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Abstract9

Previous exposure to influenza viruses confers partial cross-immunity against future infections with related10

strains. However, this is not always accounted for explicitly in mathematical models used for forecasting11

during influenza outbreaks. We show that, if an influenza outbreak is due to a strain that is similar to12

one that has emerged previously, then accounting for cross-immunity explicitly can improve the accuracy13

of real-time forecasts. To do this, we consider two infectious disease outbreak forecasting models. In the14

first (the “1-group model”), all individuals are assumed to be identical and partial cross-immunity is not15

accounted for. In the second (the “2-group model”), individuals who have previously been infected by a16

related strain are assumed to be less likely to experience severe disease, and therefore recover more quickly17

than immunologically naive individuals. We fit both models to case notification data from Japan during the18

2009 H1N1 influenza pandemic, and then generate synthetic data for a future outbreak by assuming that the19

2-group model represents the epidemiology of influenza infections more accurately. We use the 1-group model20

(as well as the 2-group model for comparison) to generate forecasts that would be obtained in real-time as the21

future outbreak is ongoing, using parameter values estimated from the 2009 epidemic as informative priors,22

motivated by the fact that without using prior information from 2009, the forecasts are highly uncertain.23

In the scenario that we consider, the 1-group model only produces accurate outbreak forecasts once the24

peak of the epidemic has passed, even when the values of important epidemiological parameters such as the25

lengths of the mean incubation and infectious periods are known exactly. As a result, it is necessary to use26

the more epidemiologically realistic 2-group model to generate accurate forecasts. Accounting for partial27

cross-immunity driven by exposures in previous outbreaks explicitly is expected to improve the accuracy of28

epidemiological modelling forecasts during influenza outbreaks.29
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1 Introduction32

Three major influenza pandemics have occurred in the 20th century, in 1918, 1957, and 1968 (Kilbourne, 2006).33

Each pandemic resulted in over a million deaths, with the death toll of the 1918 Spanish Flu pandemic estimated34

to be 50 million people (Johnson and Mueller, 2002). In 2009, a new strain of the H1N1 virus emerged, due to35

a reassortment of two swine viruses, triggering the first influenza pandemic of the 21st century (Trifonov et al.,36

2009; Christman et al., 2011). The virus is believed to have originated in Mexico in April 2009, and then spread37

rapidly across the globe, reaching 43 countries by May that year (Fraser et al., 2009; Trifonov et al., 2009). The38

case fatality rate due to the virus was lower than that of previous global pandemics in the 20th century (Kamigaki39
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and Oshitani, 2009). However the scale of the pandemic, with estimates that 11-21% of the global population40

contracted the virus, significantly burdened healthcare systems (Kelly et al., 2011).41

Influenza A viruses mutate over time; antigenic drift produces closely related strains, while antigenic shift42

causes major changes in the virus (Bouvier and Palese, 2008; Kim et al., 2018). Due to the random nature of43

the evolution of influenza viruses, it is not currently possible to predict when future pandemics will occur, and44

which strains will cause these pandemics (Neumann and Kawaoka, 2019). However, mathematical models have45

been used extensively for forecasting and informing public health measures when influenza outbreaks are ongoing46

(Ferguson et al., 2006; Hall et al., 2007; Nishiura, 2011; Ohkusa et al., 2011; Tizzoni et al., 2012; Biggerstaff47

et al., 2016; Thompson and Brooks-Pollock, 2019). Similarly, mathematical models are currently being used to48

predict the course of the ongoing COVID-19 pandemic (Ferguson et al., 2020; Kucharski et al., 2020; Prem et al.,49

2020; Thompson, 2020).50

The most basic infectious disease outbreak models assume that individuals are epidemiologically identical51

(Chowell et al., 2006; Bettencourt and Ribeiro, 2008). More complex models account for differences between52

individuals. For example, in many studies that aim to determine optimal vaccination strategies, populations53

are split into low-risk and high-risk groups (Gani et al., 2005; Dushoff et al., 2007), and spatial heterogeneity54

can be incorporated by partitioning individuals according to their location (Longini et al., 2004; Ohkusa et al.,55

2009). Commonly, due to different rates of contact between individuals of different ages, as well as varying case56

fatality rates between age groups, age-structured models are used (Chowell et al., 2009; Medlock and Galvani,57

2009; Glasser et al., 2010; Klepac et al., 2018).58

Other types of heterogeneity are also likely to play an important role in the dynamics of influenza outbreaks.59

There is evidence that previous exposure to an influenza virus confers partial immunity to the same or similar60

strains, and that this protection is lifelong (Gostic et al., 2016, 2019). This partial cross-immunity may explain61

why there has not been a global influenza pandemic as severe as the 1918 pandemic in the last century (Thompson62

et al., 2019). It has been shown that a significant proportion of elderly individuals carried pre-existing immunity63

to the 2009 H1N1 virus (Hancock et al., 2009; Xing and Cardona, 2009; Bandaranayake et al., 2010; Hardelid64

et al., 2010; Gostic et al., 2019). This may be due to the similarities between the 2009 H1N1 virus and the 191865

Spanish Flu virus, as descendants of the 1918 Spanish Flu virus continued to circulate until the 1957 pandemic66

(Xu et al., 2010). The consequences of pre-existing immunity can be seen in the age distribution of infected67

individuals in Japan in the 2009 pandemic, where only a small proportion of the individuals who sought medical68

attention were elderly (Mizumoto et al., 2013). As well as the heterogeneity between hosts in infection risk and69

age mentioned previously, models in which populations are structured according to whether or not individuals70

carry pre-existing immunity can also be formulated (Andreasen et al., 1997; Martcheva and Pilyugin, 2006; Reluga71

et al., 2008; Thompson et al., 2019).72

In this paper, our attention is directed towards how partial cross-immunity affects the predictability of out-73

breaks. We use mathematical models to investigate whether or not it is necessary to account for partially immune74

individuals in the population when forecasting the dynamics of future influenza epidemics. We consider two epi-75

demiological models. In the first, partial cross-immunity is ignored (the “1-group model”). In the second, more76

epidemiologically realistic model (the “2-group model”), individuals with and without partial cross-immunity are77

accounted for explicitly.78

First, we estimate values of parameters of each model (specifically, the transmission rate and the effective79

population size) using data from the 2009 H1N1 influenza epidemic in Japan. We then consider a synthetic future80

influenza outbreak of a related strain, simulated using the more epidemiologically realistic 2-group model. We81

explore whether or not accurate forecasts of the epidemic can be obtained in real-time. If uninformative priors82

are used and parameters are estimated in real-time, even the more realistic 2-group model is unable to generate83

accurate forecasts of the remainder of the epidemic before the peak occurs. This motivates us to incorporate84

information from the 2009 epidemic to set informative priors. We show that forecasts made using the 1-group85

model in advance or right at the start of a future epidemic are inaccurate because the model does not account86

for the changing number of partially immune individuals over time. We then use both information from the87
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2009 epidemic and data obtained as the future outbreak is ongoing to make real-time forecasts. Early in the88

outbreak, only the 2-group model can provide accurate forecasts of the remainder of the epidemic. For that89

reason, cross-immunity should be included in epidemiological forecasting models whenever an influenza outbreak90

is related to a strain that has previously caused a major epidemic.91

2 Methods92

2.1 Data93

Our analysis was based on data from the 2009 H1N1 influenza epidemic in Japan comprising the estimated94

numbers of weekly cases seeking medical attention in that country. These data were based on data from 480095

randomly sampled sentinel hospitals, extrapolated to the total number of medical facilities in Japan (Nishiura,96

2011). The data were acquired from Figure 1 of the analysis by Nishiura (2011) using the data extraction tool97

https://automeris.io/WebPlotDigitizer/ and the extracted data are available in Supplementary Data S1.98

The data represent incident cases of patients who sought medical attention and met one of the following criteria:99

(i) acute course of illness, (ii) fever higher than 38◦C, (iii) cough, sputum or breathlessness (symptoms of upper100

respiratory infection), (iv) general fatigue, and (v) positive laboratory diagnosis.101

It was estimated that 23.5% of the Japanese population was infected during the epidemic, and that 16.1% was102

infected and sought medical attention (Mizumoto et al., 2013). Therefore (23.5− 16.1)/23.5 = 31.5% of infected103

individuals did not seek medical attention. We assume that those infected individuals who did not seek medical104

attention suffered mild symptoms of influenza because they were partially immune to the virus (see discussion).105

Hence, extrapolating to the rest of the population and assuming that the susceptibility of hosts is unaffected by106

partial immunity, we assume when fitting the 2-group model that 31.5% of the population were partially immune107

to the virus and that 68.5% were immunologically naive.108

2.2 Models109

We consider two models characterising influenza outbreaks. In the first (the 1-group model), which is the110

commonly used SEIR model (Anderson and May, 1991; Mills et al., 2004; Chowell et al., 2006; Chen and Liao,111

2008), partial cross-immunity is neglected. In the second (the 2-group model), individuals who have been infected112

previously by a related strain are assumed to recover from infection more quickly than individuals who are113

immunologically naive. Schematics of both models are shown in Figure 1.114

(a) 1-group model (b) 2-group model

Figure 1: Schematics of the 1-group and 2-group models. In both cases, the population is compartmentalised

into susceptible S, exposed (infected but not yet infectious) E, infected I, and recovered R classes. The 2-group

model distinguishes between partially immune and immunologically naive individuals, and assumes that only

infected naive individuals are recorded in case notification data (with perfect reporting). The 1-group model

does not distinguish between partially immune and immunologically naive individuals, and assumes that all

infected individuals are recorded in case data (again with perfect reporting).
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2.2.1 1-Group Model115

The 1-group SEIR model is described by the following differential equations, in which individuals are either

(S)usceptible and available for infection, (E)xposed (i.e. infected but not yet infectious or symptomatic),

(I)nfectious or, (R)emoved:

dS

dt
= − β

N
SI, (1)

dE

dt
=

β

N
SI − κE, (2)

dI

dt
= κE − µI, (3)

dR

dt
= µI. (4)

In this model, the infection rate is governed by the parameter β, the mean latent period is 1/κ weeks and the116

mean infectious period is 1/µ weeks. The basic reproduction number R0 of the 1-group model is given by117

R0 =
β

µ
. (5)

Following Cintrón-Arias et al. (2009), the number of recorded cases in week j (recorded at the end of that118

week) where j is the integer number of weeks since the epidemic began, is given by119

C(j) =

∫ j

j−1

κE dt. (6)

The constant value S +E + I +R = N represents the effective population size. Since pathogens are most likely120

to be transmitted locally, individuals in distant locations are not available for infection and so N is expected to121

be smaller than the true population size (Gart, 1968; Pouillot et al., 2008). In Table 1 we list the parameters122

that appear in equations (1)-(4) and estimates of their values for the Japanese 2009 H1N1 epidemic (see also123

Section 2.3 and 3.1).124

2.2.2 2-Group Model125

The 2-group model is an extension of the standard SEIR model in which immunologically naive and partially

immune individuals are distinguished between. The 2-group model is given by the following system of differential

equations:

dSI
dt

= − β
N
SI(II + IN ), (7)

dEI
dt

=
β

N
SI(II + IN )− κEI , (8)

dII
dt

= κEI − µIII , (9)

dRI
dt

= µIII , (10)

dSN
dt

= − β
N
SN (II + IN ), (11)

dEN
dt

=
β

N
SN (II + IN )− κEN , (12)

dIN
dt

= κEN − µNIN , (13)

dRN
dt

= µNIN . (14)

The basic reproduction number R0 of the 2-group model is given by126

R0 =
β

µI

Γ1

Γ1 + Γ2
+

β

µN

Γ2

Γ1 + Γ2
, (15)
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where Γ = (Γ1,Γ2) is the eigenvector corresponding to the dominant eigenvalue of the matrix127

J =

(
βν − µI βν

β(1− ν) β(1− ν)− µN

)
. (16)

It has been shown that immune imprinting with a previous related influenza strain decreased the numbers of128

severe cases of H1N1, H5N1 and H7N9 influenza (Gostic et al., 2016, 2019). We assume that partially immune129

individuals experience less severe disease and therefore typically recover more quickly than immunologically naive130

individuals (i.e. 1/µI < 1/µN ). To isolate this effect alone on the predictability of epidemics, in this model it is131

assumed that partially immune and naive individuals are otherwise identical.132

We assume that only cases of severe disease (i.e. infected individuals who were previously immunologically133

naive) report infection, so that the number of recorded cases in week j is given by134

C(j) =

∫ j

j−1

κEN dt. (17)

Since we assume that only immunologically naive individuals report infection, the infectious period of immuno-135

logically naive individuals in the 2-group model is assumed to be identical to the infectious period of individuals136

in the 1-group model (i.e. 1/µN = 1/µ).137

Denoting the fraction of the population that is partially immune by ν, we have that SI +EI + II +RI = νN138

and SN +EN + IN +RN = (1− ν)N , where SI +EI + II +RI + SN +EN + IN +RN = N is the total effective139

population size. In Table 1 we list the parameters that appear in equations (7)-(14) and estimates of their values140

for the Japanese 2009 H1N1 epidemic (again see also Section 2.3 and 3.1).141

Parameter Description Values Source

β Transmission rate 1.644 Weeks-1 Estimated from data (Figure 3)

N Effective population size 3.072 × 107 Estimated from data (Figure 3)

1/κ Latent period 4/7 Weeks Tuite et al. (2009)

1/µ Infectious period 1 Week Tuite et al. (2009)

C0 Initial number of recorded cases 24073 Mizumoto et al. (2013)

(a): 1-group model

Parameter Description Values Source

β Transmission rate 1.947 Weeks-1 Estimated from data (Figure 3)

N Total effective population size 4.660 × 107 Estimated from data (Figure 3)

ν Partially immune fraction 0.3149 Mizumoto et al. (2013)

1/κ Latent period 4/7 Weeks Tuite et al. (2009)

1/µI Infectious period (partially immune individuals) 3/7 Weeks Estimate based on (Fielding et al., 2013)

1/µN Infectious period (naive individuals) 1 Week Tuite et al. (2009)

C0 Initial number of recorded cases 24073 Mizumoto et al. (2013)

(b): 2-group model

Table 1: Descriptions of parameters of the 1-group and 2-group models and estimates of their values for the

Japanese 2009 H1N1 epidemic.

2.3 Parameter Estimation and Forecasting142

When fitting the models to each dataset in this study, the transmission rate parameter, β, and effective popula-143

tion size, N , are estimated using Markov chain Monte Carlo (MCMC) with the Metropolis-Hastings algorithm144

(Hastings, 1970). All other parameters are assumed to be known. A likelihood function is used where it is145

assumed that the differences between the data and model forecasts (where the differences are due to noise not146
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accounted for in the models) are normally distributed, and that this noise scales with the square root of the size147

of the data (i.e. the number of cases). We estimate this noise scaling parameter σ in the likelihood function148

(which we then fix throughout this study), by first fitting each model to data from the 2009 Japan epidemic149

using a least squares approach (Cintrón-Arias et al., 2009). An analysis of the residuals (the difference between150

the model values and data) is given in Supplementary Information Section S.1, justifying the square root noise151

scaling assumption. In each MCMC simulation, we perform 2× 105 sampling iterations, discarding the first 104
152

iterations as the ‘burn-in’ period and record every 100 iterations thereafter to reduce autocorrelation. Further153

details are given in Supplementary Information Section S.2.154

When making forecasts in real-time after t = m weeks of the epidemic has passed, we calibrate our model155

forecasts with the observed data for weeks 0, 1, ...,m of the epidemic, estimating model parameters using the156

method just described. To generate forecasts, we re-calibrate our models to the last observed number of recorded157

cases at week m, estimating the initial conditions from the entirety of the epidemic so far, up to and including158

week m (for details, see Supplementary Information Section S.3).159

2.4 Modelling the Size of the Partially Immune Population between Epidemics160

For the 2-group model, we assume that all immunologically naive individuals infected during an earlier epidemic161

acquire partial immunity to related strains of the virus (and that partially immune individuals who were infected162

remain partially immune to related strains). We assume further that once an individual acquires partial immunity,163

they remain partially immune throughout their lifetime (Gostic et al., 2016, 2019). Using these assumptions, we164

can model the partially immune fraction of the population over the years between the end of a first epidemic165

and the start of a future epidemic of a related strain of influenza. We assume the next epidemic infects the same166

effective population as the first one (in 2009). This immune fraction of the population will decay due to births167

and deaths, which we now consider because the timespan between major influenza epidemics (which are often168

part of global pandemics) is typically many years (Kilbourne, 2006). Further details are given in Supplementary169

Information Section S.4. We seed the future epidemics by assuming there are 10,000 recorded cases in the first170

week from which we generate forecasts (three orders of magnitude smaller than the effective population sizes171

used in our models). When using the 2-group model to forecast future epidemics, we assume we know the partial172

immune fraction of the population exactly.173

2.5 Approaches to Forecasting a Future Epidemic174

In Figure 1 we have presented two mathematical models which can be used to forecast influenza epidemics. As175

well as determining which model to use, we shall investigate three forecasting approaches (see Figure 2 for a176

schematic of these approaches).177
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Figure 2: Schematic of the modelling approaches to forecast the dynamics of a future epidemic. The shaded

regions indicate the 95% confidence intervals of epidemic curve trajectories and forecasts. (a) Strategy 1: Fore-

cast in real-time, using data from the ongoing epidemic and assuming no prior information about the fitting

parameters. Cyan and green forecasts calibrated using data up to week 10 and 20 of the epidemic respectively.

(b)-(c) Strategy 2: Forecast in advance of a future epidemic using prior parameter distributions estimated from

fitting the model to data from a previous epidemic (priors shown in panel inside (b)). (d)-(e) Strategy 3: Forecast

in real-time, using data from the ongoing epidemic as well as prior parameter distributions estimated from fitting

the model to data from a previous epidemic.

3 Results178

3.1 Fitting Models to the 2009 H1N1 Influenza Epidemic in Japan179

We fit the 1-group and 2-group models to data from the 2009 H1N1 influenza epidemic (Figure 3 (a), (b)).180

The shaded regions represent the 95% confidence intervals of epidemic curve trajectories based on the posterior181

distributions of fitting parameters β and N . Since the 1-group model does not account for infected but unrecorded182

individuals, the estimated parameters for the model represent a lower effective population size N and basic183

reproduction number R0 than the analogous estimates for the 2-group model (Figure 3 (c), (d)). The mean184
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estimated values of R0 of the 1- and 2-group models are 1.644 (95%CI [1.644, 1.653]) and 1.720 (95%CI [1.704,185

1.736]) respectively, comparable with the interquartile range of 1.30 to 1.70 based on fifty-seven studies of the186

2009 H1N1 pandemic strain (Biggerstaff et al., 2014). The values for the estimated parameters and confidence187

intervals are stated in Table 2. The numbers of recorded, unrecorded, and combined total weekly cases estimated188

using the 2-group model are shown in Supplementary Information Section S.5.189

We use the mean estimated transmission rate and effective population size from the 2-group model to generate190

synthetic data for future epidemics. We assume that, if the simulated epidemic takes place further in future,191

then the immune fraction of the population is lower due to deaths of partially immune hosts and births of192

immunologically naive hosts (see Supplementary Information Section S.4).193

(a) 1-group model fitted to 2009 epidemic (b) 2-group model fitted to 2009 epidemic

(c) 1-group model estimated parameters (d) 2-group model estimated parameters

Figure 3: (a)-(b): The 1-group and 2-group models fitted to data of the number of new recorded cases each

week from the 2009 H1N1 influenza epidemic in Japan, using the transmission rate β and effective population

size N as fitting parameters. Solid lines and shaded regions indicate the mean and 95% confidence intervals

of epidemic curve trajectories based on the posterior distributions of the parameters. (c)-(d): Scatter plots of

posterior distributions of R0 (directly proportional to β) and N . Red dots represent the mean estimates of the

parameters. Estimated parameters along with their confidence intervals are given in Table 2.

Parameter Mean 95% CI

β 1.644 [1.627, 1.662]

N 3.072 × 107 [2.905, 3.246]×107

(a): 1-group model

Parameter Mean 95% CI

β 1.947 [1.927, 1.966]

N 4.660 × 107 [4.388, 4.938]×107

(b): 2-group model

Table 2: Mean values and confidence intervals of the fitting parameter posterior distributions, of the 1-group and

2-group models, fitted to data from the 2009 H1N1 influenza epidemic in Japan.
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3.2 Forecasting an Epidemic in Real-Time without Prior Information194

If a major influenza epidemic were to occur, we would want to make real-time forecasts of its dynamics using195

live data of the number of cases each week to update predictions. We consider the case of a future epidemic196

occurring 25 years after the 2009 outbreak. We make forecasts using the 1- and 2-group models, at 10, 20, and197

30 weeks after the first recorded cases. The results presented in Figure 4 show how the model forecasts change198

as we update them. The uncertainty in the forecasts of both models is large when they are made at weeks199

10 or 20. By contrast, if forecasts are made at week 30, then they accurately describe the remainder of the200

epidemic. We remark that at week 30, the peak of the epidemic has already passed and so accurate forecasting201

is less practically useful. We conclude that it is difficult to forecast the dynamics of an epidemic in real-time202

without prior information about the transmission rate and effective population size. This result motivates us203

to use information from previous epidemics when forecasting the dynamics of a future one; we investigate this204

further below.205
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(a) 1-group model: week 10 (b) 2-group model: week 10

(c) 1-group model: week 20 (d) 2-group model: week 20

(e) 1-group model: week 30 (f) 2-group model: week 30

Figure 4: Forecast Strategy 1: real-time forecasts obtained from the 1-group and 2-group models of a future

epidemic occurring 25 years after the 2009 epidemic, calibrated by fitting the model parameters β and N to data

of new cases, using uninformative uniform priors. Forecasts are made at weeks 10, 20, and 30 of the epidemic,

using the observed data to estimate model parameters. Vertical lines separate the calibration and forecasting

periods. Dashed lines indicate the mean of the epidemic curve trajectories in the model calibration period. Solid

lines and shaded regions indicate the mean and 95% confidence intervals of the forecasts, based on the posterior

distributions of the parameters. The synthetic data were generated using the mean parameters of the 2-group

model fitted to data from the 2009 epidemic. Uniform priors N ∈ [10× 106, 128× 106] and β ∈ [1, 3] are used.

3.3 Forecasting Epidemics in Advance206

Using estimates of β and N , calculated by fitting the 1- and 2-group models to the 2009 epidemic, we can prescribe207

these parameters to follow informative gamma distributions to more accurately forecast future epidemics (values208

given in Supplementary Information Section S.6). We use our models to generate forecasts of the dynamics of209

future major influenza epidemics in Japan arising from a related strain and occurring 25, 50, or 75 years after the210

2009 epidemic (with no major epidemics occurring in each intervening period). The forecasts in Figure 5 show211

that if the 1-group model is used where partial cross-immunity is neglected, the dynamics of a future epidemic212

are identical to those of the 2009 epidemic, regardless of when it occurs. By contrast, for the 2-group model, a213
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large proportion of the population would be partially immune after the 2009 epidemic, resulting in a lower basic214

reproduction number. Consequently, if a related strain were to emerge 25 years later, the epidemic would be215

smaller than in 2009 (Figure 5 (a)-(b)). If the next major epidemic occurred 75 years later, a large proportion216

of the population would be immunologically naive to a related strain of the 2009 virus (because of population217

turnover due to births and deaths), resulting in a greater basic reproduction number. Hence, if all other factors218

were similar to those in 2009, the future epidemic would be larger than in 2009 (Figure 5 (e)-(f)).219

Assuming the 2-group model more accurately reflects the underlying epidemiology of the system, we conclude220

that the 1-group model forecasts may differ markedly from the dynamics of the next epidemic of a related strain.221

Forecasts using larger and smaller variances of the distributions of β and N are presented in Supplementary222

Information Section S.7. The partially immune fraction, basic reproduction number, total number of recorded223

cases, duration, and size and timing of the peak of the epidemic forecasted using the 2-group model, as the time224

between epidemics increases, are shown in Supplementary Information Section S.8. As seen in Figure 5, the225

further into the future the next epidemic of a related strain occurs then, all else being equal, the greater the total226

and peak number of cases and the shorter the duration of the epidemic.227
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(a) 1-group model: 25 years later (b) 2-group model: 25 years later

(c) 1-group model: 50 years later (d) 2-group model: 50 years later

(e) 1-group model: 75 years later (f) 2-group model: 75 years later

Figure 5: Forecasts Strategy 2: forecasts obtained from the 1-group and 2-group models of epidemics in advance,

occurring 25, 50, and 75 years after the 2009 epidemic. Forecasts generated by assuming the parameters β and

N follow a gamma distribution, set by fitting the models to data from the previous 2009 epidemic (details in

Supplementary Information Section S.6). Solid lines and shaded regions indicate the mean and 95% confidence

intervals of the forecasts. The synthetic data were generated using the mean parameters of the 2-group model

fitted to data from the 2009 epidemic.

3.4 Forecasting an Epidemic in Real-Time with Prior Information228

We showed above that real-time forecasts of an influenza epidemic, without informative priors for the fitting229

parameters, were typically very uncertain (e.g. Figure 4 (a)-(b)). We therefore now consider using priors to230

inform the fitted parameter values, so that real-time forecasts are based on both historical data (from the 2009231

epidemic) and live data from the ongoing outbreak. Gamma distributed priors were set for β and N , with mean232

values based on parameter estimates from the 2009 epidemic.233

As before, we consider a scenario in which an epidemic occurs 25 years after the 2009 epidemic. In turn,234

predictions were made 0, 10, 20, and 30 weeks after the start of the ongoing epidemic (Figure 6 (a)–(b), (c)–(e),235

(f)–(h) and (i)–(k), respectively).236

We considered different widths of priors used to inform the epidemic forecasts (Figure 6 and figures in237
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Supplementary Information Section S.9). Under the baseline variance considered, when the 1-group model was238

used, there was sometimes a discrepancy between the calibrated model trajectory and the observed epidemic239

data (e.g. left part of Figure 6 (f)). For that reason, we also show epidemic forecasts obtained using a wider prior240

(Figure 6 (d), (g) and (j)), so that the model fits the observed data more accurately. When the 1-group model241

is used, the forecast is either inaccurate (when a prior with low variance is used; e.g. Figure 6 (c)) or imprecise242

(when a prior with higher variance is used; e.g. Figure 6 (d)). In either case, our main conclusion is unchanged:243

predictions are improved when the more epidemiologically realistic 2-group model is used.244

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.19.20157214doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157214


Baseline Prior Variances

(a) 1-group model: week 0 (in advance)

Baseline Prior Variances

(b) 2-group model: week 0 (in advance)

Baseline Prior Variances

(c) 1-group model: week 10

Prior Variances Increased

(d) 1-group model: week 10

Baseline Prior Variances

(e) 2-group model: week 10

Baseline Prior Variances

(f) 1-group model: week 20

Prior Variances Increased

(g) 1-group model: week 20

Baseline Prior Variances

(h) 2-group model: week 20

Baseline Prior Variances

(i) 1-group model: week 30

Prior Variances Increased

(j) 1-group model: week 30

Baseline Prior Variances

(k) 2-group model: week 30

Figure 6: Forecast Strategy 3: forecasts obtained from the 1-group and 2-group models of a future epidemic

occurring 25 years after the 2009 epidemic, in advance (at week 0) of the epidemic (a)-(b), and calibrated by

fitting the models to data of new cases during the outbreak (c)-(k). Gamma distributed priors are prescribed

on the fitting parameters β and N , set by fitting the models to data from the previous 2009 epidemic (details

in Supplementary Information Section S.6). Forecasts are made at weeks 10, 20, and 30 of the epidemic, using

the observed data to estimate model parameters. Vertical lines separate the calibration and forecasting periods.

Dashed lines indicate the mean of the epidemic curve trajectories in the model calibration period. Solid lines

and shaded regions indicate the mean and 95% confidence intervals of the forecasts, based on the posterior

distributions of the parameters. The synthetic data were generated using the mean parameters of the 2-group

model fitted to data from the 2009 epidemic.
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4 Discussion245

Influenza epidemics, particularly pandemics, cause a significant burden on healthcare systems throughout the246

world (Monto, 2004). It is widely known that exposure to an influenza virus confers partial immunity to related247

strains (Gostic et al., 2016, 2019), and yet, partial immunity is often neglected in influenza forecasting models248

(Baguelin et al., 2013; Rajaram et al., 2017). In this study we have investigated whether or not it is necessary249

to account for partial cross-immunity when forecasting influenza epidemics and, moreover, whether data from250

previous epidemics can improve forecasts.251

We have considered two different mathematical models which describe the spread of influenza, a 2-group252

model which differentiates between immunologically naive and partially immune individuals, and a 1-group253

model which does not. We parameterise each model using data of the estimated number of cases of infected254

individuals seeking medial attention per week during the 2009 H1N1 epidemic in Japan (Nishiura, 2011). When255

forecasting the dynamics of an epidemic of a related strain 25 years after the 2009 outbreak when there is no256

prior knowledge of the transmission rate and effective population size, we show that neither model predicts the257

dynamics of the epidemic in real-time early on during the outbreak with any certainty. Similar uncertainty was258

also seen when real-time forecasts were generated from an ordinary differential equation model with data from259

the 1918, 1957, and 1968 influenza pandemics (Hall et al., 2007).260

We forecast the dynamics of future epidemics occurring at a range of time intervals after the 2009 epidemic.261

Immediately after the 2009 epidemic, a large fraction of the population will be partially immune to strains that262

are related to the 2009 H1N1 virus. This fraction reduces as the time since the 2009 epidemic increases, as263

individuals (a large proportion of whom carry partial immunity) die and immunologically naive individuals are264

born. Consequently, the size of a future epidemic of a related strain increases the further into the future at which it265

occurs. If we neglect partial cross-immunity by using the 1-group model, we predict the same outbreak dynamics266

as in 2009, regardless of when it occurs. This is because changing numbers of partially immune individuals are267

not accounted for. This would either result in an overestimation of the size of a future epidemic, if the partially268

immune fraction was greater than the baseline partial immunity in 2009 (i.e. if the future outbreak occurred269

soon after 2009), or an underestimation, if it was less (i.e. if the future outbreak occurred long after 2009).270

Finally, we considered incorporating knowledge of parameters from the 2009 epidemic, combined with using271

outbreak data to make real-time forecasts during a future epidemic. When the 1-group model was used to make272

forecasts, we found that wide priors had to be used to calibrate the model trajectories to the data, especially273

early on. Although these priors, based on the 2009 epidemic, improved the forecasts compared to when no prior274

information was used, the forecasts were still uncertain when made before the peak of the epidemic. By contrast,275

the 2-group was able to make more accurate forecasts as it accounted for the changes in the number of partially276

immune individuals and, hence, its priors accurately reflected the values of the true underlying parameters of277

the system. We conclude that to forecast the long-term dynamics of major influenza epidemics, a model that278

accounts for partial cross-immunity should be used, and data from related previous epidemics taken into account.279

We note that there may be instances in which the underlying epidemiology of an outbreak is not well known,280

or where a complex model cannot be parameterised due to poor surveillance and or lack of data (Gibbons et al.,281

2014). In such cases, using a simple model akin to the 1-group model used in this study may be the only possible282

option for making predictions. Although forecasts made by a 1-group model may lack precision, they could still283

be useful to policy makers during an epidemic. For example, the 1-group model was able to accurately predict the284

duration of the epidemic when using data from the first 10 weeks of the outbreak, even if it could not predict well285

the trajectory of the entire epidemic. Such models may also be useful for short-term forecasts (Funk et al., 2019).286

By constantly updating model predictions using new data, and adjusting parameter assumptions when model287

calibration trajectories deviate from the data, simple models which do not describe the underlying epidemiology288

of an epidemic fully may still be informative.289

We investigated whether or not it is necessary to include a particular source of heterogeneity (i.e. partial290

immunity) when forecasting influenza epidemics. In a similar manner, we could extend our models to question291
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whether other sources of heterogeneity should be accounted for. For instance, age-structure could be incorporated292

(Nishiura et al., 2010). We could also include spatial heterogeneity, by partitioning the population into distinct293

geographical regions (Ohkusa et al., 2009). A significant challenge with this extension would be identifying the294

transmission rates between different regions.295

In the 2-group model considered here, we assumed, as in Reichert et al. (2012), that immunoprotection does296

not prevent infection, only its consequences. Different types of partial cross-immunity to related strains of a297

virus can be considered. For example, in Thompson et al. (2019) it was assumed that cross-immunity decreases298

susceptibility, that is, the probability that an individual becomes infected, an assumption also used in influenza299

transmission models (Hill et al., 2019). Future work could consider whether or not the results of this study hold300

when different assumptions are made about the precise effects of cross-immunity. In the 2-group model, in order301

to study the effects of cross-immunity in as simple a setting as possible, we assumed that infected individuals who302

did not seek medical attention were already partially immune to the virus. However, a range of factors (including303

age and behaviour) are likely to affect the probability that an individual seeks medical attention. This could304

be built into the underlying modelling framework considered here, although additional data would be needed to305

parameterise the resulting model. Other additions to the 1- and 2-group models could also be considered. For306

example, the wide range of interventions that are implemented during outbreaks could be included in the models307

explicitly (Gani et al., 2005; Longini et al., 2005; Backer et al., 2019).308

Nonetheless, our approach has demonstrated the principle that including partial cross-immunity in forecasting309

models during influenza epidemics can lead to more accurate forecasts. Cross-immunity due to previous infection310

has been shown to play a major role in the dynamics of influenza epidemics, with clear evidence emerging from311

the 1918 Spanish Flu pandemic (Taubenberger and Morens, 2006) and the 2009 H1N1 pandemic (Hancock et al.,312

2009). We expect cross-immunity to remain important in future influenza epidemics. Consideration of partial313

cross-immunity by epidemiological modellers is therefore of obvious public health importance.314

Author’s Contributions315

All authors conceived the study. RS-P conducted the analysis. RNT and HMB supervised the research. All316

authors wrote and revised the manuscript. All authors approved the final version of the manuscript.317

Funding318

This publication is based on work supported by the EPSRC Centre For Doctoral Training in Industrially Focused319

Mathematical Modelling (EP/L015803/1) in collaboration with Biosensors Beyond Borders Ltd. (RS-P). It was320

also funded by Christ Church (Oxford) via a Junior Research Fellowship (RNT).321

Declaration of Competing Interests322

We have no competing interests.323

Acknowledgements324

Thanks to Erin Lafferty and Claude Schmit (Biosensors Beyond Borders Ltd.), and the members of the Wolfson325

Centre for Mathematical Biology (University of Oxford) for helpful discussions about the work.326

16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.19.20157214doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157214


Supplementary Information327

S.1 Residual Analysis of Models Fitted to the 2009 Epidemic328

There may be situations in which the assumptions of a model underlying the parameter estimation framework329

are violated, for instance, how the amplitude of the noise in the data scales with the number of cases. These330

incorrect assumptions may not be immediately apparent when observing the fitted models and data. However,331

to look for any systematic deviations between the fitted models and data, we can carry out a residual analysis,332

plotting the residuals (the differences between the model values and observed data) against time and the model333

values (Cintrón-Arias et al., 2009).334

In Figure S1 we plot the residuals, as calculated by (S6) of the 1-group and 2-group models with least squares335

estimated parameters (see Supplementary Information Section S.2), fitted to data from the 2009 H1N1 influenza336

epidemic in Japan, against the model values (number of cases) and time. There are no trends or any discernible337

patterns in any panel in Figure S1, which suggests that it is reasonable to assume that the noise in the observed338

data of the number of cases scales with the square root of the size of the data.339

(a) 1-group model (b) 1-group model

(c) 2-group model (d) 2-group model

Figure S1: Residuals of the 1-group and 2-group models fitted to to data from the 2009 H1N1 influenza epidemic

in Japan, with least squares estimated parameters, calculated using (S6) , plotted against the model value and

time.
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S.2 Parameter Estimation340

We use Markov chain Monte Carlo (MCMC) with the Metropolis-Hastings algorithm to estimate model param-341

eters (Hastings, 1970). It is assumed that the noise in the observed data scales with the square root of the size342

of the data (i.e. the number of cases), hence we use the likelihood function343

L =
n∏
j=1

1

Z
exp

(
−(z(tj ; θ)− yj)2

2z(tj ; θ0)σ2

)
, (S1)

where z(tj , θ0) are the number of cases given by our model with the parameters θ, yj are the observed data, and344

Z is a normalisation constant we need not consider.345

To determine σ, we first fit the 1- and 2-group models to data from the 2009 epidemic in Japan using a least346

squares procedure, again assuming that the observed data scales with the square root of the size of the data,347

and that the observed data deviates from the model forecasts due to noise which the model does not account for,348

such that349

yj = z(tj ; θ) + εjz(tj ; θ)
1/2 for j = 1, ..., n, (S2)

where εj are assumed to be independent and identically distributed random variables with zero mean E[εj ] = 0350

and finite variance var[εj ] = σ2. We define the cost function351

J(θ) =
n∑
j=1

[yj − z(tj ; θ)]2

z(tj ; θ)
, (S3)

The least squares parameter estimates are given by352

θ̂ = arg min
θ∈Θ

J(θ), (S4)

where Θ is the feasible set of parameter values. We solve the optimisation problem (S4) using MATLAB’s353

fminsearch function.354

Following Cintrón-Arias et al. (2009), we estimate the noise scaling parameter σ2 by355

σ2 ≈ 1

n− p
J(θ̂), (S5)

where p is the number of parameters estimated from the data, and define the residuals by the ratio356

resj =
yj − z(tj ; θ̂)
z(tj ; θ̂)1/2

. (S6)

When fitting the models to data from the 2009 epidemic in Japan, we estimate σ using (S5), calculating357

σ = 123.5 for the 1-group model and σ = 123.9 for the 2-group model respectively. Hence, we use the value358

σ = 124 in the likelihood function (S1) throughout this study. A residual analysis of both models with the least359

squares estimated parameters is given in Supplementary Information Section S.1, justifying the assumption the360

noise in the observed data scales with square root size of the data.361
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S.3 Estimation of Initial Conditions362

The observable data we consider is the number of cases that have been recorded each week, C(j). Given that363

we observe C(j) for j = 0, 1, ...,m, we wish to estimate the number of individuals in each compartment of our364

models at week j as initial conditions to make forward forecasts.365

When estimating initial conditions from case data from multiple previous week (i.e. when we are part way366

through an epidemic), it is necessary to take data from every week into account, as for instance, an individual367

who was reported as being infected many weeks ago may not have recovered yet. As we estimate initial conditions368

from the observed data rather than model trajectories, we make the assumption that the cases are generated369

uniformly in time (e.g. if there were seven cases reported in one week, we assume that there was one new case370

each day).371

Assuming an exponentially distributed infectious period as in our models, and first considering the 1-group

model, if C(j) cases were reported each week for j = 0, 1, ...,m, the number of infected individuals I at week m

is given by

I(m) =
m∑
j=0

∫ j

j−1

e−µ(m−t)C(j) dt (S7)

=
m∑
j=0

C(j)

µ

[
e−µ(m−j) − e−µ(m+1−j)

]
. (S8)

Restating (6), we have372

C(m) =

∫ m

m−1

κE dt. (S9)

Hence, by assuming a constant E over the past week, we can make the estimation373

E(m) =
C(m)

κ
. (S10)

The number of newly recovered individuals each week is given by the difference between the number of new cases374

and the number of individuals relating to those cases who are still infected. Hence, we estimate the number of375

recovered individuals R at week m by376

R(m) = C(j)

(
1− 1

µ

[
e−µ(m−j) − e−µ(m+1−j)

])
. (S11)

As we have assumed a total fixed effective population size N , the number of susceptibles at week m is given by377

S(m) = N − [E(m) + I(m) +R(m)]. (S12)

We now consider the 2-group model. As it is assumed that only cases of naive individuals becoming infected378

are reported, we estimate the number of infected naive individuals at week m to be379

IN (m) =
m∑
j=0

C(j)

µN

[
e−µN (m−j) − e−µN (m+1−j)

]
. (S13)

As partially immune and naive individuals are equally likely to be infected, we estimate the number of new380

(unrecorded) cases of infectious partially immune individuals each week to be ν
1−νC(j). Hence, we estimate that381

II(m) =
m∑
j=0

ν

1− ν
C(j)

µI

[
e−µI(m−j) − e−µI(m+1−j)

]
. (S14)
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The number of exposed, recovered, and susceptible individuals at week m in each group are estimated by

EN (m) =
C(m)

κ
, (S15)

EI(m) =
ν

1− ν
C(m)

κ
, (S16)

RN (m) =
m∑
j=0

C(j)

(
1− 1

µN

[
e−µN (m−j) − e−µN (m+1−j)

])
, (S17)

RI(m) =
m∑
j=0

ν

1− ν
C(j)

(
1− 1

µI

[
e−µI(m−j) − e−µI(m+1−j)

])
, (S18)

SN (m) = (1− ν)N − [EN (m) + IN (m) +RN (m)], (S19)

SI(m) = νN − [EI(m) + II(m) +RI(m)]. (S20)
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S.4 Modelling the Partially Immune Fraction of the Population382

We assume that all infected naive individuals in the 2009 H1N1 influenza epidemic in Japan acquired partial383

immunity to the virus and related strains. Hence, we can compute the partially immune fraction of the population384

immediately after the epidemic, ν∗, by385

ν∗ = ν +
CT
N
, (S21)

where ν is the immune fraction before the epidemic, CT is the number of total cases recorded in the data, and386

N is the total effective population size. Hence, from the 2-group model fitted to data from the 2009 epidemic in387

Japan as shown in Figure 3, we estimate the partially immune fraction of the population immediately after the388

epidemic to be ν∗ = 0.7443, using the mean estimated total effective population size, N = 4.660× 107.389

To determine the partially immune fraction when a second epidemic in the future begins, we shall compute390

the fraction as a function of the time since the end of the first epidemic. We shall assume that once an individual391

acquires partial immunity, they remain partially immune for their lifetime.392

Using population data from Japan in 2009 accessed from National Insititute of Population and Social Secrity393

Research (2020), which we display in Figure S2, we define the number of individuals aged a by b(a), and the394

number of the number of deaths of individuals aged a by d(a). Hence, the probability, P (a, n), that an individual395

of age a survives for n more years is given by396

P (a, n) =
a−1∏
i=0

(
1− d(n+ i)

b(n+ i)

)
, (S22)

where d(a)/b(a) is the probability than an individual aged a dies within one year.397

The fraction of individuals who have survived for n years is then given by398

1

M

am∑
a=0

b(a)P (a, n), (S23)

where M =
∑am
a=0 b(a), and am is the assumed maximum age of an individual, which we take to be 110. Hence399

assuming a constant population size and that all individuals are born immunologically naive, we can calculate400

the immune fraction ν, n years after the first epidemic to be401

ν(n) =
ν∗

N

∞∑
a=0

P (a, n), (S24)

where ν∗ is the immune fraction immediately after the first epidemic. The result is shown in Figure S6 (a) (see402

Supplementary Information Section S.8). For an epidemic occurring 25 years after 2009 as we consider in this403

study, the partially immune fraction of the population at the start of the epidemic is ν = 0.5129.404

(a) Age Distribution (b) Probability of Death

Figure S2: (a): The age distribution of the population of Japan in 2009. (b): The age distribution of the

probability that an individual in Japan dies within on year, based on mortality and population data from 2009.

Data accessed from National Insititute of Population and Social Secrity Research (2020)

21

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.19.20157214doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.19.20157214


S.5 2-Group Model Fitted to the 2009 Epidemic: Total Recorded and Unrecorded405

Cases406

We assume that all cases of immunologically naive infected individuals are recorded in the data, and that no cases407

relating to partially immune individuals are recorded, due to the assumption that naive individuals suffer more408

severe symptoms and are therefore more likely to seek medical attention. In Figure S3 we display the number409

of (recorded) infected naive individuals, the number of (unrecorded) infected partially immune individuals, and410

their combined total, estimated by the 2-group model fitted to the data from the 2009 epidemic in Japan.411

Figure S3: The weekly number of recorded, unrecorded, and total (recorded and unrecorded) cases as estimated

by the 2-group model with mean estimated parameters, fitted to data from the 2009 Japanese influenza epidemic.
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S.6 Prior Fitting Parameter Distributions412

We prescribe prior gamma parameter distributions on β and N using estimated values from the 2009 epidemic.413

Different variances of these distributions may be considered when making forecasts, values of which are given in414

Table S1.415

Figure Parameter Mean Variance Relative Variance

5, 6 (a), 6(c), 6(f), 6(i) β 1.644 5 × 10−3 1

5, 6 (a), 6(c), 6(f), 6(i) N 3.063 × 107 1 × 1013 1

6 (d), 6 (g), 6 (j), S4, S7 β 1.644 2.5 × 10−2 5

6 (d), 6 (g), 6 (j), S4, S7 N 3.063 × 107 5 × 1013 5

S5, S8 β 1.644 1 × 10−3 0.2

S5, S8 N 3.063 × 107 2 × 1012 0.2

(a): 1-group model

Figure Parameter Mean Variance Relative Variance

5, 6 β 1.947 5 × 10−3 1

5, 6 N 4.649 × 107 1 × 1013 1

S4, S7 β 1.947 2.5 × 10−2 5

S4, S7 N 4.649 × 107 5 × 1013 5

S5, S8 β 1.947 1 × 10−3 0.2

S5, S8 N 4.649 × 107 2 × 1012 0.2

(b): 2-group model

Table S1: Mean and variance of prior gamma distributions of the transmission rate β and effective population

size N used to make forecasts of future epidemics using the 1-group and 2-group models, set by fitting models

to data from the 2009 epidemic.
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S.7 Forecasting Epidemics in Advance using Different Prior Parameter Distribu-416

tions417

Different variances of the prior parameter distributions of β and N may be considered my modellers. We show418

forecasts of future epidemics made in advance of future outbreaks occurring 25, 50, and 75 years after the 2009419

epidemic, if variances five times larger (Figure S4) or five times smaller (Figure S5) of both β and N are used,420

compared to forecasts made in Figure 5.421

(a) 1-group model: 25 years later (b) 2-group model: 25 years later

(c) 1-group model: 50 years later (d) 2-group model: 50 years later

(e) 1-group model: 75 years later (f) 2-group model: 75 years later

Figure S4: Forecasts obtained from the 1-group and 2-group models of epidemics occurring 25, 50, and 75 years

after the 2009 epidemic as in Figure 5, but with variances of the gamma distributions of β and N five times

larger (details in Supplementary Information Section S.6).
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(a) 1-group model: 25 years later (b) 2-group model: 25 years later

(c) 1-group model: 50 years later (d) 2-group model: 50 years later

(e) 1-group model: 75 years later (f) 2-group model: 75 years later

Figure S5: Forecasts obtained from the 1-group and 2-group models of epidemics occurring 25, 50, and 75 years

after the 2009 epidemic as in Figure 5, but with variances of the gamma distributions of β and N five times

smaller (details in Supplementary Information S.6).
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S.8 Outbreak Statistics of Future Epidemics422

In Figure S6 we show how the partially immune fraction, basic reproduction numbers, and various quantities of423

interest relating to the dynamics of a future epidemic (estimated using both the 1-group and 2-group models) vary424

dependent on when the future epidemic occurs. The partially immune fraction decreases approximately linearly425

before tapering to zero as time increases (Figure S6 (a)). This results in an increase in the basic reproduction426

number, R0, of the 2-group model (Figure S6 (b)).427

We explore various quantities of interest which would inform policy makers on how best to control the428

epidemic: (i) the total number of recorded cases of individuals seeking medical attention, (ii) the duration of the429

epidemic, (iii): the maximum weekly number of recorded cases, and (iv): the time at which the maximum weekly430

number of recorded cases occurs. Under the assumptions of the 1-group model, these are all forecasted to be431

fixed irrespective of when the next epidemic begins, and identical to that of the 2009 epidemic. However, under432

the assumptions of the 2-group model, these quantities all vary, which we now describe, as well as motivations433

for determining them.434

The total number of recorded cases of individuals seeking medical attention reflects the number of total medical435

resources (e.g. antivirals, hospital beds, staff) required to treat individuals (Figure S6 (c)). This increases in436

the 2-group model the further into the future the next epidemic begins, due to the decreasing partially immune437

population fraction. It would be useful for public health officials and medical facilities to know the expected438

duration of the epidemic so they can plan and allocate resources accordingly. Here we define the duration of the439

epidemic to be the time until the number of recorded cases reaches fewer than 1000 per week (orders of magnitude440

smaller than the peak of the epidemic). The duration of the next epidemic would decrease the further into the441

future in occurred, and is inversely correlated to the number of cases (Figure S6 (d)). This is because if there442

was a greater proportion of immunologically naive individuals in the population, the basic reproduction number443

would be larger and hence the virus would spread more quickly leading to a shorter epidemic duration.444

The maximum weekly number of recorded cases (i.e. the peak of the epidemic) and the time at which this peak445

occurs are important to public health officials with regards to determining the maximum number of resources446

required to help treat patients, and when these resources would be needed. There is a direct correlation between447

the total number of recorded cases and the peak number of weekly recorded cases, as well as the duration of the448

epidemic and the time of the peak number of cases (Figure S6 (e) and (f)).449
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(a) Partially Immune fraction (b) Basic reproduction number

(c) Total cases (d) Duration of epidemic

(e) Maximum weekly cases (f) Time of maximum weekly cases

Figure S6: (a)-(b): The partially immune fraction of the 2-group model and the basic reproduction numbers

of the 1-group and 2-group models if a second epidemic were to occur at a given time after the 2009 epidemic.

(c)-(f): The total number number of (recorded) cases, the duration of the epidemic, the maximum number of

weekly recorded cases, and the time at which this maximum occurs, if a second epidemic were to occur at a given

time after the 2009 epidemic, as calculated by the 1-group and 2-group models. Quantities calculated using the

mean parameter values estimated by fitting models to the 2009 H1N1 epidemic in Japan.
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S.9 Forecasting an Epidemic in Real-Time with Prior Information using Different450

Prior Parameter Distributions451

We show real-time forecasts of an outbreak occurring 25 years after the 2009 epidemic (using prior information452

from the 2009 epidemic), if variances five times larger (Figure S7) or five times smaller (Figure S8) of both β and453

N are used, compared to forecasts made in Figure 6. Variances remain fixed in each figure.454

(a) 1-group model: week 0 (in advance) (b) 2-group model: week 0 (in advance)

(c) 1-group model: week 10 (d) 2-group model: week 10

(e) 1-group model: week 20 (f) 2-group model: week 20

(g) 1-group model: week 30 (h) 2-group model: week 30

Figure S7: Forecasts obtained from the 1-group and 2-group models of a future epidemic occurring 25 years

after the 2009 epidemic in real-time using information from previous the 2009 epidemic as in Figure 6, but with

variances of the gamma distributions of β and N five times larger (details in Supplementary Information S.6).
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(a) 1-group model: week 0 (in advance) (b) 2-group model: week 0 (in advance)

(c) 1-group model: week 10 (d) 2-group model: week 10

(e) 1-group model: week 20 (f) 2-group model: week 20

(g) 1-group model: week 30 (h) 2-group model: week 30

Figure S8: Forecasts obtained from the 1-group and 2-group models of a future epidemic occurring 25 years

after the 2009 epidemic in real-time using information from previous the 2009 epidemic as in Figure 6, but with

variances of the gamma distributions of β and N five times smaller (details in Supplementary Information S.6).
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