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Abstract 

Study Objectives. Sleep disturbances and genetic variants have been identified as risk factors 

for Alzheimer’s disease. Our goal was to assess whether genome-wide polygenic risk scores 

(PRS) for AD associate with sleep phenotypes in young adults, decades before typical AD 

symptom onset.  

Methods. We computed whole-genome Polygenic Risk Scores (PRS) for AD and extensively 

phenotyped sleep under different sleep conditions, including baseline sleep, recovery sleep 

following sleep deprivation and extended sleep opportunity, in a carefully selected 

homogenous sample of healthy 363 young men (22.1 y ± 2.7) devoid of sleep and cognitive 

disorders.  

Results. AD PRS was associated with more slow wave energy, i.e. the cumulated power in the 

0.5-4 Hz EEG band, a marker of sleep need, during habitual sleep and following sleep loss, and 

potentially with large slow wave sleep rebound following sleep deprivation. Furthermore, 

higher AD PRS was correlated with higher habitual daytime sleepiness.  

Conclusions. These results imply that sleep features may be associated with AD liability in 

young adults, when current AD biomarkers are typically negative, and the notion that 

quantifying sleep alterations may be useful in assessing the risk for developing AD. 

 

Keywords: Alzheimer’s disease; polygenic risk scores; slow wave energy; daytime sleepiness 

 

Statement of Significance. We show that the genetic liability for developing for Alzheimer’s 

disease (AD), as grasped over the entire genome using polygenic risk scores (PRS), is associated 

with sleep intensity and daytime sleepiness in healthy individuals devoid of sleep disorders 

and aged < 30 y, i.e. 30 to 60 years before typical onset of AD cognitive symptoms. Sleep 
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features may be associated with AD liability in young adults, when current AD biomarkers are 

typically negative. The findings reinforce the notion that quantifying sleep alterations may be 

useful in assessing the risk for developing AD.  
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Introduction 

Defective proteostasis of brain amyloid-beta (Aβ) and tau protein antedates the clinical 

manifestations of Alzheimer’s disease by decades 1–3. This so-called “preclinical” window 

constitutes an opportunity for internvention that would hopefully reduce the predicted 

increase in AD prevalence 4, despite the absence of disease modifying treatments in the 

foreseeable future. In this respect, the further identification of AD risk factors is of paramount 

importance.  

AD patients can become restless at night and sleepy during daytime while their entire 

sleep-wake cycle becomes fragmented and disorganized 5. Critically, similarly to Rapid Eye 

Movement (REM) sleep behavioral disorder (RBD) in Parkinson’s disease 6, altered sleep has 

recently been related to increased risk for developing AD, over and above sleep disturbances 

in AD patients 5. Longer latency to fall asleep and reduced sleep slow waves and rapid eye 

movement (REM) sleep are associated with both Aβ plaques and Tau neurofibrillary tangles 

(NFTs) in cognitively normal participants 7–9. Sleep fragmentation and the reduction in REM 

sleep quantity in cognitively normal individuals aged >60 y predict the future risk of developing 

AD 10,11. Acute sleep deprivation 12,13, and experimentally induced reduction of sleep slow 

waves 14, increases cerebrospinal fluid (CSF) Aβ and Tau protein content.  

In post mortem human brain tissues, the first signs of brain protein aggregation are 

identified in the locus coeruleus (LC), a brainstem nucleus essential to sleep regulation 15, 

under the form of pretangles, consisting of phosphorylated Tau protein 16. Critically, LC 

pretangles can be detected during adolescence, while by age 30, they can be detected in the  

majority of the population (> 90%)  16. With age, Tau deposits increase in the brain in a 

stereotypical manner and are tightly associated with cognitive decline in overt ‘clinical’ AD 16. 

Individual variations in these intrinsic properties should be reflected in brain function, 
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including sleep, whether or not Tau aggregation has already occurred.  

Sporadic AD, the most common form of AD in the general population, has an estimated 

heritability ranging between 58% to 79% 17,18. Individual Polygenic Risk Scores (PRS) for AD can 

be computed based on results of published Genome Wide Association Studies (GWAS). These 

PRS reflect part of the genetic liability for AD in any asymptomatic individual and, at the group 

level, can be associated with phenotypes of interest which are related to the (risk) pathways 

leading to AD 19,20. Recent studies reported significant association between AD PRS and CSF 

Aβ content 21,22, cortical thickness 23, memory decline  24, and hippocampus volume 22,25,26 in 

cognitively normal older adults (> 45 y) but, importantly, also in young adults (18 -35 y) 25.  

Here, we conducted a proof-of-concept study to establish that sleep can be related to 

AD risk in young adults, using PRS for AD. We phenotyped sleep under different conditions 

(baseline, sleep extension, recovery sleep after total sleep deprivation) in a homogenous 

sample of young healthy cognitively normal men without sleep disorders and computed 

individual PRS for AD. We hypothesized that high PRS would be associated with sleep metrics 

that had previously been associated with AD features in cognitively normal older adults. We 

further explored whether subjective assessments and behavioural correlates of sleep quality 

would be associated with PRS for AD.   
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Methods 

This research was approved by the Ethics Committee of the Faculty of Medicine at the 

University of Liège, Belgium.  

Participants 

All participants signed an informed consent prior to their participation and received a financial 

compensation. Three hundred and sixty-four young healthy men (aged 18-31 years) were 

enrolled for the study after giving their written informed consent, and received a financial 

compensation. Exclusion criteria were as follows: Body Mass Index (BMI) > 27; psychiatric 

history or severe brain trauma; addiction, chronic medication affecting the central nervous 

system; smoking, excessive alcohol (> 14 units/week) or caffeine (> 3 cups/day) consumption; 

shift work in the past year; transmeridian travel in the past three months; moderate to severe 

subjective depression as measured  by the Beck Depression Inventory (BDI) 27 (score > 19); 

poor sleep quality as assessed by the Pittsburgh Sleep Quality Index (PSQI) 28 (score > 7). 

Participants with sleep apnea (apnea hypopnea index > 15/hour; 2017 American Academy of 

Sleep Medicine criteria, version 2.4) were excluded based on an in-lab screening night of 

polysomnography. One participant, part of a twin pair, was excluded from the analyses so that 

the analysed sample included 363 participants (Table 1). Some EEGs were missing/lost/not 

recorded due to technical issues that were detected a posteriori for three to five participants 

per nights of sleep considered in this manuscript. No individual had missing EEGs for more 

than one night of sleep so that all 363 individuals contributed to at least part of the analyses 

reported here. The Epworth Sleepiness Scale 29 was used to characterize daytime sleepiness 

but was not used for inclusion. While most participants scored normal values (≤ 11), 28 

participants had scores ranging from 12 to 15, corresponding to moderate daytime sleepiness. 

Because of an initial error in automatic evaluation of computerized questionnaires, seven 
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participants had PSQI scores higher than cut-off (scores of 8 or 9). No participants were, 

however, taking sleep medication. To avoid reducing sensitivity, these participants were 

included in all analyses but removing them did not change statistical outcomes. Furthermore, 

IQ was estimated in all participants using the Raven Progressive Matrices 30. One item or more 

was not responded to by a few participants so that IQ was available in 347 participants. 

Likewise, the screening questionnaire did not include a clear question about number of years 

of educations, but was rather asking about current occupation, so that education was 

available in 300 participants. Including IQ or education in our statistical models (hence, in a 

reduced set of subject) did not affect the statistical outputs of the results presented below. 

Although available in our laboratory, Ab- and tau- PET scans were not conducted in 

participants: it was felt to be unethical to expose them to an irradiation while results would 

most likely be normal.  

Experimental Protocol 

Individual sleep-wake history was strictly controlled: during the three weeks preceding the in-

lab experiment, participants were instructed to follow a regular sleep schedule according to 

their habitual sleep timing (+/-30 min for the first 2 weeks; +/- 15 min for the last week). 

Actigraphy data showed that included participants faithfully followed the assigned schedules.  

Figure 1 provides an overview of the protocol. On Day 1, a urine drug test was 

performed (10-multipanel drug) before completing an adaptation night at habitual 

sleep/wake schedule during which a full polysomnography was recorded in order to screen 

for sleep related breathing disorders or periodic limb movements. On Day 2, participants left 

the lab with the instruction not to nap (checked with actigraphy). They returned to the 

laboratory at the end of Day 2, completed a baseline night of sleep under EEG monitoring at 

habitual sleep/wake schedule and remained in the laboratory until Day 7 under constant 
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CCTV. A 12h sleep extension night under EEG and centered around habitual sleep mid-point 

was initiated on Day 3, in complete darkness with the instruction to try to sleep as much as 

possible. Day 4 included a 4h afternoon nap under EEG recording (centred 1h after the mid-

point between morning wake-up time and evening sleep time) further dissipated any residual 

sleep need. What we termed the “before” night was also initiated on Day 4. It consisted in 8h 

sleep opportunity starting at habitual sleep time. During Day 5 and 6, participants remained 

awake for 40 hours under constant routine (CR) conditions [dim light < 5 lux, semi-recumbent 

position, 19°C ± 1, regular isocaloric food intake] before initiating a 12h recuperation night 

from habitual sleep time until 4h after habitual wake time. Except during sleep (darkness – 0 

lux) and constant routine protocol (dim light < 5 lux), participants were maintained in normal 

room light levels oscillating between 50 and 1000 lux depending on location and gaze. 

Analyses of “before” night, nap and sleep deprivation protocol will be reported elsewhere. 

The current study focusses on baseline, extension and recovery nights of sleep. 

EEG acquisitions and analyses 

Sleep data were acquired using Vamp amplifiers (Brain Products, Germany). The electrode 

montage consisted of 10 EEG channels (F3, Fz, F4, C3, Cz, C4, Pz, O1, O2, A1; reference to right 

mastoid), 2 bipolar EOGs, 2 bipolar EMGs and 2 bipolar ECGs. Screening night of sleep also 

included respiration belts, oximeter and nasal flow, 2 electrodes on one leg, but included only 

Fz, C3, Cz, Pz, Oz and A1 channels. EEG data were re-referenced off-line to average mastoids. 

Scoring of sleep stages was performed automatically in 30-s epochs using a validated 

algorithm (ASEEGA, PHYSIP, Paris, France) 31 and according to 2017 American Academy of 

Sleep Medicine criteria, version 2.4. An automatic artefact detection algorithm with adapting 

thresholds 32 was further applied on scored data. Power spectrum was computed for each 

channel using a Fourier transform on successive 4-s bins, overlapping by 2-s., resulting in a 
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0.25 Hz frequency resolution. The night was divided into 30 min periods, from sleep onset 

until lights on. For each 30 min period, slow wave energy (SWE) was computed as the sum of 

generated power in the delta band (0.5 – 4 Hz range) during all the NREM 2 (N2) and NREM 3 

(N3) epochs of the given period, after adjusting for the number of N2 and N3 epochs to 

account for artefacted data 33. As the frontal regions are most sensitive to sleep-wake history 

34, SWE was considered over the frontal electrodes (mean over F3, Fz, F4). To deal with the 

multiple comparison issue, we did not consider SWE over the other parts of the scalp 35. 

Additional analyses also considered cumulative power between 0.5 and 25 Hz during NREM 

and cumulative power between 2 to 6 Hz power during REM sleep as well through similar 

computation procedures. 

Genotyping and Imputation  

Blood sample were collected on Day 2 for DNA analyses. The genotyping was performed using 

the Infinium OmniExpress-24 BeadChip (Illumina, San Diego, CA) based on Human Build 37 

(GRCh37). Missingness of the SNP markers were below 20% in all individuals. Using PLINK 

software 36, we excluded the SNPs with a minor allele frequency (MAF) below 0.01, or Hardy-

Weinberg disequilibrium (HWD) significance below 10-4. Markers with ambiguous alleles (A-T, 

T-A, G-C, C-G) were excluded as well. We finally ended with 511,729 SNPs. To investigate the 

relatedness between the individuals, using PLINK --genome command, we computed the 

identity by descent (IBD) estimates for all pairs of individuals. For 8 pairs, the composite pi-

hat score was between 0.15 and 0.56 suggesting the existence of at least 3rd degree relatives 

in our cohort. We did not exclude any individuals at this level of analysis to keep the sample 

as large as possible, but removing one subject of each of these 8 pairs did not affect the 

statistical significance of any of the tests reported below. We merged our cohort with “1000 

Genomes Project” 37 and employed principal component analyses (PCA) on the merged 
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samples to see if our cohort was located in the European cluster (Supplementary Figure S1A). 

We further assess allele frequencies coherence of our cohort with the European subset of 

“1000 Genomes Project” (Supplementary Figure S1B). Markers with allele frequencies 

deviating more than 0.2 unit from European allele frequency were excluded (Supplementary 

Figure S1C). Genotype imputation was performed using “Sanger imputation server” by 

choosing “Haplotype Reference Consortium (release 1.1)” (HRC) as Reference Panel and the 

Pre-phasing algorithm EAGLE2. Post-imputation QC was then performed very similarly to the 

one of above (MAF < 0.01, HWD < 10-4, imputation quality score < 0.3). As a result of such 

filters, 7,554,592 variants remained for the analysis. However, to avoid having markers with 

allele frequencies deviating from European allele frequency, we computed the allele 

frequencies for the samples in our cohort after imputation and cross checked them with the 

European allele frequency (obtained from HRC Reference Consortium (release 1.1)) 

(Supplementary Figure S1D). The markers whose allele frequencies were deviating more than 

0.2 unit from European allele frequency were excluded. 

Predicting Height 

To validate common SNP assessments in our sample we predicted actual height based on 

Polygenic Scores computed based on a meta-analysis of a recent GWAS study 38 on around 

700,000 individuals. We used all the variants in the meta-analysis that were included in our 

cohort [3121 SNPS out of 3290]. The procedure for calculating the Liability for height is the 

same as the one described in the following section. Supplementary Figures S1E visualize the 

Pearson correlation results between the actual values for Height and estimated genetic 

Liability of Height (r = 0.46, p = 10-20). Explained variance is very close to that reported 

previously 38, i.e. is 24.6% . 
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Polygenic Risk Score (PRS) 

Polygenic risk score (PRS) is defined as the sum of multiple single-nucleotide polymorphism 

alleles associated with the trait for an individual, weighted by the estimated effect sizes 19,20. 

We used the estimated effect sizes from a GWAS by Marioni et al. 39 which consisted of a 

meta-analyses of AD-by-proxy [UK Biobank data 40 - http://www.ukbiobank.ac.uk] and AD 

case-control data 41 for a total of 388,324 individuals (67,614 cases – 25,580 patients and 

42,034 self-reported parental history of AD – and 320,710 controls). Marioni et al. reported 

that the genetic correlation between AD-by-proxy and AD case-control was very high and not 

significantly different from 1, so that the genetic associations they computed, and therefore 

the PRS we computed based on their summary statistics, were truly dealing with AD.  

The best p-value threshold that should be applied to AD case-control summary 

statistics is not established yet. Previous studies employed very exclusive GWAS p-values 

(p~10-8) 42 to more inclusive p-values (p = .5) 25,43, leading to the inclusion of effect sizes of a 

few tens to hundreds of thousands SNPs to compute AD PRS. Because we did not want to test 

all combinations of LD pruning and p-value thresholding, and then pick out the “best” one, we 

computed several PRS with different p-value thresholding and LD pruning combinations.  

To generate a set of approximately independent SNPs in our sample, linkage 

disequlibrium (LD) clumping was performed using PLINK 36 on window size of 1000-kb using a 

pairwise r2  cut-off of 0.2 and a predetermined significance thresholds (p-value < 5 10-8, 10-6, 

10-4, 0.001, 0.01, 0.05, 0.1, 0.3, 0.5, and 1). Due to the effect of APOE in chromosome 19, we 

used a more stringent criteria pairwise r2 cut-off of 0.01 for this chromosome. In addition, we 

also calculated the PRS using all the variants with no pruning, i.e. no correction for linkage 

disequilibrium, thereby selecting all SNPs for PRS construction. Although the later PRS was 

inevitably affected by complex LD structures, it was kept as one of the PRS. This procedure 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.02.26.20027912doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20027912
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

yielded 11 quantitative polygenic score, under each significance threshold, for each individual 

in our cohort. 

Height as a negative control 

From the known and hypothesised biology, we did not expect any a priori association between 

the sleep phenotypes and a genetic liability for height. Therefore, we included an analysis of 

polygenic scores for height as a negative control, performing exactly the same association 

analyses as we did for liability to AD.  

Actigraphy data collection and analysis 

Actigraphy data were collected with Actiwatch 4 devices (Cambridge Neurotechnology ltd, UK) 

worn on the non-dominant arm. Data consisted in the sum of activity counts over 60-second 

intervals. Data were analyzed with pyActigraphy (Version v0.1) 44 which implements the 

computation of state transition probabilities from rest to activity (kRA) 11. In order to better 

reflect sleep fragmentation, this probability was calculated only over sleep periods for each 

study’s participant. The sleep period is defined as the period comprised between the activity 

offset and onset times, derived from the average 24h activity profile. In addition, to mitigate 

the uncertainty on their exact timing, the offset and onset times were shifted by +15 min and 

-15min, respectively. 

Statistical Analysis 

We employed general linear model (GLM) to test the associations between sleep metrics of 

interests as a dependent variable and the estimated PRS as an independent variables and age, 

BMI and TST as covariates. Prior to the analysis, we removed the outliers among the sleep 

metrics by excluding the samples lying beyond 4 times the standard deviation (the final 

number of individuals included in each analyses is reported below each dependent variable in 
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the supplementary tables). All analyses were performed in Python. 

In this study, we analysed multiple traits and multiple polygenic risk scores (PRS) for 

association. To control the experiment-wise false positive rate, we estimated the number of 

independent tests that we performed, and set an experiment-wise p-value threshold 

accordingly. Since the traits are phenotypically correlated with each other and the PRSs are 

also correlated, we used the correlation structure to estimate the equivalent number of tests, 

which is the number of independent tests that would result in the same overall observed 

variation. 

For each correlation matrix of traits and PRS, we performed a singular value 

decomposition (SVD), ordered the resulting eigenvalues and calculated the sum of all 

eigenvalues. We then calculated the minimum number of linear combination of the traits that 

resulted in 99% of the variation. For the 5 EEG phenotypic sleep traits this estimate was 5, 

showing that they are not highly correlated. Likewise, for the 3 non-EEG phenotypic sleep 

traits this estimate was 3. For the 11 PRS for AD and height, the resulting number was 8 and 

4, respectively, consistent with a higher correlation structure among the multiple height 

predictors. Therefore, our analyses with the 5 EEG sleep metrics implies a total number of 40 

and 20 tests when confronted to AD-PRS and height-PRS respectively. Hence, for any of our 

trait-PRS combination to be statistically significant when taken multiple testing into account, 

the p-value threshold are 0.00125 and 0.0025 for AD and height, respectively. Similarly, our 

analyses with SWE in recovery and extension nights and with SWE rebound, each imply 8 tests 

and a p-value threshold of p = 0.00625, while our analyses with 3 non-EEG sleep metrics 24 

tests and a p-value threshold of p = 0.0021. Additional analyses compared lower and higher 

PRS quartile (i.e. 90 individuals with lowest AD PRS and 90 individuals with highest PRS) as well 

as APOE ε4 carriers vs. non carriers. For these analyses, groups were compared through t-
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tests. 

We compute the minimum detectable effect size given our sample size. According to 

G-Power 3 (version 3.1.9.4) 45, taking into account a power of .8, an error rate α of 0.00625 

(cf. above), with a sample size of 363, we were in a position to detect medium effect sizes r > 

0.19 [confidence interval: 0.09-0.29] within a linear multiple regression framework including 

7 predictors. 
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Results  

Polygenic risk for AD is associated with the generation of slow waves during sleep  

PRS were computed as the weighted sum of the effect sizes of the AD-associated SNPs, 

obtained from summary statistics of AD cases vs. controls GWAS 19,20. PRS can indicate the 

presence of a genetic signal in moderate sample size studies 19,23 as long as it is computed 

based on a very large GWAS 46,47. We therefore used the summary statistics of one of the 

largest AD-GWAS available to date (N = 388,324) 39 to compute individual PRS for AD in our 

sample and related these to sleep EEG characteristics following multiple quality control steps 

(cf. Supplementary Figure S1).  

We first focused on baseline sleep, as it is most representative of habitual sleep, to 

evaluate sleep metrics that might be associated with AD liability. Given our sample size, we 

reduced the multiple comparison burden by selecting a priori variables of interest among 

electrophysiology sleep metrics that have previously been related to Aβ and Tau in cognitively 

normal older adults: sleep onset latency [SOL] 9,48, duration of wakefulness after sleep onset 

[WASO] 48, duration of REM sleep 10, slow wave energy [SWE] during NREM sleep 7,8, i.e. the 

cumulated power in the 0.5-4 Hz EEG band, and hourly rate of micro-arousals during sleep 14. 

To compute PRS, one considers SNPs below a p-value threshold in the reference GWAS; the 

optimal threshold for SNP selection to best compute a PRS for AD is not established. To avoid 

bias in the threshold selection, we opted for computing PRS based on increasingly inclusive p-

value thresholds (including SNPs reaching GWAS significance – p < 5x10-8 - to very liberal p < 

1), whilst also pruning SNPs based on their correlation structure (i.e. linkage disequilibrium) 

(Supplementary Table S1) 25,43. In addition, we performed a PRS analysis using all SNPs 

without any selection.  

General linear model (GLM) analyses controlling for age, body mass index (BMI) and 
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total sleep time (TST), revealed an significant association between baseline night SWE and AD 

PRS (p < 0.02; β ≥ 0.12) from a p-value threshold of p=0.05 up to selecting all SNPs; the 

association reached stringent experiment-wise correction for multiple comparisons when 

computing PRS using all SNPs, i.e. with potential linkage disequilibrium bias (see methods; β = 

0.17; Figure 2A; Supplementary Table S2). We performed a negative control analysis using a 

PRS for height, a variable for which no association with sleep metrics was expected, and found 

no association (Supplementary Figure S2A). The association between AD PRS and SWE was 

positive (Figure 2B) indicating that higher SWE was associated with higher AD-PRS. SWE was 

also positively associated with TST (Supplementary Table S2), which was expected since TST 

conditions the opportunity to generate slow waves, and negatively with age, which is in line 

with the literature 49 but may still be surprising given the young age of our sample. 

Importantly, since GLM included TST and age, they are not driving the association we find 

between SWE and PRS for AD. Furthermore, we performed two additional analyses seeking 

for associations between PRS for AD and IQ or education, variable for which negative 

associations with AD pathophysiology were previously reported 50, and found no associations 

(Supplementary Figure S2B). The link between PRS for AD and SWE may therefore more 

consistent (i.e. less variable) than the link between AD and IQ or education. 

Sleep onset latency (SOL) also reached significant association with AD PRS from a p-

value threshold of p=0.05 up to p = 1 (p ≤ 0.04; β = -0.11), but significance did not reach 

stringent experiment-wise correction for multiple comparisons (Figure 2A; Supplementary 

Table S2). Hence, this result has to be considered with caution and will not be extensively 

commented upon. It is interesting to note, however, that the association between PRS for AD 

and SOL is negative, with higher PRS associating with shorter sleep latency (Figure 2C). Of 

note, REM% reached uncorrected significance (p < 0.05) for thresholding at p=0.05 (β = 0.1), 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.02.26.20027912doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.26.20027912
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

with a positive association with AD PRS (Figure 2A; Supplementary Table S2), but, since it is 

observed for only one p-value threshold, this will not be discussed any further.   

These results indicate that, particularly when considering all SNPs to construct the AD 

PRS, the overnight power of the slow waves generated during Non-REM sleep, which is a 

widely accepted measure of sleep need 51, is linearly and positively associated with AD genetic 

liability. This finding suggests that individuals with a higher genetic liability for AD have a 

higher need for sleep. This idea is further reinforced by the fact that association between SWE 

and AD PRS is also significant when only considering SWE of the first hour of sleep 51 

(Supplementary Figure S3 & Table S3), and the potential negative association with SOL, which 

depends in part on sleep need.  

Since slow oscillations (SO), i.e. EEG slow waves < 1 Hz, may be distinct from faster slow 

waves 52, we further decomposed SWE into SO-SWE (0.5-1Hz) and faster-oscillations—SWE 

(FO-SWE; 1.25 – 4 Hz). Both SO-SWE and FO-SWE were similarly and significantly associated 

with AD PRS and for the same p-value thresholds (Figure 2D; Supplementary Table S3). The 

association we found between SWE and AD PRS does not appear therefore to arise exclusively 

from either slower or faster slow waves.    

 

Recovery sleep, slow wave sleep rebound and extension night  

When considering sleep EEG of the other nights, we only included SWE, as it is the only sleep 

metric that was associated with PRS for AD at stringent correction for multiple comparisons 

threshold. Similarly to baseline night, when considering SWE during the recovery night that 

followed total sleep deprivation, GLM including age, BMI and TST, reveal that SWE and AD PRS 

are significantly associated (p ≤ 0.04; β ≥ 0.11) from p-value thresholding at p=0.1 up to using 

all SNPs (Figure 3A; Supplementary Table S4), and the association reached stringent 
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experiment-wise correction for multiple comparisons at p-value threshold of p=1. Again, the 

association was positive with higher SWE associated with higher AD PRS (Figure 3B) and 

results were similar when considering only SWE of the first hour of sleep (Supplementary 

Figure S3 & Table S4). Individuals typically produce more sleep slow waves in response to 

sleep loss, as part of the homeostatic regulation of sleep 53. Therefore, individuals with higher 

need for sleep after sleep loss have a high PRS for AD.  

Slow wave sleep rebound quantifies the physiological response to a lack of sleep based 

on the relative changes from normal sleep to recovery sleep following sleep loss. We 

computed the ratio between the initial SWE (1h of sleep) during recuperation and baseline 

nights to assess SWE rebound. GLM analysis, including age and BMI, indicated that SWE 

rebound reached significant association with AD PRS when including all SNPs (β = -0.11), but 

significance did not reach stringent experiment-wise correction for multiple comparisons 

(Figure 3A; Supplementary Table S4). Sleep rebound is driven by sleep homeostasis which 

tightly regulates sleep duration and intensity based on prior sleep-wake history 35. Since we 

observe an association with AD PRS for a single p-value threshold at uncorrected p-value our 

findings suggest that, in our sample, AD PRS was not tightly associated with sleep homeostatic 

response. Interestingly though, Spearman’s correlation indicated that SWE rebound was 

correlated to SWE during the recovery night (r = 0.39, p <10-14; Figure 3C). 

We then considered SWE during the extension night and PRS for AD in a GLM, including 

age, BMI and TST. Results indicated that extension night SWE was not significantly linked to 

AD PRS. This may be because sleep timing for this particular night affects sleep quality 35,51 

(Figure 3A). In contrast to baseline and recuperation sleep periods which were initiated at 

habitual sleep time, sleep extension started 2 hours before habitual sleep time, covering the 

end of a period known as the evening “wake-maintenance zone” corresponding to the time at 
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which the circadian system maximally promotes wakefulness 51. In addition, the circadian 

system is known to affect the relative content in Non-REM and REM sleep as well as in 

different EEG frequencies 35,51. Therefore, the imposed 2h advance of sleep time during the 

extension night affected sleep quality, which may have reduced the association between SWE 

and AD PRS found with baseline and recovery nights.  

 

Polygenic risk for AD is associated with increased subjective daytime sleepiness  

We next focused on the non-EEG sleep metrics of our protocol and explored their potential 

association with AD PRS. Based on the 3 weeks of actigraphy with imposed regular habitual 

sleep time at home, we computed the probability of transition from rest to activity during the 

sleep period [kRA; 11]. kRA is a proxy for sleep fragmentation and has been associated with 

cognitive decline and the risk for developing AD in cognitively normal older adults [mean age 

81.6 y 11]. kRA showed a negative association (higher AD PRS is associated with less 

fragmented sleep) with PRS for AD for two p-value thresholds, p=5 x 10-8 and p = 10-8 (Figure 

4A; Supplementary Table S5), but did not reach stringent experiment-wise correction for 

multiple comparisons (p < 0.002); it will not be further discussed. 

Two questionnaires assessed habitual subjective sleep quality and daytime sleepiness 

before the start of the protocol. Subjective sleep quality was not significantly associated with 

AD PRS. By contrast, subjective daytime sleepiness was significantly associated with PRS for 

AD (p < 0.05; β ≥ 0.11) from thresholding at p < 10-4 up to a threshold of p < 1 and at stringent 

experiment-wise correction for multiple comparisons at p-value thresholds of p < 0.05 and p 

< 0.3 (β ≥ 0.16; Figure 4A; Supplementary Table S5). The association was positive indicating 

that higher habitual subjective daytime sleepiness was associated with higher AD PRS (Figure 

4B). This shows that the association between AD PRS and sleep need, as assessed by 
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electrophysiology, is not a mere effect of the protocol and is mirrored at the behavioural level 

during habitual daytime functioning (outside the experimental protocol). Importantly the vast 

majority of participants had no or mild levels of sleepiness with a minority (N = 28) reporting 

moderate level of daytime sleepiness; the association with daytime sleepiness is therefore not 

driven by extreme or clinically relevant sleepiness levels but rather by ordinary variability in 

healthy young individuals.  
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Discussion 

We provide evidence that genetic liability for AD is related to sleep characteristics and daytime 

sleepiness in young adults (aged 18 to 31 y), i.e. decades before typical onset age of clinical 

AD symptoms and at an age at which current AD biomarkers are typically negative. Our sample 

size is modest for the detection of small effect size associations, and we do not include a 

replication sample, so the present results should be considered as a proof-of-concept for 

linking AD liability and sleep in young adults. We emphasize, however, that the unique deep 

phenotyping of our protocol in hundreds of participants, based on gold standard 

electrophysiology and comprising different sleep conditions, one the one hand, makes the 

creation of a replication sample difficult but, on the other, undoubtedly increased the 

sensitivity of our analyses so that we could find associations that survived stringent correction 

for multiple comparisons. In addition, we performed a negative control analysis using a PRS 

for height variables for which no association with sleep metrics was expected, and found no 

association. Furthermore the absence of links between PRS for AD and IQ and education 

suggest that the association between PRS for AD and SWE is more stable across subjects than 

the link previously isolate between AD and IQ or education 50. Importantly, our protocol 

provides links between disease risk and sleep physiology in contrast to coarser phenotyping 

based on sleep questionnaires or actimetry alone. Furthermore, to increase the genetic 

uniformity of the sample, we only included Caucasian men within a narrow age range; they 

were healthy and devoid of any sleep disorders or sleep complaints and their prior sleep-wake 

history was recorded and stable. In this carefully selected homogenous sample, we show that 

higher PRS for AD was associated with producing denser or larger slow waves during baseline 

and recovery night time sleep, potentially with large slow wave sleep rebound following sleep 

deprivation, and with reporting higher daytime sleepiness.  
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Larger and more abundant slow waves during habitual sleep in young and healthy 

individuals can result from an increased sleep need due to insufficient prior sleep 53. This 

appears unlikely: prior sleep-wake history was stringently controlled for 3 weeks prior to 

entering the lab, ruling out undue sleep deprivation, sleep restriction or disrupted rhythmicity. 

Moreover, throughout the protocol, participants followed their own sleep schedule, a regime 

that should not expose them to important chronic sleep restriction. Finally, SWE during the 

sleep extension night did not significantly correlate with subjective daytime sleepiness 

(Spearman’s correlation r = 0.08, p = 0.11), supporting the idea that, when given a longer sleep 

opportunity, individuals with higher and yet normal daytime sleepiness did not sleep more 

intensely to recover a putative prior sleep debt. Alternatively, increased slow wave density 

and/or intensity could reflect a faster build-up of sleep need 54. Indeed, sleep homeostasis is 

thought to result from molecular and cellular changes induced by waking brain function and 

behaviour 55,56. Synaptic potentiation and increased synaptic strength resulting from waking 

experience are reflected in a progressive increased cortical excitability during wakefulness 57,58 

and an increase in slow wave activity during subsequent sleep 55,56. Likewise, extracellular 

glutamate concentration and glutamatergic receptor density increase with time awake and 

affect brain function 59,60. Here, SWE rebound following sleep loss, i.e. the ratio between 

baseline and recovery sleep, was only significantly associated with high PRS for AD for one p-

value threshold and at uncorrected significance threshold, but was strongly associated with 

SWE during recovery sleep. We therefore find only partial evidence for this second hypothesis, 

which will require more investigations.   

How are these findings related to AD? The answer to this question remains speculative 

because the time course of AD processes across lifespan is still poorly understood. In 

transgenic mice, neuronal activity locally increases the level of Aβ in the interstitial fluid and 
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drives local Aβ aggregation 61. The progressive Aβ deposition ultimately disrupts local 

functional connectivity and increases regional vulnerability to subsequent Aβ deposition 62. 

We might thus hypothesize that individuals with more intense brain activity during 

wakefulness (and therefore also during sleep) would also be exposed to larger Aβ extracellular 

levels and a greater risk of developing Aβ deposits. This hypothesis appears unlikely for the 

following reasons. First, post mortem examinations show that the earliest evidence of Aβ 

deposits (stage 1 63) is not observed before 30 y 64. Second, Aβ oligomers might be released 

and exert their detrimental effect on brain function at an earlier age. However, in transgenic 

mice, sleep-wakefulness cycle and diurnal fluctuation in brain extracellular Aβ remain normal 

until plaque formation 65.  

By contrast, given the age range of our population sample, the reported topography of 

pretangles at this age 16 and the power of PRS for AD to discriminate AD patients in case-

control samples 43, higher PRS in our young sample might reflect the influence of incipient Tau 

aggregation onto sleep regulation through the LC (and other non-thalamic cortically-

projecting nuclei, as raphe nuclei) 16. Tau, an intracellular protein, is also detected in the 

extracellular space. Over and above a low level constitutive tau secretion 66, neuronal activity 

increases the release of tau in the extracellular space 67, thereby participating in enhancing 

tau spread and tau pathology in vivo 68. Moreover, early electrophysiological changes 

indicative of hyperexcitability are observed in intact neurons from transgenic tau mice 69. In 

the cerebral cortex of tau transgenic mice, glutamatergic and GABAergic neurons are in a 

hypermetabolic state, characterized by a relative increase in production of glutamate 70. By 

contrast, decreasing tau in epilepsy-prone transgenic mice reduces neuronal hyperexcitability 

71. These findings would suggest that a strong cerebral activity during wakefulness would 

result in a higher daily average in perceived sleepiness, a substantial tau release – which lead 
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to the formation of pretangle aggregates - and an enhanced sleep homeostasis processes, as 

indicated by denser and larger slow waves.  

The reasons for the vulnerability of LC to Tau aggregation are not established but might 

reside in its constant recruitment for essential functions, its energy demanding and ubiquitous 

brain connections, its high vascularization or its higher susceptibility to oxidative stress 15. 

Although it tantalizing to hypothesize that tau pretangle aggregates are involved in the 

mechanisms linking slow wave sleep and AD liability, one can also speculate that it is the LC 

intrinsic characteristics that are related to tau vulnerability (subsequent) that associated with 

PRS for AD, meaning that the association would not necessarily require the presence of tau to 

be detected.  

On the other hand, in tau transgenic mice, misfolded and hyperphosphorylated tau  

alters hippocampal synaptic plasticity 72, eventually induces a loss of hippocampal LTP and 

causes reduction of synaptic proteins and dendritic spines 73 74. These findings would predict 

a lower sleep need in participants with high AD liability. However, it is possible that these 

detrimental processes take place later on in the development of the disease or emerge from 

an interaction between tau and  Ab 75 76. Accordingly, in older adults, significant associations, 

opposite to the current findings, were observed between slow wave sleep and risk for AD 

based on PET biomarkers 7,8: higher Aβ 7 or tau NFT 8 burdens were associated with lower 

sleep slow wave EEG power. Our results suggest therefore that the association between AD 

risk and sleep homeostasis changes with age: at an early stage, dense and large slow waves 

would be associated with increased AD risk. Later on, the ability to generate slow waves would 

play a protective role against AD risk. Deep sleep phenotyping across all ages and/or in long 

term longitudinal studies will have to test this hypothesis.  

We emphasize that the cross sectional nature of our study, precludes any causal 
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interpretation of the association we find between AD and sleep. We further stress that PRS 

estimation based on all available SNPs may be biased by complex linkage disequilibrium (LD) 

between SNPs. Since we find similar p-values when pruning SNPs for LD at other p-value 

thresholds, we are confident that the likely bias is not the main driver of the effects we report. 

Furthermore, our sample only include men and cannot therefore be extended to the entire 

population. Women have been reported to have different sleep characteristics, including the 

production of more numerous and intense slow waves during sleep 77. It is also worth 

mentioning that we cannot isolate in our findings the specific contributions of the circadian 

timing system, which is the second fundamental mechanism regulating sleep and wakefulness 

35. Although we find significant association between AD PRS and baseline/recovery SWE and 

daytime sleepiness across similar p-value thresholds, more research is also required to 

determine how many SNPs one has to include, i.e. what SNP selection strategy should be used 

to best predict AD. Previous studies support that using a lenient p-value thresholds is 

successful in doing so 25,43, thus we are confident that our finding are related to AD liability. 

Our PRS calculation was stringently controlled for the weight of chromosome 19 (see 

methods) to avoid excessive contribution from Apolipoprotein E (APOE) genotype, which is 

the genetic trait most associated with sporadic AD. When comparing APOE ε4 carriers 

genotype vs. non-carriers, no significant difference in baseline night SWE and daytime 

sleepiness was observed (Supplementary Figure S4), in line with our findings that a large 

number of SNPs is required to find an association between SWE and PRS for AD. 

The specificity of our findings for a given EEG frequency band and/or for NREM remains 

to be fully established. As many previous studies on linking sleep and AD risk [e.g. 7,8], we only 

focussed on a limited set of sleep metrics, and included a single power measure over a given 

frequency band. Although not the focus of the present paper, we computed SWE, relative SWE 
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(i.e. ratio between SWE and overnight total NREM power), overnight cumulated total power 

during NREM sleep and overnight cumulated power in the 2 to 6 Hz band during REM sleep of 

the baseline night in individuals among the higher and lower AD PRS quartile (Supplementary 

Figure S5). This simple analyses indicates that individuals with 25% highest AD PRS had higher 

power than individuals with 25% lowest AD PRS for all three absolute measures (t-test; p ≤ 

0.01 but not for relative SWE (p = 0.14), suggesting that our findings may not be specific to 

NREM sleep and SWE. We emphasize, however, that, given our modest sample size, our 

analyses was not planned to address such question. This first preliminary analysis warrants 

future studies with larger sample size ensuring sufficient power when using a larger set of 

sleep metrics. Since we also find that daytime sleepiness, a wakefulness trait, is associated 

with PRS for AD, and because of the link between tau protein and cortical excitability 71, 

neuronal activity synchrony during wakefulness should be associated with the risk for 

developing AD to assess whether isolated links are specific to sleep.  

In conclusion, we find that denser and/or more intense sleep slow waves during 

baseline and recovery sleep and daytime sleepiness are associated with the genetic liability 

for AD in young and healthy young men. This finding supports that sleep slow wave and 

sleepiness measures may help early detection of an increased risk for AD and reinforce the 

idea that sleep may be an efficient intervention target for AD. Similarly to most studies 

associating PRS to phenotypes of interest [e.g. 23–25,46], the effects we isolated constitute 

relatively small effects (r < 0.2), however, recalling that sleep must be envisaged within the 

multifactorial aspect of a complex disease such as AD 4.  
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Figures captions  

 

 
 
Figure 1: Overview of the protocol. 
 
Following 3 weeks of regular sleep at habitual times, 363 healthy young men aged ~22 y 
complete a 7-day protocol (displayed for a participant sleeping from 11PM to 7PM). 
Adaptation/screening and baseline nights were scheduled at habitual sleep-wake times. 
Extension nights consisted of a 12h sleep opportunity centred around habitual sleep mid-
point. Nap consisted of an afternoon 4h sleep opportunity. The “Before” (sleep deprivation) 
and recovery nights (from sleep deprivation) consisted of an 8h and 12h sleep opportunity 
respectively, all starting at habitual sleep time. Following the “before” night, volunteers 
completed a 40h sleep deprivation protocol under strictly controlled constant routine 
conditions in dim light. Sleep periods included in the current analyses are in bold and italic. 
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Figure 2: Associations between Polygenic Risk Score (PRS) for AD and baseline night sleep 
metrics. 

 
A. Statistical outcomes of GLMs with five sleep metrics of interest vs. AD PRS from 
conservative (p < 5x10-8) p-value threshold to using all SNPs (N=356). GLMs are corrected for 
age, BMI and total sleep time (TST). Negative log transformation of p-values of the associations 
are presented on the vertical axis. Horizontal lines in A and D indicate different p-values 
thresholds: light blue = .05 (uncorrected); orange= .01 (corrected for 5 sleep metrics); red = 
0.00125 (experiment-wise correction; see methods). 
SOL: sleep onset latency; WASO: wake time after sleep onset; DUR_REM: duration of REM 
sleep; arousal: hourly rate of micro-arousal during sleep; SWE: slow wave energy in NREM 
sleep (0.5-4Hz) 
B. Positive association between SWE during baseline night and AD PRS including All SNPs 
(N=356). Spearman correlation r is reported for completeness (r = .12, p = .02), refer to main 
text Table S2 for statistical outputs of GLMs. 
C. Negative association between SOL during baseline night and AD PRS for p < 0.3. Spearman 
correlation r is reported for completeness (r = -.11, p = .03), refer to main text Table S2 for 
statistical outputs of GLMs (N=356). 
D. GLMs including SWE separated in the slower (SO-SWE; 0.5-1Hz) and faster (FO-SWE; 1.25-
4Hz) frequency range from conservative p-value thresholds to using all SNPs (N=356). 
Horizontal blue line indicate p = 0.05 significance level. GLMs are corrected for age, BMI and 
TST. Refer to main text Table S3 for statistical outputs of GLMs.  
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Figure 3: Associations between Polygenic Risk Score (PRS) for AD and slow wave energy 
(SWE) during recovery and extension nights and with SWE rebound. 
 
A. Statistical outcomes of GLMs with SWE (0.5-4Hz) in the recovery (REC; N=353) and 
extension (EXT; N=356) nights and with SWE rebound (REC/BAS; N=344) vs. AD PRS from 
conservative (p < 5x10-8) to inclusive (p < 1) p-value level and using all SNPs. SWE rebound 
consist in the ratio between SWE in the first hour of sleep of recovery and baseline nights. 
GLMs are corrected for age and BMI, and TST for REC and EXT. Negative log transformation of 
p-values of the associations are presented on the vertical axis. Horizontal lines indicate 
different p-values thresholds: light blue = .05 (uncorrected); red = 0.00625 (experiment-wise 
correction; see methods). 
B. Positive association between SWE during recovery night and AD PRS at p < 1. Spearman 
correlation r is reported for completeness (r = .01, p = .06), srefer to main text Table S4 for 
statistical outputs of GLMs (353). 
C. Positive association between SWE during recovery and SWE rebound (SWE REC/BAS): 
Spearman correlation r = .36, p < .001 (N=344).  
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Figure 4: Associations between Polygenic Risk Score (PRS) for AD and non-EEG sleep metrics. 
 
A. Statistical outcomes of GLMs with actimetry-assessed sleep fragmentation (kRA; N=361), 
subjective sleep quality (Sleep-qual; N=363) and subjective daytime sleepiness (Day-
sleepiness; N=363) vs. AD PRS from conservative (p < 5x10-8) to inclusive (p < 1) p-value 
thresholds and using all SNPs. GLMs are corrected for age and BMI. Negative log 
transformation of p-values of the associations are presented on the vertical axis. Horizontal 
lines indicate different p-values: light blue = .05 (uncorrected); orange= .016 (corrected for 3 
sleep metrics); red = 0.002 (experiment-wise correction). 
B. Positive association between subjective daytime sleepiness and AD PRS at p < 0.05 (N=363). 
Linear regression line shown for display purposes only; refer to main text and Table S5 for 
statistical outputs of GLMs.  
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Table 1. Sample characteristics (mean ± SD).  

N 363 

Sex  Men 

Ethnicity Caucasian  

Age (y) 22.10 ± 2.73 

Height (cm) 180.39 ± 6.70 

Body mass index (BMI) (kg m-2) 22.15 ± 2.31 

IQ* 123.88 ± 11.14 

Education (y)** 13.33 ± 1.60 

Mood 3.00 ± 3.48 

Sleep quality 3.46 ± 1.76 

Daytime sleepiness 5.94 ± 3.54 

Chronotype 50.11 ± 8.25 

Rest-activity Fragmentation (a.u.)  0.10 ± 0.03 

Baseline sleep duration (min) 451 ± 41 

 

Mood was estimated by the 21-item Beck Depression Inventory II 27, sleep quality by the 
Pittsburgh Sleep Quality Index (PSQI) 28; daytime sleepiness by the Epworth Sleepiness Scale 
(ESS)29; chronotype by the Horne-Östberg questionnaire 78. IQ was estimated using Raven 
Progressive Matrices 30. Rest fragmentation (arbitrary units, a.u.) was estimated as the 
probability of transition from rest to activity during estimated sleep based on actigraphy 
data from the 3 weeks of imposed regular sleep 11,44. 
* IQ was available for 347 participants. ** Number of years of education was available for 
300 participants. 
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Figure S1: quality checks (QC) performed during genetic data processing 
A. Principal component (PC) analysis of our data (after merging with genome 1k). PC1 vs. PC2 is 
displayed for our European (Caucasian) study sample (STUDY) and for other ethnicities provided by 
Haplotype Reference Consortium (HRC) Europe release 1.1. CEU: Utah Residents (CEPH) with 
Northern and Western European Ancestry; FIN: Finnish in Finland; GBR: British in England and 
Scotland; IBS: Iberia in Spain; TSI: Toscani in Italia. Our study sample clusters at the same position as 
Europeans. 
B. To validate common SNP assessments in our sample, we predicted height of our volunteers based 
on a meta-analysis of height GWAS studies 75. Predicted Liability for Height was significantly 
associated with the actual values in our sample (r = 0.46; p < 10-20) with similar value as reported in 
Yengo et al. (2018) (r = 0.49). 
C-D. Allele frequencies in our sample were compared to HRC Europe reference data and SNP 
deviating more than 0.2 unit from European allele frequency were excluded [C. Original data. D. Data 
after removal of deviant allele]. 
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Figure S2: Negative controls analysis and correlation between AD PRS and IQ or education 
A. Statistical outcomes of GLMs with five sleep metrics of interest vs. polygenic prediction of 
individual height from conservative (p < 5x10-8) p-value threshold to using all SNPs. Negative log 
transformation of p-values of the associations are presented on the vertical axis. Horizontal lines 
indicated different p-values thresholds: light blue = .05 (uncorrected); orange= .01 (corrected for 5 
sleep metrics); red = 0.0025 (experiment-wise correction). As expected height prediction is not 
associated with any of the sleep metrics further validating our main finding. 
B. Statistical outcomes of GLMs with IQ (N=347) and number of years of education (N=300) vs. PRS 
for AD from conservative (p < 5x10-8) p-value threshold to using all SNPs. Negative log transformation 
of p-values of the associations are presented on the vertical axis. Horizontal lines indicated different 
p-value thresholds: light blue = .05 (uncorrected); red = 0.00625 (correction for 8 independent PRS). 
As expected IQ and education are not associated with PRS for AD. 
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Figure S3: Associations between Polygenic Risk Score (PRS) for AD and SWE in the first hour of sleep 
for baseline (BAS), recovery (REC) and extension (EXT) nights. 
Statistical outcomes of GLMs with SWE (0.5-4Hz) of each night type in the first hour of sleep (SWE(1h)) 
vs. AD PRS from conservative (p < 5x10-8) p-value threshold to using all SNPs. GLMs are corrected for 
age and BMI. Negative log transformation of p-values of the associations are presented on the vertical 
axis. Horizontal lines indicate different p-values thresholds: light blue = .05 (uncorrected); red = 
0.00625 (experiment-wise correction; see methods). 
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Figure S4: No difference in SWE and daytime sleepiness between APOE e4 carriers and non-carriers.  
Distribution of APOE e4 Carriers and Non Carriers for SWE during baseline night (A) and daytime 
sleepiness (B). T-tests between APOE e4 carriers (N = 100) and Non carriers (N = 263) show no 
significant difference in case of SWE (p = 0.84) and daytime sleepiness (p = 0.94). 
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Figure S5: Differences in SWE, relative_SWE, total NREM power and REM power during baseline 
sleep between lower and upper AD PRS quartiles.   
Comparison of individual with 25% lowest (N = 90) and 25% highest (N = 90) PRS (using all SNPs) for 
SWE (A), relative SWE (B), cumulated total power between 0.5 and 25 Hz during NREM sleep (C) and 
cumulated power over the 2 to 6 Hz band during REM sleep (D). T-tests indicated higher power in 
higher quartile vs. lower quartile in all three absolute measures (SWE: p = 0.008; total NREM: p = 
0.008; REM: p = 0.01) but not for relative SWE (p = 0.14). 
Relative power was computed as the individual ratio between SWE and cumulated total power 
between 0.5 and 25 Hz during NREM sleep. 
Dots: individual values; boxes: interquartile interval; horizontal bar within boxes: median; error bars: 

10 to 90% interval.
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Table S1. Number of SNPs included in PRS computation as a function of p-value thresholding in 

reference GWAS summary statistic of 21. 

 

 

 

P-value threshold Number of SNPs 

included in PRS 

computation 

P-value threshold 5 x 10-8 (and LD) 64 

P-value threshold 10-6 (and LD) 108 

P-value threshold 10-4 (and LD) 517 

P-value threshold 10-3 (and LD)  2543 

P-value threshold 0.01 (and LD)  15654 

P-value threshold 0.05 (and LD)  58096 

P-value threshold 0.1 (and LD)  101336 

P-value threshold 0.3 (and LD) 233635 

P-value threshold 0.5 (and LD) 329341 

P-value threshold 1 (and LD) 466829 

All SNPs (no LD) 7780254 

LD: linkage disequilibrium pruning 
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Table S2. Statistical outcomes of GLMs with the five baseline night sleep metrics of interest vs. AD PRS from conservative (p < 5x10-8) to inclusive (p < 1) 

p-value threshold and selecting all SNPs.  
p-value 
threshold 

p=5 10-8 p =10--6 p =10-4 p=.001 p=.01 p=.05 p=.1 p=.3 p=.5 p=1 All SNPs 

SOL 
(N = 356) 

ns 
 

𝛽 = −0.11 
𝑝 = 0.03 

 

Age 

𝛽 = 0.13 
𝑝 = .01 

 

TST 

𝛽 = 0.13 
𝑝 = 0.01 

 

BMI 
𝛽 = −0.19 
𝑝 < .0003 

𝛽 = −0.11 
𝑝 = 0.03 

 

Age 

𝛽 = 0.13 
𝑝 = .01 

 

TST 

𝛽 = 0.13 
𝑝 = 0.01 

 

BMI 
𝛽 = −0.19 
𝑝 = .0003 

𝛽 = −0.11 
𝑝 = 0.04 

 

Age 

𝛽 = 0.13 
𝑝 = .01 

 

TST 

𝛽 = 0.13 
𝑝 = 0.01 

 

BMI 
𝛽 = −0.19 
𝑝 = .0003 

ns 
 

WASO 
(N = 356) 

ns 

DUR_REM 
(N = 356) 

ns 
 

𝛽 = 0.1 
𝑝 = 0.03 

 

Age 

𝛽 = 0.04 
𝑝 = .04 

TST 

𝛽 = 0.5 
𝑝 =< 0.0001 

ns 
 

Arousals 
(N = 356) 

ns 

SWE 
(N = 356) 

ns 
 

𝛽 = 0.12 
𝑝 = 0.019 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.1 
𝑝 = 0.04 

𝛽 = 0.12 
𝑝 = 0.018 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.11 
𝑝 = 0.04 

𝛽 = 0.14 
𝑝 = 0.007 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.1 
𝑝 = 0.04 

𝛽 = 0.14 
𝑝 = 0.006 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.1 
𝑝 = 0.05 

𝛽 = 0.15 
𝑝 = 0.005 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.1 
𝑝 = 0.05 

𝜷 = 𝟎. 𝟏𝟕 
𝒑 = 𝟎. 𝟎𝟎𝟏𝟏* 
 

Age 

𝛽 = −0.22 
𝑝 < .0001 

 

TST 

𝛽 = −0.11 
𝑝 = 0.03 

GLMs included age, BMI and TST. Only uncorrected significant association p<.05 are reported. Partial effect sizes are provided for each significant association. 
ns: non-significant (p > 0.05). * association meeting study-wise correction for multiple comparison (p < 0.00125). SOL: sleep onset latency; WASO: wake time 
after sleep onset; DUR_REM: duration of REM sleep; arousal: hourly rate of micro-arousal during sleep; SWE: slow wave energy in NREM sleep (0.5-4Hz). The 
number of participants included in each GLM, following outlier removal and because of missing data, is reported below each dependent variable.
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Table S3. Statistical outcomes of GLMs with SWE during the first hour of sleep (SWE 1h) in baseline (BAS) nights of sleep and when separating slow 

oscillation SWE (SO-SWE) and fast oscillation SWE (FO-SWE) from conservative (p < 5x10-8) to inclusive (p < 1) p-value threshold and when selecting all SNPs.  
p-value 
threshold 

p=5 10-8 p =10--6 p =10-4 p=.001 p=.01 p=.05 p=.1 p=.3 p=.5 p=1 All SNPs 

SWE 1h BAS 
(N = 355) 

ns 
 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.001 

𝛽 = 0.12 
𝑝 = 0.03 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.001 

𝛽 = 0.14 
𝑝 = 0.005 

 

Age 

𝛽 = −0.20 
𝑝 < .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.001 

𝛽 = 0.14 
𝑝 = 0.005 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.001 

𝛽 = 0.15 
𝑝 = 0.004 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.001 

𝛽 = 0.17 
𝑝 = 0.0007 

 

Age 

𝛽 = −0.22 
𝑝 < .0001 

 

TST 

𝛽 = −0.17 
𝑝 = 0.0007 

SO-SWE 
(N = 357) 

ns 
 

𝛽 = 0.11 
𝑝 = 0.04 

 

Age 

𝛽 = −0.2 
𝑝 = .0002 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.2 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.16 
𝑝 = 0.003 

 

Age 

𝛽 = −0.22 
𝑝 < .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

FO-SWE 
(N = 357) 

ns 
 

𝛽 = 0.11 
𝑝 = 0.03 

 

Age 

𝛽 = −0.2 
𝑝 = .0002 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.11 
𝑝 = 0.04 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.12 
𝑝 = 0.02 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.13 
𝑝 = 0.01 

 

Age 

𝛽 = −0.2 
𝑝 = .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

𝛽 = 0.15 
𝑝 = 0.005 

 

Age 

𝛽 = −0.21 
𝑝 < .0001 

 

TST 

𝛽 = −0.14 
𝑝 = 0.007 

GLMs included age and BMI (and TST for SO-SWE and FO-SWE). Only uncorrected significant association p<.05 are reported. Partial effect sizes are provided for 

each significant association. ns: non-significant (p > 0.05). BMI was never significantly associated with AD PRS.  SO-SWE: 0.5-1Hz; FO-SWE: 1.25-4Hz. 
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Table S4. Statistical outcomes of GLMs with SWE during recovery and extension and with SWE rebound vs. AD PRS from conservative (p < 5x10-8) to inclusive 
(p < 1) p-value threshold and selecting all SNPs.  

 

P-value 
threshold 

p=5 10-8 p =10-6 p =10-4 p=.001 p=.01 p=.05  p=.1 p=.3 p=.5 p=1 All SNPs 

SWE – REC 
(N = 353) 

ns 𝛽 = 0.11 
𝑝 = 0.04 

 
Age 

𝛽 = −0.28 
𝑝 < .0001 

𝛽 = 0.13 
𝑝 = 0.008 

 
Age 

𝛽 = −0.28 
𝑝 < .0001 

𝛽 = 0.13 
𝑝 = 0.008 

 
Age 

𝛽 = −0.29 
𝑝 < .0001 

𝛽 = 0.14 

𝒑 = 𝟎. 𝟎𝟎𝟔∗ 
 
Age 

𝛽 = −0.29 
𝑝. 0001 

𝛽 = 0.11 
𝑝 = 0.04 

 
Age 

𝛽 = −0.3 
𝑝 < .0001 

SWE 1h REC 
(N = 355) 

ns 
 

𝛽 = 0.11 
𝑝 = 0.03 

 
Age 

𝛽 = −0.27 
𝑝 < .0001 

𝛽 = 0.16 
𝑝 = 0.002 

 
Age 

𝛽 = −0.27 
𝑝 < .0001 

𝛽 = 0.16 
𝑝 = 0.002 

 
Age 

𝛽 = −0.27 
𝑝 < .0001 

𝛽 = 0.16 
𝑝 = 0.002 

 
Age 

𝛽 = −0.27 
𝑝 < .0001 

𝛽 = 0.12 
𝑝 = 0.02 

 
Age 

𝛽 = −0.28 
𝑝 < .0001 

SWE – Rebound 
(N = 344) 

ns 𝛽 = −0.11 
𝑝 = 0.047 

SWE – EXT 
(N = 356) 

 ns 
 

GLMs included age, BMI and total sleep time (TST). Only uncorrected significant association p<0.05 are reported (in bold). * association meeting study-wise 
correction for multiple comparison (p < 0.00625). SWE rebound consist in the difference between difference in the SWE in the first hour of sleep of recovery 
and baseline nights. Partial effect sizes are provide for each significant association. ns: non-significant (p > 0.05). The number of participants included in each 
GLM, following outlier removal and because of missing data, is reported below each dependent variable.
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Table S5. Statistical outcomes of GLMs with non-EEG sleep metrics vs. AD PRS from conservative (p < 5x10-8) to inclusive (p < 1) p-value threshold and 
selecting all SNPs.   
 
p-value 

threshold 

p=5 10-8 p =10-6 p =10-4 p=.001 p=.01 p=.05 p=.1 p=.3 p=.5 p=1 All SNPs 

kRA 

(N = 361) 

𝛽 = −0.11 

𝑝 = 0.036 

𝛽 = −0.13 

𝑝 = 0.016 

ns ns ns ns ns ns ns ns ns 

Sleep-qual 

(N = 363) 

ns ns ns ns ns ns ns ns ns ns ns 

Day-

sleepiness 

(N = 363) 

ns ns 𝛽 = 0.11 

𝑝 = 0.043 

𝛽 = 0.12 

𝑝 = 0.02 

𝛽 = 0.13 

𝑝 = 0.01 

𝜷 = 𝟎. 𝟏𝟕 

𝒑 = 𝟎. 𝟎𝟎𝟏 ∗ 

𝛽 = 0.16 

𝑝 = 0.003 

𝜷 = 𝟎. 𝟏𝟔 

𝒑 = 𝟎. 𝟎𝟎𝟐 ∗ 

𝛽 = 0.16 

𝑝 = 0.003 

𝛽 = 0.15 

𝑝 = 0.006 

ns 

 
GLMs included age and BMI. Only uncorrected significant association p<.05 are reported (in bold). Partial effect sizes are provided for each significant 
association. ns: non-significant (p > 0.05) BMI and age were not significantly associated with the dependent variables. * associations meeting study-wise 
correction for multiple comparison (p < 0.002). The number of participants included in each GLM, following outlier removal and because of missing data, is 
reported below each dependent variable
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