajectories of
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individual severity scores in Figure 3E; this explains why the risk of severe symptoms is so low in
children and teenagers and also why it is slightly higher in the very youngest (0-5y) age class
(44,45). Because the chances of encountering any eHCoV increase rapidly with age, most
individuals have already encountered all eHCoVs by the time they reach adulthood. After that
point, the average severity score increases at rate » (up to a+1 in the absence of boosting),
which results in increasing hospitalisation rates. Increasing values of r» (waning of
cross-protection) reduces this effect, since primed individuals revert to their maximal score faster.
These observations hold also in the case where b>0 (panels C,D); however, as expected,
increasing values of the boosting parameter b result in a steeper increase in hospitalisation rates
with age.

Figure 3F shows that, given a specific choice of a, » and r (and hence of a function for the
severity score), smaller IHR (x) values lead to increasingly heterogeneous hospitalisation rates
across age ranges. For very small values of the IHR, only those cases with the largest scores are
hospitalised. In contrast, larger values of the IHR increase the number of infected cases that are
hospitalised, which makes hospitalisation rates increasingly similar to age-specific attack rates.
Crucially, this implies that the IHR has a non-linear impact on hospitalisation rates across ages
and suggests that differences in IHR, perhaps due to heterogeneous capacity, admission policy
and testing efforts, may partially explain inter-country variations in the relationship of age with
hospitalisation (46).
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Figure 3: Impact of » (boosting factor), » (waning of cross-protection), « (baseline risk) and = (IHR) on
age-specific hospitalisation rates. Panels (A-D) correspond to different combinations of parameters » and . Within
each panel, different curves correspond to different values of «. Here we assumed that a fraction = = 0.1 of all cases
are hospitalised. For visualisation purposes, the rate corresponding to the 45-49y age range is set to one and the
remaining rates are re-scaled accordingly. (E) Temporal evolution of the severity score for a single host under different
combinations of b, » and a=1. We considered three scenarios corresponding to no boosting and slow waning of
cross-protection (green line, »=0, r=0.05y), boosting and slow waning of cross-protection (black line, »=0.3,
r=0.05y), boosting and fast waning of cross-protection (red line, »=0.3, »= 0.5y ). Bars indicate infection events, with
each color corresponding to a different eHCoV. At birth, the score is identically equal to a. The score drops to 0 after
encountering a new strain (thicker and taller bars), but increases thereafter at rate r. Secondary infections with the
same eHCoV (smaller bars) do not provide any additional protection and only increase the score for » > 0. In panel (F)
we set a = 04, b =05, r=0.05y"'and explore =. In all panels, epidemiological parameters are set to baseline
values. Results are averaged over 50 samplings obtained from each of 5 different stochastic simulations (the impact of
stochasticity on hospitalisation rates is further explored in Figure S2).
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In Figure 4A,B we compare model output and data for EU/EEA countries and the UK obtained
from TESSy (ECDC source) (46) under our estimated epidemiological parameters (see Table 1)
and a value of 5% for IHR, obtained after correcting counts of reported cases for non-uniform
attack rates (47), similar to previously reported values (7,48,49).

We obtain a good qualitative match to observed trends in hospitalisation rates and the age
distribution of hospitalised cases (Figure 4A,B). In particular, the model seems to capture the
relatively low rates observed in individuals aged 0-20 years and the rapid increase in
hospitalisation rates after the age of 20. Age variations in severity scores (Figure 4C) underscore
the important role of disease enhancement through repeated eHCoVs infections throughout life.
Interestingly, Figure 4C also implies that children in the range 5-19y are less susceptible to severe
symptoms than infants (<5 years), a pattern previously described for some countries such as
Portugal, Italy, and the Netherlands (Figure S3) (44). As explained in the context of Figure 3, this
optimum in protection from severe disease stems from the interplay between losing heterotypic
responses in favour of homotypic responses with increasing exposure, and the protective effect of
cross-protective immune responses after first exposure to an eHCoV. Figure S4 and Figure S5
further explore sensitivity of our results to susceptibility to reinfection and parameters defining the
life-expectancy distribution, respectively.

We also explored the potential for sterilising (ie. infection blocking) heterotypic immunity to account
for reduced risk of hospitalisation in children (8). However, levels of heterotypic immunity required
to generate significant levels of protection were not compatible with the observed dynamics of
eHCoVs (Figure S6).
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Figure 4: Comparison between model predictions and hospitalisation data for EU/EEA countries and the UK. (A)
Simulated hospitalisation rates (blue line) and data (dots). The value corresponding to the 40-49y age range has been
set to 1 for convenience and remaining values have been scaled accordingly. The shaded area indicates the 95% C.I.
from simulations. (B) Age distribution of hospitalised cases in EU/EEA countries and the UK (dots) and mean distribution
from simulations (bars). Error bars indicate the 95% C.I. from simulations. (C) Mean number of cumulative infections and
severity score as a function of age (black and blue lines, respectively), at the time of the introduction of the emergent
strain. Shaded area indicates the 95% C.I. from simulations. Here, we set = =0.05, a=1.5, 5=0.5, r=0.05y7".
Because our aim is mainly to illustrate the role of disease enhancement and cross-protection, we did not attempt to fit
parameters a (baseline risk), b (boosting factor) and » (waning of cross-protection). Rather, we manually adjusted
parameters in order to obtain a good visual agreement between data and simulations. Goodness of fit for chosen
parameters was measured at R*=0.98. Results are averaged over 100 samplings from each of 50 different simulations.
Other parameters are set to baseline values.
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Modelling age-specific COVID-19 hospitalisation rates under age dependence

These data patterns observed for EU/EEA countries and the UK can also be recovered using a
model in which disease severity depends only on an individual's age (the age-dependent model).
Briefly, this model assumes that the severity score is constant up to age 4,, but increases
exponentially with age thereafter:

W(A) = Aage +]A>Aoexp( bage : (A _AO) ) , (2)
where 4 is age and ag., bae. are positive constants.

Figure 5A shows that such a model is able to capture the observed COVID-19 hospitalisation rates
(R2 =0.99), under the explicit assumption that individuals younger than 4,=20y are protected
from severe symptoms. However, while both HCoV-exposure-dependent and age-dependent
mechanisms seem to perform equally well in terms of age aggregated data, they yield different
predictions about the individual risk of severe disease (Figure 5B). In particular, the former model
predicts a small but non-negligible proportion of young individuals at high risk of severe COVID-19,
whereas the age-dependent model does not. Figure 5C shows that heterogeneity in exposure to
eHCoVs results in a fraction of young individuals displaying a severity score comparable to older
individuals. In contrast, in the age-dependent scenario younger hosts display a systematically
smaller and non-overlapping severity score compared to older ones (Figure 5D), requiring ad hoc
assumptions on why severe disease can sporadically but still significantly happen in this
age-group.
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Figure 5: Implications of HCoV-exposure- and age-dependent-severity. (A) A model where disease severity
depends only on age (the age-dependent model) is able to explain hospitalisation rates in EU/EEA countries and
the UK (dots). Line and filled area represent mean and 95% C.l., respectively. Here, we set a,,. =04,
bage =0.052y"'and 4, =20y. Results are averaged over 100 samplings from each of 50 different simulations. (B)
Individual risk of developing severe symptoms under exposure-dependent (black) and the age-dependent severity
(fucsia). (C,D) Severity score distribution within each age class under exposure-dependant and age-dependent
severity, respectively. Solid and dashed lines indicate the median score and the 95% percentile range, respectively.
Please note that C,D have different scales. To estimate individual risk in (B), we first selected N =3 - 10* individuals
completely at random in a single simulation (that is, we assume uniform infection rates across all age ranges) and
then sampled a fraction = =0.05 of these N cases according to the sampling scheme outlined in the Methods
section. This operation was repeated 2 - 10° times. Finally, we computed the proportion of high-risk individuals as
the fraction of sampled cases whose risk is larger than the 25th percentile in the >60 years age range. In C,D, the

score distribution is computed from a single simulation at the time of the introduction of the emergent strain. We set
epidemiological parameters to their baseline values and a=1.5, 5=0.5,7r=0.05y!.
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Discussion

Immunopathogenesis of COVID-19 is complex and still far from being completely understood (27).
Here we offer a mechanistic explanation of age patterns of COVID-19 severity, based on individual
exposure histories to eHCoVs. Our results support the notion that cross-protection induced by
exposure to eHCoVs may explain the low frequency of COVID-19 severe symptoms in individuals
under 20 years of age (8,45). If strengthening of homotypic immunity with repeated exposure
interferes with the induction of cross-protective responses, this could explain why more
immunologically experienced older age classes would be paradoxically more susceptible to
COVID-19 disease upon first infection with SARS-CoV-2. Note that this increase of susceptibility
with age due to reduced cross-protection is only a feature of a new epidemic; if SARS-CoV-2
becomes endemic, there should be sufficient homotypic immunity in older age classes to reduce
the severity of a second infection.

Past exposure to eHCoVs may also act to exacerbate symptoms. Antibody Dependent
Enhancement (ADE) (which is known to contribute to severity of secondary Dengue infections
(50-53) and has been observed also in HIV (54,55), ebola (56,57) and influenza (58,59)) has been
documented in SARS and MERS (60-64) but its role in the pathogenesis of COVID-19 is still
unclear. Anti-spike IgG antibodies have been shown in-vitro to enhance ability to infect immune
cells, notably macrophages, and induce the secretion of pro-inflammatory factors for both
SARS-CoV (65) and SARS-CoV-2 (66). Recent studies also indicate widespread T cell reactivity in
blood samples obtained during the pre-pandemic period (20,21,23). Pre-trained T cell immunity is
likely generated by previous exposure to eHCoVs (67,68) and is generally thought to promote viral
clearance (20,69); however, dysregulated CD4 T cell responses have also been shown to
contribute to cytokine storm in severe COVID-19 patients (70).

The age distribution of COVID-19 may thus be explained either by the decay of protective
cross-reactive responses to eHCoVs or by the accrual of non-protective cross-reactive responses.
However, these are unlikely to be the sole drivers of COVID-19 severity. Indeed, we find that a
simple age-dependent model can also match empirical hospitalisation rates in the other
age-groups (Figure 5) but only under the explicit assumption that individuals below 20 years are
intrinsically protected against severe illness, for example due to age differences in ACE2
expression in the respiratory tract (71). In contrast, the exposure-dependence model shows that
protection against severe symptoms in children and teenagers can emerge dynamically due to the
existing, age-dependent immunity landscape present in the population before emergence of
SARS-CoV-2. This scenario permits a small but non-negligible proportion of the young to behave
as outliers in terms of their immunity status and are indeed expected to be at increased risk of
severe disease at levels comparable to that of older individuals (Figure 5), and may explain why
certain children presenting no underlying health conditions have been reported to develop severe
symptoms associated with SARS-CoV-2 infection (45,72,73). Although data is limited, the age
distribution of severe eHCoVs infections contrasts with the age distribution of severe COVID-19,
following a pattern of reduction in severity through repeated exposure (Figure S7). We note that
this supports the hypothesis that frequent exposure to eHCoVs throughout age may favour
homotypic immune responses to those viruses, thereby compromising the development and
persistence of cross-reactive responses that could reduce the severity of disease with the newly
emerging coronavirus.
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In this work, we considered reported hospitalisation rates as a proxy for severity of symptoms.
Alternatively, we could have considered other indicators of disease severity, e.g. rates of severe
hospitalisations and fatalities. The former, however, is particularly sensitive to local capacity. The
apparent decline in ICU admissions observed in older age-groups, for example, is likely driven by
clinical decisions and capacity, rather than by a true decline in disease severity (74). Fatality rates,
on the other hand, are unlikely to provide a robust signal at younger ages because of the small
numbers of lethal outcomes in children and teenagers (72). We focused on data aggregated at the
European level, noting that individual countries show a qualitatively similar behaviour (Figure S3).
In principle, inter-country variation in age-specific hospitalisation rates might stem from differences
in eHCoV circulation patterns. However, in sensitivity exercises, we have shown that
heterogeneities in testing and containment efforts, as measured by the IHR (i.e. @ in our
framework), can affect the shape of hospitalisation rates, even under the same biological and
epidemiological conditions (Figure S8). Disaggregating these factors from biological mechanisms
of pathogenesis will be essential in further research to better understand the human immune
responses against SARS-CoV-2 in the context of immunological cross-reactions induced by
previous exposure to eHCoVs.

Methods

Additional details on multi-strain model

We consider a homogeneously mixed host population of constant size N. The population is
endowed with a realistic age profile modelled using a Weibull distribution with scale 6, and shape

ko (75).

We consider a multi-strain epidemic model with n strains. Each strain i is characterized by a
per-contact transmission probability B, (i=1,2,..,n) and a daily recovery probability c,. As

reinfection is commonly observed in eHCoVs (15,37,38), we assume that the recovered status
from strain i provides only partial protection against reinfection with the same strain; in particular,
we assume that exposure to a previously encountered strain results in infection with probability p .

The case p=0 corresponds to complete, life-long immunity upon recovery. For simplicity, we

assume that strains do not interact with each other and therefore spread independently. Infection
and recovery processes are stochastic and occur in discrete time, with the time unit set to 1 day.

Because eHCoVs display marked annual incidence patterns (76,77), we add an external
sinusoidal forcing f(#) to transmissibility with period 1 year and intensity «:

() =1 + &-sin@n(t — 182)/365) .

If we assume that each individual establishes on average & daily contacts, the overall force of
infection associated to strain i is given by:

(6 =k B f(6) TN,

where /;is the number of individuals infected with strain i.
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In this work we consider n =35 strains; strains labelled i = 1,2,3,4 represent eHCoVs, while strain
i =5 represents the emergent SARS-CoV-2. eHCoVs are introduced into the system at t=0,
while the emergent strain is introduced at a later time T',,, by infecting 10 individuals chosen at
random. We choose T,,, to be large enough (here we set T, =160y ) so that by the time the
emergent strain is introduced, both population demography and eHCoVs have already reached
stationarity. We avoid permanent extinction of eHCoVs by allowing external introductions, which

occur at an individual rate v .
Modeling hospitalisation with heterogeneous risk of severe disease.

Let X = {x,,x,, ...,x,} be a list of hosts infected by SARS-CoV-2 over a particular time window in
a single simulation. In order to select hospitalised cases from X, we first draw the total number m
of hospitalised individuals, which is binomially distributed with parameters » and = . In a second
step, we create a list X = {x,,X,, ...,xu} of hospitalised cases by randomly selecting m cases
without replacement from X, with odds proportional to their corresponding scores w,,w,, ...,w,.
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