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ReCoNet: Multi-level Preprocessing of Chest
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Abstract—Life-threatening COVID-19 detection from radiomic
features has become a dire need of the present time for in-
fection control and socio-economic crisis management around
the world. In this paper, a novel convolutional neural network
(CNN) architecture, ReCoNet (residual image-based COVID-19
detection network), is proposed for COVID-19 detection. This is
achieved from chest X-ray (CXR) images shedding light on the
preprocessing task considered to be very useful for enhancing
the COVID-19 fingerprints. The proposed modular architecture
consists of a CNN-based multi-level preprocessing filter block
in cascade with a multi-layer CNN-based feature extractor and
a classification block. A multi-task learning loss function is
adopted for optimization of the preprocessing block trained end-
to-end with the rest of the proposed network. Additionally, a
data augmentation technique is applied for boosting the network
performance. The whole network when pre-trained end-to-end
on the CheXpert open source dataset, and trained and tested
with the COVIDx dataset of 15,134 original CXR images yielded
an overall benchmark accuracy, sensitivity, and specificity of
97.48%, 96.39%, and 97.53%, respectively. The immense potential
of ReCoNet may be exploited in clinics for rapid and safe
detection of COVID-19 globally, in particular in the low and
middle income countries where RT-PCR labs and/or kits are in
a serious crisis.

Index Terms—Chest X-rays, lungs, convolutional neural net-
works, modular architecture, transfer learning, multi-task learn-
ing, COVID-19

I. INTRODUCTION

COVID-19 infection has overwhelmed the whole world
affecting millions of lives and paralyzing the economy

around the globe. Having no drug and vaccine for COVID-19,
according to the World Health Organization (WHO), the best
way to prevent and control infection apart from maintaining
hygiene and social distancing, is the timely detection of
the virus and/or its signature in the human body and rapid
implementation of necessary interventions. Although presently
the COVID-19 RT-PCR based diagnostic test is considered to
be the gold standard for COVID-19 detection, its high cost
and unavailability of kits in many countries, long queue, long
delay, limited labs, limited skilled health professionals, high
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risks, and false negatives makes it unrealistic for the prevention
and control of the disease at least in low and middle income
(LMIC) countries.

Radiology-based rapid detection of COVID-19 and pa-
tient triage separately or jointly with antigen/antibody-based
schemes can play a vital role in preventing the spreading of
infection in the community and also in the demarcation of
COVID-free regions in LMIC countries to alleviate lockdown
and mobilize economic activities in those regions. Although
computed tomography (CT) scans can prove to be more
effective, due to their high cost, unavailability in rural areas,
high exposure to radiation, high risk of contamination of the
health professionals due to long acquisition time, and difficulty
of disinfecting the imaging system for making it available
to non-COVID patients, chest X-ray (CXR) based diagnosis
appears to be a more viable solution for COVID-19 detection
and patient triage. It has been reported in a recent study
[1] that CXRs display signs of COVID-19 within 4 days of
infection. Therefore, using CXRs has the potential to make
a difference for doctors dealing with the COVID-19 crisis in
LMIC countries.

This paper proposes a novel end-to-end CNN architecture,
ReCoNet, to detect COVID-19 from CXR. To address the issue
of data deficiency, inspired by Abbas et al. [2], we use the
CheXpert dataset [3] to pre-train our proposed model. The
main contributions of this paper are:

• The proposed CNN architecture is modular and comprises
of a novel multi-level CNN preprocessor that dynamically
enhances the lung regions that are useful for COVID-19
detection, a multi-layer CNN for feature extraction, and
a dense layer for multi-class classification.

• The proposed network is one of the most light-weight
networks and with lesser parameter count than the state-
of-the-art.

• The proposed method incorporates two loss functions
for end-to-end optimization of the modular network for
COVID-19 detection. A novel multi-task learning (MTL)
loss function is used to design a robust preprocessor and
to ensure that it produces a consistent output irrespective
of the image orientation. We also use the joint weighted
cross-entropy loss and the MTL loss for class-label pre-
diction. This optimization helps to improve the accuracy
of COVID-19 classification.

• A data augmentation technique is adopted for boosting
the performance of the proposed ReCoNet.
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Fig. 1. Block diagram of our proposed ReCoNet.

• The performance of DenseNet-121 is evaluated for
COVID-19 detection.

• The use of multi-level CNN-based CXR-enhancer, trans-
fer learning, and multi-task learning strategies resulted in
benchmark results of COVID-19 detection outperforming
the state-of-the-art methods.

II. RELATED WORKS

This section provides a summary of diagnosis of lung
diseases via lung imaging and describes the state-of-the-art
deep learning methods for COVID-19 lung imaging.

A. Diagnosis of lung diseases using Chest X-rays

In rural areas and in LMIC countries, strong infrastructure
and medical support (i.e., sufficient medical staff) is lacking.
Therefore, the medical teams in these areas are highly reliant
on CXRs for early detection of lung diseases. The diagnosis of
lung diseases using CXRs has mainly been focused on treating
pneumonia. However, the diagnosis of pneumonia in CXRs
requires the expertise of experienced radiologists as it is not
an easy task [4].

Consequently, automated methods have been developed to
assist radiologists to diagnose lung diseases in CXRs including
pneumonia and lung cancer [5]. The conventional automated
methods were based on traditional machine learning and
pattern recognition techniques including template matching [6]
and conventional classifiers. Since pneumonia is very com-
plicated and frequently misdiagnosed [4], template matching
methods are typically inflexible and might not be so suitable
for their diagnosis. The other conventional methods also had
low accuracies and many false positive detections that were
distracting to radiologists, which affected the overall benefit
and usability of these schemes to radiologists [5]. Since the
breakthrough of deep learning in medical imaging [7], [8], the
researchers focus on using deep learning methods for COVID-
19 detection. The following reviews the state-of-the-art deep
learning methods for COVID-19 detection on CXRs.

B. Detection of COVID-19 from Chest X-rays

Togacar et al. [9] compared different deep learning models
including MobileNetV2 [10] and SqueezeNet [11], and com-
bined the extracted features using support vector machines.
Khan et al. [12] proposed a new deep learning network
called CoroNet based on the Xception architecture [13] to
differentiate pneumonia, COVID-19 and normal cases. Ozturk
et al. [14] presented a DarkCovidNet model based on the

DarkNet-19 model [15] utilizing the DarkNet layer, batch
normalization and leakyReLU activation functions on a limited
number of COVID-19 images. In a recent article, Pereira et al.
[16] analyzed the texture of different types of pneumonia that
can lead to higher COVID-19 recognition rates. Mahmud et al.
[17] presented a new method called CovXNet to automatically
detect COVID-19 using dilated convolutions. Brunese et al.
[18] used VGG-16 [19] and transfer learning to detect COVID-
19 in a dataset of 6,523 CXRs.

Due to lack of available COVID-19 CXRs, Oh et al. [20]
presented a new deep learning method based on ResNet [21]
to detect COVID-19 in CXRs using a limited training set
and a patch based approach to randomly crop patches from
CXRs. Although the network complexity of their method was
relatively small and simple, it still performed comparably with
state-of-the-art methods. Apostolopoulos et al. [22] analyzed
transfer learning to detect confirmed COVID-19 and confirmed
pneumonia in CXR images and compared the performances
of five CNNs for this task: (1) VGG19 [19], (2) MobileNet
[10], (3) Inception [23], (4) Xception [13], and (5) Inception
ResNet v2 [23]. The results showed that MobileNet produced
the lowest number of false negatives. As it is crucial to detect
all COVID-19 patients to prevent the spread of the virus, the
authors concluded that MobileNet was the best performing
model for this task.

One of the first open source studies published in arXiv is
the design of COVID-Net [24], a tailored deep convolutional
neural network (DCNN) designed for the detection of COVID-
19 using open source positive and negative patients datasets.
The authors pre-trained their network on the ImageNet dataset
[25] to detect signs of COVID-19 in CXRs. Recently, a CNN
architecture was published called COVID-ResNet [26] that
used Resnet-50 [21] for COVID-19 detection from CXRs. The
paper reported a promising result of 96.2% accuracy on a
comprehensive dataset [26].

Punn et al. [27] analyzed a recurrent neural network using
long short-term memory (LSTM) [28] cells to predict the
total number of COVID-19 confirmed, recovered, and death
cases worldwide. Abbas et al. [29] proposed a CNN called
Decompose, Transfer, and Compose (DeTraC) to classify
COVID-19 that achieved an accuracy of 95.1%, sensitivity
of 97.9%, specificity of 91.9% and a precision of 93.4%.
Afshar et al. [30] proposed a new method based on capsule
networks, called COVID-CAPS to diagnose COVID-19 from
two publicly available CXR datasets [24]. A novel contribu-
tion of this paper is that previous methods pretrained their
deep learning models on generic datasets like ImageNet. In
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contrast, the authors pretrained their models on datasets of
common thoracic diseases and used transfer learning to detect
COVID-19 and achieved 98.3%, 80%, and 98.6% for accuracy,
sensitivity and specificity, respectively.

Several other groups have proposed transfer learning to
detect COVID-19 and/or pneumonia in CXRs [31], [32], [22].
Khalifa et al. [32] presented a new method to detect pneumonia
in CXRs based on generative adversarial networks (GANs)
[33]. They used GANs to generate artificial images to augment
their datasets to train and test some popular deep learning
networks: AlexNet [34], SqueezeNet [11], GoogleNet [35],
and ResNet18 [21]. Narin et al. [31] pretrained ResNet50
[21], InceptionV3 [36] and Inception-ResNetV2 [23] on the
ImageNet dataset and used transfer learning to detect COVID-
19 cases in CXRs.

Most of the studies reviewed in this section were published
on much smaller/limited datasets. We use the largest publicly
available dataset (COVIDx) to evaluate ReCoNet and compare
our performance with the state-of-the-art methods on COVIDx.

III. PROPOSED METHOD

A. Dataset

In this section, we briefly describe the dataset we used to
develop and train our network. We pre-train our network for
a similar task that involves CXRs by using the CheXpert [3]
open source dataset. This step is very crucial as deep learning
models tend to overfit on a very small dataset. Pre-training the
model on this large dataset ensures that the model extracts and
learns useful X-ray features and generalizes well. Then we use
the COVIDx dataset used in [24] to train and test the proposed
model. A brief description of these datasets are given in the
following.

1) CheXpert Dataset: We use CheXpert dataset [3]
available on https://stanfordmlgroup.github.io/competitions/
chexpert/. CheXpert is a large public dataset of CXRs, com-
prised of 224,316 CXRs of 65,240 patients. This dataset is
collected from chest radiographic examinations carried out in
Stanford Hospital performed from 2002 to 2017. Each report
has labels for the presence of 14 observations as positive,
negative, or uncertain.

2) COVIDx Dataset: The open source dataset that can be
downloaded from https://github.com/lindawangg/COVID-Net/
blob/master/docs/COVIDx.md is used for training and test-
ing of all the networks studied in this work. To setup the
dataset, the instructions provided in COVID-Net [24] was
followed. As the number of CXRs available for COVID-
19 positive patients is very limited, X-ray data of patients
with other viral pneumonia from https://www.kaggle.com/c/
rsna-pneumonia-detection-challenge/data are included to over-
come this limitation. It is to be noted that the dataset is divided
into 13624 training and 1510 test images in [24] as outlined
in Table I. We further split the training data keeping 90% data
for training and 10% data for validation.

B. Network Architecture

As illustrated in Fig. 3, a deep CNN-based modular network
is proposed here for COVID-19 detection from CXR images.

TABLE I
DETAILS OF PATIENT DATA USED FOR TRAINING AND TESTING

Data Number of Patients Per Class Total PatientsNormal Pneumonia COVID-19
Train 7966 5451 207 13624
Test 885 594 31 1510

It consists of cascading a multi-level CNN-based dynamic pre-
filtering block with a multi-layer CNN-based feature extractor
and a dense layer block for multi-class classification, i.e., for
discriminating normal and non-COVID pneumonia patients
from COVID-19 patients. The preprocessor block is attached
to better focus on the relevant parts of the images for COVID-
19 detection by enhancing the regions that are crucial for the
detection process. The whole pipeline of the proposed CNN
model is outlined in the Table II.

TABLE II
DETAILED ARCHITECTURE OF THE PROPOSED RECONET, WHERE A, B, C

REPRESENTS PREPROCESSING BLOCKS, FEATURE EXTRACTION BLOCKS
AND CLASSIFICATION BLOCKS, RESPECTIVELY.

Layer Output Size Parameters
3× 3 Conv 256× 256× 16 F=16, K=3× 3, S=1, P=1
3× 3 Conv 256× 256× 32 F=32, K=3× 3, S=1, P=1
5× 5 Conv 256× 256× 32 F=32, K=7× 7, S=1, P=2

A 7× 7 Conv 256× 256× 32 F=32, K=7× 7, S=1, P=3
3× 3 Maxpool 256× 256× 16 K=3× 3, S=1, P=1
1× 1 Conv 256× 256× 32 F=32, K=1× 1, S=1
1× 1 Conv 256× 256× 3 F=3, K=1× 1, S=1
3× 3 Conv 128× 128× 64 F=64, K=3× 3, S=2
3× 3 Conv 128× 128× 64 F=64, K=3× 3, S=1, P=1
3× 3 Conv 128× 128× 128 F=128, K=3× 3, S=1, P=1
3× 3 MaxPool 64× 64× 128 K=3× 3, S=2, P=1
1× 1 Conv 64× 64× 128 F=128, K=1× 1, S=1
3× 3 Conv 64× 64× 256 F=256, K=3× 3, S=1, P=1
1× 1 Conv 64× 64× 256 F=256, K=1× 1, S=1
1× 1 Conv 64× 64× 256 F=256, K=1× 1, S=1

B 3× 3 Conv 32× 32× 512 F=512, K=3× 3, S=2, P=1
1× 1 Conv 32× 32× 512 F=512, K=1× 1, S=1
1× 1 Conv 32× 32× 256 F=256, K=1× 1, S=1
3× 3 Conv 32× 32× 512 F=512, K=3× 3, S=1, P=1
1× 1 Conv 32× 32× 512 F=512, K=1× 1, S=1
1× 1 Conv 32× 32× 256 F=512, K=1× 1, S=1
3× 3 Conv 16× 16× 1024 F=1024, K=3× 3,S=2,P=1
1× 1 Conv 16× 16× 1024 F=1024, K=1× 1, S=1
Average Pool 1× 1× 1024 K=16× 16

C Dropout 1× 1024 Probability=0.25
FC Layer 1× 3 Units=3

1) Multi-level CNN-based Preprocessor: Inspired by the
concept of residual image generation module design of Rem-
Net [37], a network shown to be extremely suitable for camera
model identification from the hidden fingerprints of the input
images, we propose here a dynamic module that enhances
the desired features of an input X-ray image by subtracting
from it the activations extracted using a module similar to the
Inception module [38], [39], [40]. Salient parts in the CXRs
can have variation in size and position. Due to this variant
information, choosing the right kernel size for convolution
filters is difficult. A larger kernel is preferred for information
that is distributed more globally, and a smaller kernel is
preferred for information that is distributed locally. Therefore,
unlike [37], we design a single block that uses a multi-
level feature extracting module by using several parallel path
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Fig. 2. A schematic representation of the pre-processor block.

convolution blocks inspired by the concept used in [38], [39],
[40]. Each convolution block consists of convolution kernels,
a batch normalization layer followed by a ReLU activation
layer. First, we use a convolution block with sixteen 3 × 3
convolution kernels to project the input image to a feature
domain. Then we add parallel paths of 3× 3, 5× 5 and 7× 7
convolution kernel blocks and also one 3×3 maxpool followed
by a 1×1 convolution kernel block. Each of the parallel paths
results in 32 feature maps. Then, we concatenate the extracted
features by the parallel path convolution and maxpool blocks.
Finally, a convolution block with three 1×1 kernels is used to
project the output feature map to image domain. The proposed
preprocessing block is outlined in Fig. 2.

2) CNN-based Feature Extractor: In cascade with the pre-
processing block, we build a network that uses several modules
of convolution blocks to effectively extract features for the
detection of COVID-19. The overall network architecture is
outlined in Fig. 3. Each convolution block is designed using
the same design strategy of the convolution block as used in
the preprocessor. First, we use a module that translates the
output of the preprocessor to the feature domain. We design
this module by using three convolution blocks each with a 3×3
kernel and with a stride of 2×2, 1×1 and 1×1, followed by
one maxpool layer with a 3×3 kernel and stride of 2×2. The
number of kernels used in these three convolution blocks are
64, 64, and 128. The features extracted by the first module are
sequentially processed by the four successive modules which
are similar in design pattern. Each of these four modules are
designed using three convolution blocks with kernels 1 × 1,
3 × 3, and 1 × 1. The first one among these modules has a
stride of 1 × 1 for all convolution blocks and the number of
kernels are 128, 256, and 256. The second one has a stride of
1×1, 2×2, and 1×1 for the three convolution blocks and the
number of kernels are 256, 512, and 512. The third one has a
stride of 1× 1 for all of the three convolution blocks and the
number of kernels are 256, 512, and 512. And the last one has
a stride of 1 × 1, 2 × 2, and 1 × 1 for the three convolution
blocks and the number of kernels are 512, 1024, and 1024.

3) Classifier: Global Average Pooling (GAP) layer is used
here to squash spatial dimensions of the features extracted by
the feature extractor. Then, a dropout layer is used with a

probability of 0.25 and finally the features are passed on to a
fully connected layer that has an output size of 3 to classify
the input CXRs as one of three classes: normal, pneumonia,
or COVID-19.

C. Performance Metrics

The performance of the proposed and other methods com-
pared in this paper is evaluated on the test set by computing
Sensitivity, Specificity, Accuracy, and Matthew Correlation
Coefficient (MCC) [41] as quantitative evaluation indices.
These are defined as:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

FP + TN
(2)

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

where TP is the total number of true positives, FP is the
total number of false negatives, TN is the total number of
true negatives and FN is the total number of false negatives.

D. Implementation

In this subsection, we discuss the implementation of our
proposed pipeline along with the training procedure. The
experiments are carried out in a hardware environment that
includes a Intel Core-i7 8700, 4.60 GHz CPU and Nvidia
RTX 2080 (8 GB Memory) GPU. All the codes are written
in Python and the Pytorch library is used to implement the
neural networks.

1) Pre-training: The CXRs are grayscale images. However,
we use 3-channel as input by copying the grayscale channel. It
has been experimentally observed that using this configuration
of input images improves the performance of our network.
Moreover, in order for batch learning, we resize all the raw X-
ray images to 256× 256 as the CXRs are stored with various
dimensions. We pre-train our network on CheXpert dataset.
We used the same training and validation sets as used in [3].
The Binary-Cross-Entropy loss function and Adam Optimizer
were used to optimize our network. Furthermore, we used
Xavier uniform initialization strategy to assign weight for the
network initially. A batch size of 32 was used. The initial
learning rate was set to 10−3 and a learning rate scheduler was
used to decrease it by a factor of 0.5 after 3 epochs if validation
accuracy did not improve. We performed validation after every
300 iterations and saved the weights with the best validation
accuracy. We used this strategy and trained our network for
35 epochs during this pre-training phase.
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2) Training: We resized the CXRs of COVIDx dataset to
a resolution of 256 × 256 as before. We also made the input
CXRs 3-channel input by copying the grayscale image. We
used 90% of the data for training and 10% for validation. In
addition to this, the dataset was split making sure that the ratio
of data according to classes are the same for both training and
validation. We initialized our network with the weights that
we obtained after pre-training our network on the CheXpert
dataset. As the COVIDx dataset is very small, we fine-tuned
our network for 50 epochs. We started with a learning rate
of 10−3 and used a learning rate scheduler to decrease the
learning rate if the validation accuracy did not improve for 5
epochs. We used a batch size of 32 and saved the weights with
the best validation accuracy.

3) Loss Function: In this work, we perform a multi-
class classification of the input CXR image, i.e., given a
CXR image we detect whether the patient is Normal, non-
COVID Pneumonia or COVID-19. To address such a multi-
class classification problem, the Categorical Cross-Entropy
loss function is generally used. However, the COVIDx dataset
is highly imbalanced and the number of CXRs of COVID-19
patients is very few. Therefore, we use weighted Categorical
Cross-Entropy as our loss function for the feature extraction
and classification networks whereby the weighting function
is taken from [42]. After applying softmax activation on the
predicted output of the network, the weighted Categorical
Cross-Entropy loss is calculated as

Lcross−entropy =
1

N

N∑
i=1

wij(yij log(ŷij)), (5)

wij =
1

Nclass

∑Nclass

k=1 nk
nj

(6)

where yij ∈ {0, 1} represents the ground truth of image i of
class j, ŷij ∈ [0, 1] represents the softmax prediction for the

image i of class j, wij represents the weight of the image i of
class j, nj represents the number of images of class j, Nclass

represents the total number of classes, and N represents the
number of images in a batch.

It is to be noted from Fig. 3 that the feature extraction and
classification modules actually operate on the residual image
of the preprocessor block. Therefore, to make the classification
results robust to input transformation, with this weighted
categorical Cross-Entropy loss function, we attach another l2-
loss function to enforce the proposed preprocessing network
to give a consistent output irrespective of the transformation
applied on the input image. The l2-norm constrained network
enhances the input CXRs for improved COVID-19 detection.

To compute this loss, first, we feed a batch of input CXRs,
X and transform each of the CXR image in the batch by
applying a randomly chosen transformation, Tk(.), from a
transformation set. After applying transformation to the batch
of input CXRs, we obtain a transformed batch of CXRs, Xt.
The relationship between X and Xt is given by

Xt = Tk(X), (7)

where, Tk ∈ {HFlip, VFlip, Rotation}. HFlip, VFlip and
Rotation are horizontal flip, vertical flip, and random rotation
transforms, respectively. We feed X and Xt as input to the
preprocessor and get Xp and Xt

p as the output, respectively.
Finally, we concatenate Xp and Xt

p and pass the concatenated
batch of preprocessed CXRs to feature extractor block and
then to the classification block as shown in Fig. 3. An ideal
preprocessor should preprocess the mini-batches X and Xt

consistently. Therefore, not only to drive the preprocessor
to enhance the input CXRs but also to insist consistent
preprocessing, we couple a loss with the weighted Cross-
Entropy loss that only updates the parameters of the multi-
level CNN-based preprocessor. We define this preprocessor

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.11.20149112doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20149112
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

80.32

20 40 60 80 100 120 1400

127.4

7.614

2.516

COVID-Net 
   (Large)

COVID-Net 
   (Small)

DenseNet-121

ReCoNet

 Parameter
     Count
(In Millions)

117.4

Fig. 4. Comparison of model parameters.

consistency loss function as

Ll2−consistency =
1

N ×H ×W × C
||Tk(Xp)−Xt

p||22 (8)

Here, Tk(·) are the same transformations that are applied to
each image of X to obtain Xt. And N , H , W , and C are batch
size, height, width and channel of X, respectively. The multi-
task learning loss function for our proposed preprocessing
network is now defined as

Ltotal = Lcross−entropy + αLl2−consistency (9)

where Ltotal is the total loss that we jointly optimize,
Lcross−entropy is the loss used to classify the CXRs,
Ll2−consistency that ensures enhanced feature in the residue
of the preprocessor to robustly identify COVID-19, and α is
the coupling factor that determines the emphasis given on the
preprocessor-consistency loss.

IV. RESULTS

The performance of the proposed model for addressing
the three-class classification problem of finding whether a
CXR image falls within the category of COVID-19, Pneu-
monia (non-COVID-19) or Normal patient, is compared with
COVID-Net in addition to DenseNet-121 [43] studied in this
paper. The DenseNet-121 model was also pre-trained on the
CheXpert dataset and trained on the open source COVID-19
resized dataset of 256× 256 input images.

The parameter counts of the networks are compared in
Fig. 4. As can be seen, the parameter count of our ReCoNet
is 2.516 × 106 in comparison to 7.614 × 106 for DenseNet-
121, 117.4× 106 for COVID-Net (small) and 127.4× 106 for
COVID-Net (large). These indicate that ReCoNet is a light-
weight network. To demonstrate that RecoNet focuses on the
right places of the lung for extracting discriminative features,
we present the GRAD-CAM output of CXR for each class
in Fig. 5 along with the corresponding preprocessor’s output.
It appears that for a normal patient, clear regions from the
lungs are generally used for characterization. Whereas for a
Pneumonia (non-COVID-19) case, only the selective opaque
regions of the lungs are used. However, for the COVID-
19 case all the scattered bilateral opaque regions are used

Normal Pneumonia COVID-19

Fig. 5. Visual illustration of: Input chest X-ray images (first row); Preproces-
sor output images (second row); GRAD-CAM output of ReCoNet (third row);
and GRAD-CAM output of the proposed network without preprocessor (fourth
row). It is noted that without preprocessor, the network failed to localise and
pneumonia is misclassified as normal.

for discrimination. As can be observed for these particular
cases, the ReCoNet can localise better and correctly classified
the three CXRs, but without the preprocessor, pneumonia is
misclassified as normal.

The confusion matrix of our proposed network is depicted
in Fig. 6. It shows that all classes are identified with high
true positives. It is to be noted that the COVID-19 cases are
all correctly classified by the ReCoNet. There are 3.62% of
the normal cases misclassified as pneumonia (non-COVID-
19) and 4.04% of the pneumonia cases are mis-classified
as normal. Only one pneumonia (non-COVID-19) case is
wrongly classified as COVID-19. These results demonstrate
that our proposed ReCoNet has good potential in detecting
COVID-19; in particular, with limited COVID-19 cases, we
show that there is no confusion between the normal and
COVID-19 patient groups.

A. Experimental results

The performances of our proposed network, i.e., ReCoNet,
and an existing deep learning architecture DenseNet-121 are
evaluated on the test set of COVIDx dataset [24]. We also
compare the performances of these networks with that of
COVID-Net [24] as presented in Table III. The superiority
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TABLE III
COMPARATIVE PERFORMANCE OF DIFFERENT MODELS FOR COVID-19 DETECTION FROM CXR IMAGES OF THE COVIDX DATASET

Method
Normal Pneumonia COVID-19 Overall

ACC SE SP ACC SE SP ACC SE SP ACC SE SP MCC

COVID-Net (small) [24] 93.94 97.00 91.60 93.51 90.00 96.18 97.84 87.10 99.50 95.10 91.37 95.76 87.94

COVID-Net (large) [24] 95.67 99.00 93.13 94.81 89.00 99.24 98.27 96.80 98.50 96.25 94.93 96.96 91.01

DenseNet-121 96.09 97.51 94.08 96.16 93.94 97.60 99.93 96.77 100.00 97.40 96.08 97.23 92.19

Oh et al. [20] - 90.00 - - 93.00 - - 100.0 - 88.90 85.90 96.40 -

Khan et al. [12] - 93.50 98.10 - 84.00 94.90 - 98.25 97.90 95.00 96.90 97.50 -

ReCoNet (proposed) 96.29 96.38 96.16 96.23 95.79 96.51 99.93 100.00 99.93 97.48 97.39 97.53 92.49

96.38 % 3.62 % 0.00 %

4.04 % 95.79 % 0.17 %

0.00 % 0.00 % 100.00 %

A
c

tu
a

l C
la

s
s

Normal

Pneumonia

COVID-19

Predicted Class
Normal Pneumonia COVID-19

Fig. 6. Confusion matrix of the proposed ReCoNet.

of ReCoNet and DenseNet-121 in terms of the quantitative
metrics in comparison to state of the art is obvious. Our
proposed method achieves an overall Sensitivity, Specificity,
Accuracy and MCC of 97.39%, 97.53%, 97.48% and 92.49%,
respectively, outperforming COVID-Net, DenseNet-121, Oh
et al. [20] and Khan et al. [12]. One of the reasons of the
poor performance of COVID-Net is that CheXpert dataset is
not used for pre-training. The receiver operating characteristic
(ROC) curves for COVID-Nets, DenseNet-121 and our pro-
posed network are shown in Fig. 7. It is to be noted that the
highest area under the ROC curve (AUC) value of 0.9957 is
achieved by our proposed ReCoNet.

B. Ablation studies

In order to show the impact of the preprocessing block,
multitask loss function and pretraining on the efficacy of the
proposed method, we carry out several experiments that are
outlined below:

1) ReCoNet trained without the preprocessor using only the
weighted cross-entropy loss and without pre-training on
the CheXpert dataset.

2) ReCoNet trained using only the weighted cross-entropy
loss without pre-training on the CheXpert dataset.

3) ReCoNet trained using only the weighted cross-entropy
loss with pre-training on the CheXpert dataset.

4) ReCoNet trained using the multi-task loss function with
pre-training on the CheXpert dataset.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Receiver operating characteristic (ROC)

COVID-Net Small (AUC =  0.9833)

COVID-Net Large (AUC =  0.9874)

DenseNet-121 (AUC =  0.9948)

ReCo-Net (AUC =  0.9957)

Tr
u

e 
P

o
si

ti
ve

 R
at

e

1.0

False Positive Rate

Fig. 7. Comparison of ROC curve of different networks.

The results in Table IV outlined 4 experiments, which show
that the transfer learning, multi-task learning, and preprocess-
ing raw input X-rays have great impact on the performance of
ReCoNet, thereby justifying the selection of the proposed net-
work architecture and its associated training/learning schemes.

V. DISCUSSION

This paper presents a new approach to detect COVID-19
from CXR images with a number of unique characteristics.
First, we analyzed our proposed ReCoNet on the most com-
prehensive COVID-19 dataset to date (namely, COVIDx) and
achieved state-of-the-art results. Table III tabulates a summary
of all state-of-the-art methods that have been tested on the
same COVIDx dataset, to date. The results show that ReCoNet
achieves superior results across all performance metrics of
accuracy, sensitivity, specificity, and MCC for pneumonia,
COVID-19 and overall detection. All the other previous studies
that have not been included in Table III for performance
comparisons used smaller datasets, and to the best of our
knowledge, COVIDx is the biggest public dataset to date with
15,134 CXRs. The most probable reason that other research
groups have not used COVIDx for their studies is that this
dataset was just made available in May 2020.
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TABLE IV
PERFORMANCE ON TEST SET WITH PROGRESSIVE ASSOCIATION TO THE PROPOSED METHOD

Model Data Loss SE SP ACC MCC
ReCoNet COVIDx Lcross−entropy 91.37 94.86 94.61 0.8404

(without preprocessor)
ReCoNet COVIDx Lcross−entropy 92.90 95.20 95.50 0.8648

ReCoNet CheXpert + COVIDx Lcross−entropy 94.72 96.91 95.67 0.9099

ReCoNet CheXpert + COVIDx Lcross−entropy + 97.39 97.53 97.48 0.9249
(Proposed Method) Lpreprocessor−consistency

Another unique characteristic of this study is that ReCoNet
achieved a sensitivity result of 100% for COVID-19 detection.
This is a significant achievement as a high sensitivity result
means that there are very low false negatives, which is highly
important to curb the spread of COVID-19 in the general
population. It is also important to note that ReCoNet has
much fewer model parameters (i.e., 2.516 million) compared to
COVID-Net and other state-of-the-art methods in the literature
e.g., 33 million [12] and 7.6 million [43]. This means that it
takes a smaller amount time to train ReCoNet and overfitting
would likely be avoided in training ReCoNet, which enables
it to generalize to new and unseen testing datasets.

ReCoNet incorporates a novel pre-processor block to extract
multi-resolution features in the CXR images and uses the
residual of these features to improve its performance. Namely,
in the overall training pipeline of ReCoNet (Fig. 3), the pre-
processor blocks of two orientations (original and transformed
image) of the same CXR image have shared weights and
the outputs of the preprocessor blocks are incorporated into
the preprocessor-consistency loss function in (8). The ablation
studies in Table IV show that incorporating this loss function
considerably improved the performance of ReCoNet, which
demonstrates that useful information can be derived from
both images. A possible reason for this could be that the
preprocessor block operates on the residual images. From our
experiments, we observe that the structures highlighted in the
residual images of the original and transformed images are
unwanted structures that will not be beneficial for ReCoNet’s
learning including the abdomen and structures/regions out-
side the lungs. Thus, a possible reason for the performance
improvement could be that ReCoNet identified that these
regions were not beneficial/did not present useful information
for its learning during the training process. Additionally, by
minimizing the difference between the original and trans-
formed residual images (as incorporated in the preprocessor-
consistency loss function in equation (8)), ReCoNet might
have identified further unwanted structures that were not
useful for its learning and/or enhanced the regions that were
important for COVID-19 detection. By incorporating different
transformations, ReCoNet improved its performance accuracy
by including different data augmentations during the training
process.

This study is very important as COVID-19 is a very conta-
gious disease and correctly diagnosing it is highly important
to prevent its spread. The importance of developing novel
approaches to detect COVID-19 in CXRs is significantly

important especially in LMICs like Bangladesh and Malaysia,
whereby CT scans are either too expensive or not readily
available and present relatively high radiation to patients. The
COVID-19 RT-PCR test is also too expensive, incurs long
waiting times and present false negatives. In contrast, CXRs
are cheaper, readily available and the results of our study
show that high sensitivities and minimal false negatives can
be achieved with deep learning-based methods like ReCoNet.
Therefore, the results of this study are very promising and
demonstrate the potential of deep learning methods to curb
the COVID-19 pandemic, especially in LMIC countries.

VI. CONCLUSION

This paper has proposed a novel CNN-based modular
network for COVID-19 detection from the biggest public
dataset of CXR images available to date, i.e. COVIDx. The
elegance of the modular network is the preprocessor block that
dynamically filters the input images for enhancing signs of
COVID-19 infection, thereby making the task easier for the
feature extraction and classification block placed in cascade
with it. The obtained results are highly promising as compared
with COVID-Net and other state-of-the-art methods, using a
notably light-weight network. Considering several important
factors such as COVID-19 infection and spreading patterns,
image acquisition time, scanner availability and costs, the
high sensitivity and specificity of our proposed CXR-based
detection scheme might play a key role in mass detection and
patient triage amid the COVID-19 pandemic. Due to the lack
of large-scale COVID-19 CXRs to fully validate ReCoNet, we
will be seeking additional resources and support from clinical
partners to expand the dataset.
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