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Abstract

Background: While the number of detected SARS-CoV-2 infections are widely available,

an understanding of the extent of undetected cases is urgently needed for an effective tack-

ling of the pandemic. The aim of this work is to estimate the true number of SARS-CoV-2

(detected and undetected) infections in several European Countries. The question being

asked is: How many cases have actually occurred?

Methods: We propose an upper bound estimator under cumulative data distributions,

in an open population, based on a day-wise estimator that allows for heterogeneity. The

estimator is data-driven and can be easily computed from the distributions of daily cases

and deaths. Uncertainty surrounding the estimates is obtained using bootstrap methods.

Results: We focus on the ratio of the total estimated cases to the observed cases at April

17th. Differences arise at the Country level, and we get estimates ranging from the 3.93

times of Norway to the 7.94 times of France. Accurate estimates are obtained, as bootstrap-

based intervals are rather narrow.

Conclusions: Many parametric or semi-parametric models have been developed to esti-

mate the population size from aggregated counts leading to an approximation of the missed

population and/or to the estimate of the threshold under which the number of missed people

cannot fall (i.e. a lower bound). Here, we provide a methodological contribution introduc-

ing an upper bound estimator and provide reliable estimates on the dark number, i.e. how

many undetected cases are going around for several European Countries, where the epidemic

spreads differently.

Keywords: Capture-recapture methods; COVID-19; Geometric distribution; Chao’s lower

bound.

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic

within few weeks. The number of detected cases increased day-by-day, at an exponential rate at

the beginning, and now follows a logistic distribution [1, 2]. Cases of SARS-CoV-2 might have
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been vastly under-reported in official statistics. It is widely acknowledged that the majority

of the cases are asymptomatic and, thus, not observed or recorded [3–5]. In other words, the

available data just tell us a part of the story: individuals may be already infected but are not

aware of it, maybe because of the absence of symptoms, or cases may be under symptomatic

suspicion but the disease has not been diagnosed yet (due to the delay in getting swab results).

The total number of cases is thus unknown, and general comments on the spread of the epi-

demic are thus partial as based on a (relatively small) fraction of the total cases. Some studies

have used simulation-based approaches to infer reasonable estimates of total number of cases,

but often these estimates are surrounded by poor uncertainty measures, leading to too wide

confidence intervals [6]. Here, we are proposing a simple and effective method to obtain rea-

sonable point and interval estimates of the total number of SARS-CoV-2 infections in several

European countries. In detail, we introduce a novel estimator based on a capture recapture (CR)

approach. The capture-recapture method should be considered the gold standard for counting

when it is impossible to identify each case and large undercounts will occur [7]. CR methods

were originally developed in the ecological setting with the aim of estimating the unknown size

of a (possibly elusive) population and then they started to be applied also to epidemiological

and health sectors (see [8, 9]). Many CR estimators have been proposed in the literature (see

e.g. [10–12]), and some of them can be used to identify lower bounds [13] of the population

size. In the analysis SARS-CoV-2 infections, official data are available at the aggregated level,

whereas individual data are not available to the general or the academic public. Hence, it is

not possible to get the exact distribution of the number of infected individuals observed exactly

one day, exactly two days and so on until m days. The population is open, subjected to deaths,

and this may further complicate the analysis [14]. A lower bound of the total number of in-

fected cases is computed by [3] modifying the Chao estimator [15] to address issues related to

the data at hand. This is a relevant result as it provides reasonable information to the policy

makers about the undetected cases and the magnitude this phenomenon may have at least, so

that national health systems may be aware of the minimum number of cases that may demand
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health care services. At this stage of the spread of the epidemic, governments are willing to

relax restrictive measures and several researches address issues related to the epidemic [16–18].

To calibrate the new interventions, an estimate of the lower bound of the number of infections

may not be enough, as SARS-CoV-2 has already shown to spread around the population very

quickly [19–21]. This contribution aims at providing an approximated upper bound for the total

number of SARS-CoV-2 cases, to better appreciate the dimension of the epidemic, under the

worse scenario. Such an estimate is obtained from a non parametric CR model, providing an

upper bound estimate of the total number of infections regardless of the true data generating

process.

This contribution is organized as follows. In Section 2, we introduce the basic notation and

how we are going to work with the data at hand. A brief summary of the modified Chao lower

bound is also discussed. These notions are then used to compute the upper bound, details of

which are provided in Section 3, along with the computation of the uncertainty surrounding the

estimates. In Section 4 we show the empirical application of the proposal on data from several

European countries. A discussion showing other interesting insights concludes.

2 Methods

2.1 Preliminaries

Let us denote with N(t) the cumulative count of infections at day t where t = t0, · · · , tm. Hence

∆N(t) = N(t) − N(t − 1) are the number of new infections at day t where t = t0 + 1, · · · , tm.

Also, let D(t) denote the cumulative count of deaths at day t where t = t0, · · · , tm. t0 defines the

beginning of the observational period and tm defines the end. We assume the trivial assumption

tm > t0, so that the observational window is not empty. Again, we denote with ∆D(t) =

D(t)−D(t− 1) the count of new deaths at day t where t = t0 + 1, · · · , tm.

The question arises how this can be linked to a capture-recapture approach. Let Xi denote

the number of identifications for each infected individual i typically provided by the days the
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individual will surely remain infected. Let denote τx the probability of identifying an individual

x times where x = 0, . . . A lower bound estimator of the unobserved frequency f0, say f̂0, can

be estimated by using the observed frequency of those identified exactly once, f1, and of those

identified twice, f2, [13, 15]:

f̂0 = f21 /f2. (1)

It is thus crucial to relate f1 and f2 with the data at hand. In detail, at each day t, f1(t)

represents the infected people identified just once, i.e. the new infections, whose number is

given by ∆N(t). Similarly, f2(t) represents the infected people detected at time (t− 1) and still

infected at time t. This can be computed as ∆N(t − 1) − ∆D(t). Hence the estimate for the

number of hidden infections at day t is

f̂0(t) =
[∆N(t)]2

∆N(t− 1)−∆D(t)
. (2)

By applying the estimator (1) day-wise we get the modified Chao lower bound estimator (see

[3]):

f̂0 =

tm∑
t=t0+1

[∆N(t)]2

∆N(t− 1)−∆D(t)
. (3)

In practice, however, the bias-corrected form of (3) suggested by [22] is used:

f̂0 =

tm∑
t=t0+1

∆N(t)[∆N(t)− 1]

1 + ∆N(t− 1)−∆D(t)
. (4)

We define the understanding that ∆N(t− 1)−∆D(t) is set to 0 if it becomes negative, in other

words we use max{0,∆N(t− 1)−∆D(t)}. The final estimate of lower bound (LB) of the total

number of infection is then given as what has been observed at the end of the observational

window tm and the estimate of the hidden numbers:

NLB = N(tm) + f̂0 (5)

2.2 The Upper Bound estimator

The lower bound is helpful as an indication of the minimum number of people having had SARS-

CoV-2 and answers to a fundamental open question: “How many undetected cases are at least
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going around?”. Nevertheless, this information may be treated as a starting point whenever

interventions and tools to dampen the spread of the epidemic are rolled out. The proposed

upper bound estimator extends the research on the undetected cases and helps policy makers to

evaluate the SARS-CoV-2 epidemic situation locally and at the current phase of its development.

An estimate of the worse possible scenario is provided.

Following a similar strategy as in Section 2.1, this is achieved by firstly estimating daily-specific

upper-bounds and then summing up all the estimates to get the final point-estimate of the

maximum number of undetected cases. This daily–wise based upper bound approach provides

an approximation of the data generation process.

Let us introduce the cumulative distribution function

πij = Pr(Xi ≤ j) = Pr(Xi = 0) + Pr(0 < Xi ≤ j) = πi0 + (1− πi0)pij , (6)

where homogeneity in the probability of being infected at a certain date t is assumed, i.e.

πij = πj , with pij = pj being the cumulative zero-truncated probability distribution. Equation

(6) represents the probability that an individual is infected for at most j days, and it is function

of π0 and pj ; but π0 is not observed. The quantities pj(j = 1, 2, 3) in equation (6) at each time

t may be approximated as

p1(t) = f1(t)/n∗obs(t),

p2(t) = (f1(t) + f2(t))/n∗obs(t),

p3(t) = (f1(t) + f2(t) + f3(t))/n∗obs(t)

where f1(t) and f2(t) have been introduced in the previous section and

f3(t) = ∆N(t− 2)−∆D(t− 1)−∆D(t).

and n∗obs(t) is the number of current infected individuals observed at each time. We think that

it is reasonable, for each day t, to consider the number of individuals affected by SARS-CoV-2

for the day t, for day t and the day before, and, for day t and the two days before, as m = 3 is the

minimum number of consecutive days of new infections necessary for the upper bound estimator
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to be computed. Furthermore, considering more than 3 days for an individual to be observed as

affected by SARS-CoV-2 would lead to the risk of not observing the number of people affected

by SARS-CoV-2 for exactly four, five and so on times because of the higher risk of overlapping

cases.

Since π0 is unknown, to compute the probabilities in (6), we substitute it with

π̂0(t) =
f̂0(t)

f1(t) + f2(t) + f̂0(t)
.

where f̂0(t) is the lower bound probability of undetected cases derived from the Chao estimator

in its bias corrected form, computed at each time t (see Equation 2). This also explains why a

lot of detail was devoted to the lower bound estimator in the previous section as it is very much

needed here. In other words, based on the Chao lower bound estimator of the undetected cases,

we derive the complete count distribution and calculate the upper bound for the population size

on such a complete distribution. Now, it follows that Equation (6) takes the form

π̂j(t) = π̂0(t) + (1− π̂0(t))pj(t)

when theoretical probabilities are replaced by their now available estimates. In order to provide

an upper bound estimator we use the main results of [23]:

πj ≤ pj

1− (1− pj)

 pj+1 − pj
pj+1 − pj π̂j

π̂j+1

−1

.

For j = m− 2, and by some algebra, we get the equivalent condition

π0 ≤
pm−1 − pm−2(

1− π̂m−2

π̂m−1

)
+ pm−1 − pm−2

= π̂UB0 ;

that makes clear why at least m = 3 days should be considered. The right-hand side π̂UB0

of the above inequality provides an upper bound estimate of the population size based on the

Horvitz–Thompson estimator:

f̂UB0 (t) = n∗obs(t)
π̂UB0

1− π̂UB0

.

However we deal with a day-wise upper bound approximation of π0(t) which is given by

π̂UB0 (t) =
p2(t)− p1(t)(

1− π̂1(t)
π̂2(t)

)
+ p2(t)− p1(t)

.
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To get an estimate for the missed SARS-CoV-2 infections f̂0(t) at each time t we compute the

Horvitz–Thompson (HT) estimator at each time t and ultimately we sum it up over all times,

reaching thus the final upper bound for the missed SARS-CoV-2 cases n0 as follows

f̂UB0 =

tm∑
t=t0+2

(
n∗obs(t)

1− π∗
0(t)
− n∗obs(t)

)
. (7)

Hence, the approximated upper bound of the total number of infected people, N̂UB , in the time

window from t0 to tm is then given by

N̂UB = f̂UB0 +Ntm .

2.3 Uncertainty estimation

A fundamental issue in general CR analyses is the quantification of uncertainty surrounding

the estimates of the unknown population size. An estimation of the population size can be

correctly computed, but if the associated estimation of variance is poor, then coverage by the

95% confidence interval may falsely indicate poor estimation by the point estimator, i.e. the

point estimator may result in a poor coverage rate. Focusing on the proposed upper-bound

estimator, we attempt here to investigate bootstrap methods as a robust and general approach

to estimate variances and confidence intervals. Various bootstrap methods have been considered

to estimate uncertainty in CR analyses with respect to other estimators [24–27]. In the following,

we consider two different bootstrap approaches to approximate the uncertainty surrounding the

point estimate: the imputed and the reduced bootstrap approaches.

Under the imputed bootstrap approach, we draw 1000 bootstrapped samples of size NUB gen-

erated according to a multinomial model whose probabilities are given by{
π̂UB0 (t) =

f̂UB0 (t)

NUB(t)
,
f1(t)

NUB(t)
,
f2(t)

NUB(t)
,
f3(t)

NUB(t)

}
,

where NUB(t) = f̂UB0 (t) + f1(t) + f2(t) + f3(t).

Differently, under the reduced bootstrap approach, each of the bootstrapped samples contains

n∗obs(t) = f1(t) + f2(t) + f3(t) observations generated according to a multinomial model whose
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Figure 1: Cases and deaths for the analyzed countries

probabilities are given by
{

f1(t)
n∗
obs(t)

, f2(t)
n∗
obs(t)

, f3(t)
n∗
obs(t)

}
. For each of the two approaches, the upper

bound NUB is computed for each bootstrapped sample, by summing up over the time period.

Of course, for the imputed bootstrap the fraction of undetected cases is dropped and considered

unknown when computing the population size. We report the 2.5% and 97.5% values of NUB

distribution. This allows us to overcome issues often encountered in the construction of the

symmetric confidence intervals [28]: the sampling distribution could be skewed, the coverage

probabilities may be unsatisfactory, etc.

3 Data Analysis

The example provided here relies on European data. The time series of cumulative cases and

deaths up to 17/04/2020 are considered and are taken from https://github.com/open-covid-19/data.

A graphical representation of the data at hand is shown in Figure 1.

Data from the day which we record the first death are analyzed only. We obtain the estimates
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Table 1: Estimated hidden and total cases of Sars-Cov-2 for several European countries, at

17/04/2020

Country observed cases upper bound for (2.5% – 97.5%) (2.5% – 97.5%) total/observed total/observed total/observed

total number of cases bootstrap values (IB) bootstrap values (RB) (2.5% – 97.5%) IB (2.5% – 97.5%) RB

Italy 172434 780704 (777690–784121) (778080 – 783895) 4.53 (4.51–4.58) (4.51–4.55)

Austria 14603 62403 (61631–63465) (61549 – 63474) 4.27 (4.22–4.37) (4.21–4.35)

Germany 137439 650841 (647138–655236) (646974 – 655056) 4.74 (4.71 – 4.77) (4.71–4.77)

Spain 188068 871660 (868136–875570) (868615 – 874953) 4.63 (4.61–4.66) (4.62–4.65)

France 109252 867214 (814767–944686) (811082 – 952137) 7.94 (7.46–8.65) (7.42–8.72)

UK 108692 504652 (501972–508031) (501982 – 507713) 4.64 (4.62–4.67) (4.62–4.67)

Greece 2207 9586 (9262–10311) (9243 – 10316) 4.34 (4.20–4.67) (4.19–4.67)

Belgium 36138 186633 (182715–191609) (182744 – 191383) 5.16 (5.06–5.30) (5.06–5.30)

Norway 6791 26680 (26199–27456) (26197 – 28344) 3.93 (3.86–4.04) 3.86–4.03

Sweden 13216 56917 (56120–58001) (56103 – 58004) 4.31 (4.25–4.39) (4.25–4.39)

of an upper bound for undetected cases for several European countries (see Table 1). The last

column in Table 1 shows the ratio of the total estimated cases to the observed cases. The ratio

of the total estimated cases (in the worse scenario) to the observed cases is interesting in itself.

A ratio of 4.5 would mean that for every observed patient there are 3.5 infected persons unseen.

The reason for this can be manifold as these unseen cases might be without symptoms or show

very mild signs of infection.

As expected, the undetected cases represent a relevant portion of the total number of cases.

This is in line with a few existing works and discussions on the topic, see e.g. [29–31]. The

number of total number of cases are at most approximately 4.5 times the observed cases. Of

course, differences arise at the Country level, and heterogeneous estimates ranging from the 3.93

times of Norway to the 7.94 times of France, see Table 1. These differences are due to different

heterogeneity structures in the cases and deaths time series at the country level. These results

are telling us that SARS-COV-2 outbreak was more prevalent than described by the official data,

though a significant number of individuals that are infected actually remain asymptomatic.

Point estimates can be used to synthetically describe the SARS-COV-2 outbreak, but they

may be rather uncertain. In Table 1, we also provide uncertainty measures, based on the boot-
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strap procedures described in Section 3.1. It is also possible to compare the two employed

bootstrap approaches. They perform rather similarly (see also [26]) and the bootstrap intervals

are rather narrow, with France only showing a rather wide interval to indicate that its point

estimate should taken with caution.

4 Conclusions

Different capture-recapture approaches have been used to estimate the size of a partially observed

population; many parametric or semi-parametric models have been developed to estimate the

population size from aggregated counts leading to an approximation of the missed population

and/or to the estimate of the threshold under which the number of missed people cannot fall

(i.e. a lower bound). While several proposals for the latter exist, the estimation of an upper

bound in capture recapture methods has been often overlooked, with the exception of the recent

work of [23]. We propose an extension of the upper bound estimator under cumulative data

distributions, in an open population, such that a day-wise estimator varying over time. The

approach results in a time-aggregated approximation for f0 and thus for N . The proposed upper

bound estimator has been applied to registered cases in some European Countries; confidence

intervals for N have been provided by employing bootstrap approaches. We consider, for each

country, data up to the 17 of April, by assuming, given also the day wise nature of the estimator,

that the recoveries are negligible; however when dealing with cases and deaths at a more recent

date, given the increased percentage of immune people, recoveries should be taken into account

in the computation.Another issue which should be considered is the one concerning the role of

the deaths: even when the number of confirmed cases for two different Countries are close to each

other the upper bounds can be different according to the deaths size wrt the cases (i.e. France

and Spain). The length of the observation window plays an important role in this context and

according to the distribution of SARS-CoV-2 cases observed more than once, the distribution

can be less or more stable. It appears necessary to analyze this issue more deeply and we propose
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to do this in a future work.
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