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Abstract
There is often a need to estimate the characteristics of epidemics or seasonality from
infectious disease data. For instance, accurately estimating the start and end date of
respiratory syncytial virus (RSV) epidemics can be used to optimize the initiation of
prophylactic medication. These characteristics can sometimes be estimated directly
from disease incidence data; more often, widely-used methods for describing these
characteristics begin with a regression model fit to a time series of disease incidence.
The fitted model is then used to calculate the quantities of interest. Calculation of these
quantities typically involves combining multiple estimated parameters from the fitted
model, and consequently only point estimates (rather than measures of uncertainty) can
be made in a straightforward way. Motivated by attempts to estimate the optimal
timing of prophylaxis for RSV, we developed a general method for obtaining confidence
intervals for characteristics of seasonal and sporadic infectious disease outbreaks. To do
this, we use multivariate sampling of a generalized additive model with penalized basis
splines. Our approach provides robust confidence intervals regardless of the complexity
of the calculations of the outcome measures, and it generalizes to other systems
(including outbreaks of other infectious diseases). Here we present our general approach,
its application to RSV, and an R package that provides a convenient interface for
conducting and validating this type of analysis in other areas.

Author summary
Prevention and treatment of seasonal infections use numerous resources, such as
pharmaceuticals, laboratory equipment, and clinical and non-clinical staff. Optimizing
the use of these resources usually requires forecasting the timing of infectious disease
seasons. In our research of respiratory syncytial virus (a seasonal respiratory infection
that is a significant cause of infant hospitalizations and mortality world-wide) we used
splines (a type of mathematical curves with convenient and well-understood statistical
properties) to develop a new approach to obtain interval estimates of temporal
characteristics of seasonal epidemics, such as the beginning and the end dates. We also
developed an R package to facilitate use or our methods in other research. Here we
present our general approach and outline its applications to RSV.
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Introduction 1

Analyses of infectious disease dynamics often make inferences based on timing for 2

various quantities of clinical and public health interest; for example, the start and the 3

end of seasonal outbreaks, duration of outbreaks, and/or optimal timing of prophylaxis 4

or treatment. Some aspects of timing can be estimated ad-hoc directly from disease 5

incidence data; more typically, a regression model (for example, a generalized linear 6

model (GLM) or a generalized additive model (GAM)) is fitted to a time series of 7

observed disease counts, and the calculations of the quantities of interest are made 8

based on combinations of parameters estimated from the fitted model. 9

Calculating the uncertainty of estimates from these types of GAM/GLM-based 10

methods presents a challenge under frequentist approaches. These challenges are 11

exemplified by analyses of the dynamics of respiratory syncytial virus (RSV) — a 12

respiratory infection that has annual or biennial seasonal pattern and is a major 13

infectious cause of infant morbidity and mortality globally. [1, 2] In some countries, 14

high-risk infants are administered antibody prophylaxis throughout the period of high 15

RSV incidence. The therapy is expensive, and the duration of antibody protection is 16

short-lived, [3, 4] so administration of prophylaxis needs to be timed with the RSV 17

season to provide optimal protection. [5] Therefore, estimating the timing of initiation 18

of the RSV season in different locations is important. 19

Frequentist model fitting procedures provide measures of uncertainty for the 20

individual model parameters. However, calculating the quantities of interest from those 21

model parameters often requires differentiation or integration with respect to time (for 22

example, to identify outbreak transition points or to determine overall disease burden), 23

which can complicate the process of deriving large sample standard errors. As a result, 24

these tools in RSV research, such as those evaluated in [6], typically ignore uncertainty 25

and focus solely on estimation. When they do consider uncertainty estimation, these 26

methods in infectious disease modeling are often either complex to use (for example, 27

block bootstrapping), computationally intensive, or both. Parameter resampling is an 28

approach that offers uncertainty estimation, balances ease of use with computational 29

efficiency, and has been previously applied in infectious disease modeling. [7, 8] 30

In this study, our goal was to generalize prior work on parameter resampling to 31

develop a general framework of retrospective analysis of infectious diseases that allows 32

estimation of uncertainty intervals for time-based outbreak characteristics (such as 33

outbreak onset time) while being flexible as to the precise definition of the 34

characteristics of interest. To that end, we will show how functional data analysis using 35

GAMs with penalized splines can be used to fit smooth curves to infectious disease 36

incidence data, and how the fitted model can then be used to calculate uncertainty 37

intervals for characteristics of the epidemic, such as the start and end date of seasonal 38

epidemics. 39

Methods 40

We developed this method in the context of our RSV research, in which the principal 41

questions were: 42

• Is the period during which RSV prophylaxis is administered well-matched to the 43

timing of RSV seasons? 44

• Could the prophylaxis period be adjusted so that more of the prophylaxis-eligible 45

RSV cases fall within the prophylaxis period? 46

To answer these questions, we defined the following outcome measures: 47
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• Season onset and offset, defined as the points in time when the cumulative 48

incidence of RSV rises above 2.5% and 97.5% of the total incidence of RSV for the 49

entire season. 50

• Preventable fraction of a prophylaxis regimen, defined as the fraction of all 51

prophylaxis-naive RSV cases occurring during the period when the prophylaxis 52

regimen provides protection from RSV. 53

Our approach is to fit a family of smooth curves through the observed disease 54

incidence time series, and to infer time-domain features of the outbreak from these 55

curves using parameter resampling. The fitting curves we use are penalized basis splines 56

(P-splines), which have several desirable qualities, including computational compactness 57

and efficiency and well-understood statistical behavior. Most notably for our 58

application, P-spline parameters estimated by GAM are asymptotically normally 59

distributed, provided that the underlying phenomenon is well-approximated by a 60

piecewise-polynomial function. [9] Additionally, we developed a simulation study to 61

validate this interval estimation method for our outcome measures. 62

Outcome estimation 63

By way of example, consider the (hypothetical) RSV season shown in Fig 1. 64
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Fig 1. Incidence of RSV-associated hospitalizations.

To estimate the onset and offset for this RSV season, we begin by fitting a cyclic 65

P-spline GAM (see Supplement) to the observations, using incidence at time t, y(t), as 66

the model response variable, the log link function, and a 20-term cubic spline basis, 67

Bk (t), as the only predictor such that 68

y(t)|λ (t)
ind∼ Poisson {λ(t)}

log {λ(t)} = β0 +
20∑
k=1

βkBk(t)
(1)

The best fit produced by this model (using a 2nd degree smoothing penalty) is 69

shown in Fig 2a. 70
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Fig 2. The steps involved in outcome estimation using penalized splines, demonstrated
by estimating onset and offset of seasonal outbreaks of RSV. (a) Best-fit P-spline model
of RSV incidence; (b) Five different sampled P-spline models of RSV incidence; (c) Five
different computed estimates of RSV season onset and offset; (d) Sampled distribution
of RSV season onset and offset estimates.

Using the asymptotic normality of the large-sample posterior distribution of βk, we 71

can use parameter estimates (and uncertainty estimates) from the P-spline GAM to 72

obtain a large sample credible interval for λ(t) by sampling βk from this distribution 73

and calculating λ(t) = exp
{
β0 +

∑20
k=1 βkBk(t)

}
. The resulting large sample credible 74

interval has been shown to closely approximate the frequentist confidence interval across 75

the entire function for non-linear data that follows a Poisson, binomial, or gamma 76

distribution [10,11]. Fig 2b demonstrates this in the form of N = 5 λ(t) curves 77

produced by independently sampling each βk N = 5 times; as N increases, the sampled 78

curves yield large sample confidence intervals for λ(t) across all values of t. 79

Having obtained a smooth model with confidence intervals of the expected incidence, 80

we can turn to our first outcome measures of interest, time of outbreak onset (ton) and 81

offset (toff ), defined by: 82

∫ ton

tmin

λ(t)dt = 0.025 ·
∫ tmax

tmin

λ(t)dt∫ toff

tmin

λ(t)dt = 0.975 ·
∫ tmax

tmin

λ(t)dt

Given any λ(t) sampled via βk sampling, we numerically solve for the corresponding 83

ton and toff , thereby indirectly sampling ton and toff from their sampling distributions. 84

The same five y(t) with their corresponding ton and toff are shown in Fig 2c. 85
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Sampling a large number of ton and toff yields an approximation of the unknown 86

distributions of ton and toff . In our example, sampling N = 2000 times yields the 87

distributions of ton and toff shown in Fig 2d. From these distributions, we can calculate 88

our desired point estimates (median) and interval estimates (quantiles): t̂on = 19.72 89

weeks (95% CI: 16.52 - 21.5 weeks), t̂off = 41.61 weeks (95% CI: 40.52 - 43.26 weeks). 90

We defined our other outcome measure, the preventable fraction (Fp) of a 91

prophylaxis regimen that offers protection between tstart and tend , as: 92

Fp(tstart , tend) =

∫ tend

tstart

λ(t)dt/

∫ tmax

tmin

y(t)dt

We repeated the above method to estimate the preventable fraction of the 93

prophylaxis regimen recommended by the American Academy of Pediatrics as well as 94

several alternative prophylaxis regimens, which then enabled us to assess the potential 95

benefit of adjusting the prophylaxis regimen to better align with the local RSV season. 96

Simulation study 97

We began by generating Nseason = 60 RSV seasons. Each season was generated as 98

follows: 99

1. Randomly choose epidemiologic week of season start tstart ∼ Uniform(5, 15), 100

epidemiologic week of season end tend ∼ Uniform(30, 45), and peak incidence 101

λmax ∼ Uniform(50, 500). 102

2. Calculate

λ∗(t) =

{
1
2 (1 + cos(2π t−tstart

tend−tstart
)) · λmax for tstart ≤ t ≤ tend

0 otherwise

to produce a curve roughly of the desired shape (rising from 0 to λmax , then 103

falling back to 0, between tstart and tend). 104

3. Fit a log-linked cubic P-spline to λ∗(t) to obtain true instantaneous incidence 105

λ0(t); this ensures that the true incidence is smooth in the second derivative. 106

The number of seasons was chosen to balance power of the simulated outcome 107

estimation with computational demand. The ranges of the parameters for the simulated 108

seasons were chosen to include the observed characteristics in our actual dataset of 109

RSV-related hospitalizations in Connecticut. 110

For each season, we then generated Nobs = 60 sets of observations by sampling 111

observed incidence y(t)
ind∼ Poisson {λ0(t)} at weekly intervals. We also calculated the 112

true values of ton and toff directly from λ0(t) for each season. 113

Finally, we used the method described above to obtain t̂on and t̂off estimates for each 114

of the Nseason ·Nobs = 3600 sets of observations, in order to verify that the true values 115

of ton and toff calculated directly from λ0(t)) were contained in the 95% CI ≈95% of 116

the time. We repeated the same process to validate the preventable fraction estimates. 117

Results 118

To evaluate the results of our method, we considered three performance metrics: 119

• Coverage: the fraction of estimated 95% confidence intervals that include the true 120

value of the outcome measure. 121
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• Mean absolute error (MAE): the mean absolute value of the difference between 122

point estimates and the true value. 123

• Scaled MAE (for onset and offset only): mean absolute error divided by toff − ton . 124

The process of performing a simulation study is straightforward, but the measures of 125

robustness it yields must be interpreted in the context of the research at hand. In our 126

particular case, the MAE of onset/offset estimates (∼ 0.15 weeks, see Table 1) was 127

small compared to time periods of interest in our analysis (which were 1 weeks or more). 128

The MAE for preventable fraction was similarly non-consequential to our results. 129

Overall, the simulation study showed that our estimation method for onset, offset, and 130

preventable fraction met the needs of our RSV research. 131

Season timing
Onset (weeks) Offset (weeks) Preventable fraction

Coverage 93.19% 93.75% 94.61%
MAE (SE) 0.14 (0.003) 0.15 (0.003) 0.01 (0.0001)
Scaled MAE (SE) 1.219% (0.0003) 1.277% (0.0003) —

Table 1. Simulation study results. MAE: Mean absolute Error. SE: Standard error.

Discussion 132

In this study, we demonstrate how P-spline regression, combined with parameter 133

resampling, can be used to generate uncertainty intervals for quantities derived from 134

epidemic disease data. This is a general approach that can be applied to other to other 135

systems, such as outbreaks of other infectious diseases, as well as other outcome 136

measures. 137

We focus on specific outcome measures (onset/offset time and preventable fraction) 138

that are relevant for RSV. Validating our estimation of those quantities using a 139

simulation study gives methodological grounding to this approach. Direct public health 140

applications of this approach include investigation of the potential benefits of 141

region-specific RSV prophylaxis guidelines. 142

To facilitate application of P-spline estimation to other research, we wrote an R 143

package, pspline.inference [12], that encapsulate our methods in an easy-to-use 144

programming interface. It allows the user to obtain interval estimates of a user-defined 145

outcome measure (as long as it’s computable from the model response variable), 146

regardless of how complex its computation; it also provides an easy way to conduct a 147

simulation study to validate estimation of the user-defined outcome measure on 148

user-supplied data, thereby making it simple to develop and validate novel outcome 149

measures. The package is available on GitHub and the Comprehensive R Archive 150

Network (CRAN), and its documentation includes examples beyond those shown here. 151

We considered including a head-to-head comparison between our approach and any 152

number of alternative approaches to estimation of time-based outbreak characteristics. 153

However, such comparison would have required defining what it means to compare a 154

point-estimation method to an interval-estimation method and what it means to 155

compare two methods of estimating onset and offset in the absence of a standardized 156

meaning of onset and offset. We therefore decided head-to-head comparison was not 157

within the scope of this initial report, and instead we focus here on an absolute 158

evaluation of the correctness of our approach by means of the simulation study. 159

The flexibility of our approach does come at a price. We validated it only for our 160

input data and for our outcome measures; applications of this approach to other types 161
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of analysis will have to be validated independently. Our R package makes this validation 162

simple to perform, but the validation is inherently time-consuming; whereas our analysis 163

took minutes-to-hours to run, validation of our analysis took hours-to-days. Even with 164

that computational cost, our approach is computationally less demanding than Bayesian 165

Markov chain Monte Carlo (MCMC) approaches on datasets of comparable size, because 166

the computationally expensive step in our approach is validation, not the analysis itself. 167

The estimates produced by our method are likely to be biased (as shown in our RSV 168

application); measuring that bias (using our validation tools) and assessing its impact 169

on results is, necessarily, left up to the individual application. 170

Our method is inherently retrospective; the strengths of our approach come from 171

considering the incidence time series as a whole, and it therefore cannot, in its current 172

form, be applied to real-time analysis. 173

In summary, ours is a method of retrospective analysis of infectious disease 174

outbreaks based on P-splines; it is computationally less demanding than Bayesian 175

MCMC methods, yet, unlike the common frequentist approaches, it allows for more 176

straightforward interval estimation of time-based outbreak characteristics. Although we 177

only validated it for our analysis of RSV seasonality, it is applicable to other similar 178

systems, and by publishing it on CRAN, we hope to facilitate its use in other analyses. 179
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Supplement: P-spline GAMs in brief
A spline of order n is a piecewise polynomial real function S(x) of degree n− 1 on
interval [xL, xR]; the points p1, p2, . . . , pm ∈ [xL, xR] at which its polynomial segments
join are known as its knots. Owing to its construction, a spline of order n has up to
n− 1 continuous derivatives throughout [xL, xR]; for our analysis, we only consider
splines with exactly n− 1 continuous derivatives.

For any set of knots P = {p1, . . . , pm}, we can construct a unique set of m− n
splines of order n known as the basis splines (B-splines) over P , denoted with
Bk(x;n;P ), k = 1, . . . ,m− n. Every spline S(x) of order n with knots P can be
uniquely represented as a linear combination of the basis splines Bk(x;n;P ) such that:

S(x) =
m−n∑
k=1

ckBk(x;n; p1, . . . , pm), ck ∈ R (2)

A cyclic spline of order n is a piecewise polynomial periodic real function
f(x) = f(x− T ). As with non-cyclic splines, a cyclic spline of order n is continuous in
up to n− 1 derivatives, and we only consider those continuous in exactly n− 1
derivatives. Use of cyclic splines is often necessary in infectious disease modeling
because non-cyclic splines do not guarantee smoothness at xL ± kT when extended to
multiple periods. Basis splines of cyclic splines are themselves cyclic.

A generalized additive model provides a framework for modeling a response variable
y, using predictor variables xi, i = 1, . . . , p, with corresponding potentially non-linear
predictor functions fi, i = 1, . . . , p, and a link function g, such that the expected value,
E(y), is defined as

g (E(y)) = β0 +

p∑
i=1

fi(xi;βi,1, βi,2, . . .) (3)

where β0 and βi,j represent unknown model parameters.
Splines can be used for each predictor function in a GAM by setting:

fi(xi;βi,1, βi,2, . . .) = Si(xi) =

mi−ni∑
k=1

ci,kBi,k(xi;ni; pi,1, . . . , pi,mi) (4)
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and treating the spline linear coefficients ci,k as the model parameters βi,j . Splines
for different fi in the model can have different orders ni and different knot sets Pi of
length mi. After expanding each predictor spline, the GAM takes the form

g {E(y)} = β0 +

p∑
i=1

{
ni−mi∑
k=1

ci,kBi,k(xi;ni; pi,1, . . . , pi,mi
)

}
(5)

with β0 and βi,j = ci,k as model parameters, and ni and Pi chosen prior to analysis.
This model can be fitted to data simply by minimizing ‖y − E(y)‖2; however, this

approach often leads to overfitting, especially with a larger number of knots. To
mitigate this, the model can be modified to instead minimize ‖y −E(y)‖2 + P , where P
is a penalty function that measures non-smoothness of the model response variable.
This approach balances closeness of fit with smoothness. B-splines used in a model with
a penalty function are known as penalized B-splines (P-splines) [9]. A variety of penalty
functions have been defined; the most common ones use p-th order differences between
the model and the data, for some small integer p (often p = 2). As with general cyclic
splines, cyclic P-splines are an extension of P-splines to periodic functions.
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