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Abstract: Convolutional neural networks (CNNs) show potential for delineating cancers on 

contrast-enhanced MRI. However, there is world-wide interest in reducing the administration of 

MRI contrast agents. We aim to determine if CNNs can automatically delineate primary 

nasopharyngeal carcinoma (NPC) using the non contrast-enhanced (NE) T2-weighted fat-

suppressed T1-weighted (CE-T1W) sequence. We retrospectively analyzed primary tumors in 201 

patients with NPC. Six patients were randomly sampled as the training-validation group to avoid 

over-fitting, and the remaining 195 patients underwent validation analysis. We trained and tested a 

well-established two-dimensional CNN, U-Net, for tumor delineation on CE-T1W and T2W-FS 

sequences. CNN-derived delineations on CE-T1W and T2W-FS were compared with manual 

delineation using the dice similarity coefficient (DSC) and average surface distance (ASD). 

Differences in DSC and ASD of CNN-derived delineations between CE-T1W and T2W-FS 

sequences were compared using the Wilcoxon rank test. CNN-derived primary tumor volumes 

(PTVs) on CE-T1W and T2W-FS were also compared with manual delineation using the Wilcoxon 

rank test. The CNN’s tumor delineation performance on CE-T1W and T2W-FS showed no 

differences in DSC (0.71±0.09 vs. 0.71±0.09, p=0.50) and ASD (0.21±0.48cm vs. 0.17±0.19cm, 

p=0.34). The CNN-derived PTVs were larger than those from manual delineation on both CE-T1W 

(26.3±25.5cm3 vs. 23.5±26.6cm3, p<0.001) and T2W-FS (24.2±23.7cm3 vs. 23.2 ± 26.2 cm3, 

p<0.001). In conclusion, CNN can automatically delineate primary NPC using the NE T2W-FS 

sequence which has the potential to be a substitute for the CE-T1W sequence. (T2W-FS) sequence 

and compare the performance with that from the contrast-enhanced  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20148817doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.09.20148817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Primary tumor delineation on magnetic resonance imaging (MRI) is an essential step for cancer 

staging and treatment planning [1–6]. More recently, it has also become important for 

quantitative analysis that aids the prediction and monitoring of treatment response [7–12]. 

Regardless of its aim, primary tumor delineation is a laborious and demanding task to perform 

manually.  

Convolutional neural networks (CNNs) have shown promise for the MRI-based delineation of 

malignant tumors in the brain, lung and pancreas [13–16]. Nasopharyngeal carcinoma (NPC) 

is a particularly challenging cancer to delineate because its boundaries can have complex 

anatomy owing to the many different types of tissues in the surrounding region, including the 

bone of the skull base. Previous literature has reported successful CNN adaptations in the 

automatic delineation for primary NPC [17–21], but the work to-date has relied on gadolinium-

based contrast-enhanced (CE) MRI to optimize the result. In addition to the extra scanning time 

and monetary cost, gadolinium-based contrast agents are being used more sparingly now that 

gadolinium is known to deposit in the human body, including the brain [22], and the long term 

effects of this deposition are unknown. Therefore, a non contrast-enhanced (NE) substitution 

of CE sequences for primary tumor delineation is desirable. It would be especially 

advantageous in patients who undergo multiple MRI examinations or have impaired renal 

function, as well as for monitoring intra-treatment response. 

The T2-weighted fat-suppressed (T2W-FS) is a promising NE substitute to the contrast-

enhanced T1-weighted (CE-T1W) MRI for primary tumor delineation. The T2W-FS sequence 

is not only a widely available, well-established sequence and part of the routine NPC protocol, 

but is also effective at depicting tumor boundaries against many different types of normal 

tissues. These tissues include the bony skull base when T2-weighted imaging is combined with 
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the suppression of fat signal in the bone marrow. Furthermore, previous literature has 

highlighted the diagnostic values of the T2W-FS in evaluating soft-tissue tumor extent [23,24] 

and cancer staging [25].  

Therefore, the purpose of this study is to provide a comparison between NPC primary tumor 

delineation performance of CNN on CE-T1W and T2W-FS images, with the performance 

evaluated with reference to manual delineation by an expert on NPC, and to determine whether 

T2W-FS images can serve as a substitute to CE-T1W images for automatic primary tumor 

delineation. 

Materials and Methods 

Patients  

This retrospective study was approved by the local institutional board, and the requirement of 

written consent was waived. During 2010 to 2013, 201 patients (age: 54.5 ± 11.5 years; 157 

men and 44 women), with newly diagnosed biopsy-proven undifferentiated NPC who 

underwent head and neck MRI for staging and were scanned with axial T2W-FS and CE-T1W, 

were included for the analysis. The patients with NPC were staged T1, T2, T3, and T4 in 67, 

29, 73, and 32 patients respectively based on the 8th edition of the AJCC Cancer Staging 

Manual [3]. 

Imaging acquisition  

MRI was performed using a Philips Achieva TX 3T scanner (Philips Healthcare, Amsterdam, 

Netherland). The protocol included (a) an axial fat-suppressed T2-weigthed turbo spin-echo 

sequence (repetition time /echo time, 4000/80 msec; field of view, 230 × 230 mm; section 

thickness, 4 mm; echo train length, 15-17; sensitivity encoding factor, 1; number of signal 

acquired, 2) and (b) an axial T1-weighted turbo spin-echo sequence (repetition time /echo time, 
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500/10 msec; field of view, 230 × 230 mm; section thickness, 4 mm; echo train length, 4; 

sensitivity encoding factor, 1; number of signal acquired, 2) following a bolus injection of 0.1 

mmol of gadoteric acid (Dotarem; Guerbet, Villepinte, France) per kilogram of body weight.  

Manual delineation of primary NPC 

All primary NPC tumors were manually delineated on the axial CE-T1W and T2W-FS images 

with references to all series of pre- and post-contrast MRI sequences available. Manual 

delineation was performed by a researcher with 6 years of experience in MRI of NPC using the 

opensource software ITK-SNAP v3.4.0 [26].  Manual delineation was necessary on both 

sequences as minor patient inter-scans movements can translate to a substantial displacement 

of tumor outline, especially for small early-NPCs. The primary tumor volume (PTV) was 

calculated by multiplying the voxel size with the number of voxels labelled as primary NPC.  

Comparing delineation performance of CNN between the two sequences 

Of the 201 cases, 6 were randomly sampled as the training-validation set, which refers to a 

small set of data unseen during training to monitor whether over-fitting occurred as described 

in [27], and the remaining 195 cases were analyzed with 3-fold cross-validation. In each fold, 

the designated CNN architecture, U-Net [28], was trained from scratch with 130 training cases 

and then tested on 65 cases twice, once with CE-T1W images and once with T2W-FS images, 

with identical training parameters, as detailed in Table 1. In each epoch, each slice of an image 

volume were augmented into three additional slices by random rotations, scaling and gaussian-

noise for improved training quality. The networks were implemented and trained by 

minimizing weighted cross-entropy loss with the stochastic gradient descent technique using 

the opensource Python package PyTorch v1.4 [29].  

The performance of CNN-based automatic delineation on CE-T1W and T2W-FS images were 

evaluated using the Dice similarity coefficient (DSC) and average surface distance (ASD), 
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computed with respect to the manual delineation delineated by the expert. The PTVs from both 

the CNN-derived and manual delineations on each sequence were calculated by multiplying 

the voxel counts labeled as tumor to the voxel size. Details of these performance metrics can 

be found in [30].  

The flow of the experiment is illustrated in Figure 1. 

Statistical analysis 

To verify the consistency of the manually delineated contours across sequences, the PTVs of 

the two sets of manual delineation were compared and their agreement was evaluated using the 

paired t-test and intra-class correlation (ICC).  

The non-parametric one-way analysis of variance on ranks (Kruskal-Wallis H test) was 

performed to confirm the inter-fold consistency of DSC and ASD across the three folds on CE-

T1W and T2W-FS images.  

Differences in CNN’s tumor delineation performance between T2W-FS and CE-T1W were 

evaluated with the Wilcoxon rank test and Bland-Altman analysis [31]. In addition, differences 

in the PTVs between the CNN-derived and manual delineations on each sequence were also 

compared using the Wilcoxon rank test.  

All statistical analysis were performed using IBM SPSS Statistics for Windows, version 25.0 

(IBM, Armonk, USA) and open-source R library package blandr [32]. The significance level 

of differences was accepted at p < 0.05.  
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Results 

Consistency of manual delineation across sequences 

Regarding manual delineation, the difference in the PTVs between CE-T1W and T2W-FS was 

not significant (23.5 ± 26.7 cm3 and 23.1 ± 26.1 cm3 respectively, n = 201, p = 0.06) with an 

ICC of 0.996 (p < 0.05). 

Consistency of CNN performance across folds 

The results of CNN’s tumor delineation performance across folds are tabulated in Table 2. No 

differences were observed in the DSC and ASD across folds on the CE-T1W (p = 0.84 and 

0.78 respectively, n = 65 in each fold) and T2W-FS (p = 0.56 and p = 0.50 respectively) 

sequence.  

Comparison of CNN performance difference across sequences 

The performance metrics of CNN’s tumor delineation performance for CE-T1W and T2W-FS 

are tabulated in Table 3 and illustrated as boxplots in Figure 2, the corresponding Bland-Altman 

plot is provided in Figure 3. No significant differences were observed in the DSC and ASD 

between CE-T1W and T2W-FS (p = 0.50 and 0.34 respectively) (Table 3). The PTVs obtained 

from the CNN-based delineation were significantly larger on CE-T1W than that on T2W-FS 

(26.3 ± 25.5 cm3 and 24.2 ± 23.7 cm3 respectively, p < 0.001).  

The PTVs obtained from CNN-derived delineation were significantly larger than those 

obtained from manual delineation on both CE-T1W (26.3 ± 25.5 cm3 and 23.5 ± 26.6 cm3 

respectively, p < 0.001) and T2W-FS (24.2 ± 23.7 cm3 and 23.2 ± 26.2 cm3 respectively, p < 

0.001). A representative example of both CNN-derived and manual delineations for primary 

NPC is shown in Figure 4. 
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Discussion 

This preliminary study investigated the performance of CNN-based automatic delineation of 

primary NPC on CE (CE-T1W) and NE (T2W-FS) MRI sequences. The results showed no 

significant difference in the performance of CNN-based tumor delineations between the two 

sequences. This indicates the NE T2W-FS images could be a potential substitute for CE-T1W 

images when using CNN for the automatic delineation of primary NPC. Most previous studies 

on CNN-based primary tumor delineation have relied on the CE MRI [17–19,33–35], but our 

results are encouraging and suggest that future adaptations of CNN for NE sequence are 

warranted to facilitate the reduction of contrast administration for MRI where possible.  

With regard to the performance of the CNN primary NPC delineation using CE imaging, our 

results (DSC, 0.71; ASD, 2.1 mm), are better than those previously reported for U-Net and 

similar or slightly worse than those reported for using a customized CNN. We used U-Net as 

our testing reference because it is one of the most general and representative 2D delineation 

CNN architectures and its encoder-decoder design is the back-bone of many proposed 

delineation CNN architectures [15,18,34–38]. Only one other NPC study used the U-Net for 

primary tumor delineation and reported a DSC of 0.59 and ASD of 6 mm [18] on CE images. 

Using customized CNNs, three previous studies reported a mean/median DSC of 0.72-0.79 

[17,18,20] and ASD of 2.0-2.1mm [17,18], while two studies, which included only 29 and 30 

patients reported a higher DSC of 0.89 and 0.83 on CE imaging respectively [19,21]. Only one 

of these studies also tested their customized network on NE T2-weighted images, they reported 

a slightly lower DSC of 0.64 than our results and showed a dual-sequence input combining CE 

T1-weighted and NE T2-weighted sequences performed better than either sequences alone, but 

this study did not directly compare separate performance on the two sequences.  
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Although U-Net showed similar performance metrics (in terms of DSC and ASD) in primary 

tumor delineation on CE-T1W and T2W-FS sequences in our study, it was more prone to 

overestimating the primary tumor extent on the CE-T1W than on the T2W-FS sequence. This 

could be explained by the elevated intensity profiles of CE images in general, which could have 

added to the probability of falsely including tissues surrounding the tumor, leading to the 

overestimation of the PTV. Unfortunately, the comparison of PTVs derived from CNN and 

manual delineation are rarely reported in the literature.    

Our study has some limitations. First, although our results provide a valuable insight into CNNs 

and show that feature learning is not dependent on contrast enhancement, our U-Net results 

may not be generalizable to other CNN architectures. Second, we performed our test with a 

slice-based algorithm and did not consider other input configurations, such as patch-based or 

volumetric-based algorithms. Third, we did not verify our results with external data in this 

preliminary study.  

Conclusion 

The CNN, U-Net, adapted for primary NPC delineation in this study exhibited similar 

performance on CE-T1W and T2W-FS sequences and showed close estimation of PTVs to 

those obtained from manual delineation on the T2W-FS sequence. This suggests that NE T2W-

FS images can serve as a potential substitute to CE-T1W images for the purpose of automatic 

primary tumor delineation in patients with NPC. 
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Figures 

 

Figure 1 Flow chart of the experimental setup. Our expert delineated the primary tumor of 

NPC on both CE-T1W and T2W-FS images with reference to all available series of pre- and 

post-contrast MRI scans. U-Net was trained twice separately from scratch to delineate primary 

NPC, once on the CE-T1W and once on the T2W-FS images. The performance of the network 

was computed with reference to the expert’s delineation and then compared between the 

sequences. We hypothesized that both CE-T1W and T2W-FS contain adequate information for 

the delineation of primary NPC such that image features on T2W-FS, though occult to human, 

can be detected by the U-Net. Deviation from this hypothesis would be reflected by the 

difference in delineation performance between the two trained networks. (NPC = 

nasopharyngeal carcinoma; CE-T1W = contrast-enhanced T1-weighted; T2W-FS = T2-

weighted fat-suppressed)  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20148817doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.09.20148817
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 2 A boxplot showing the distribution of performance metrics (DSC, ASD and PTVs) 

of U-Nets for primary tumor delineation on CE-T1W and T2W-FS images. The plot highlights 

similarity in the distribution of performance when the CNN was trained to delineate the primary 

NPC on CE-T1W and T2W-FS images, however, the paired-sample t-test revealed a significant 

difference in the PTVs between sequences (26.3 ± 25.5cm3 vs. 24.2 ± 23.7cm3, respectively, p 

< 0.001) but not in the DSC (0.71 ± 0.09 vs. 0.71 ± 0.09 respectively, p = 0.50) and ASD (0.21 

± 0.48 cm vs. 0.17 ± 0.19 respectively, p = 0.34). (ASD = average surface distance; DSC = 

Dice similarity score; PTV = primary tumor volume; CE-T1W = contrast-enhanced T1-

weighted; T2W-FS = T2-weigthed fat-suppressed) 
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Figure 3 The Bland-Altman plot showing the agreements of CNN’s tumor delineation 

performance on CE-T1W and T2W-FS images in terms of the (a) DSC, (b) ASD and (c) PTV. 
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The mean, upper (mean + 1.96 SD) and lower (mean − 1.96 SD) bounds of the differences in 

each plot are computed with 95% confidence interval shaded in corresponding colors. The 

exact values are labelled next to the indicating lines. The biases are close to zero in the three 

plots. A distinct point in (b) corresponds to a case where the U-Net have falsely labeled tumor 

tissues on a slice at the neck, far away from the tumor center on CE-T1W, resulting in large 

ASD. This sort of error was not seen on T2W-FS. (ASD = average surface distance; DSC = 

Dice similarity coefficient; PTV = primary tumor volumes; CE-T1W = contrast-enhanced T1-

weighted; T2W-FS = T2-weighted fat-suppressed) 
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Figure 4 A representative example of the CNN-derived primary tumor delineation showing a 

case of NPC confined to the nasopharynx, trained and delineated on (a) the CE-T1W sequence, 

with a DSC of 0.68 and (b) the T2W-FS sequence, with a DSC of 0.69. The orange delineation 

was performed by the CNN and the light blue delineation was performed by an expert in the 

MRI of NPC. The DSC are similar for CE-T1W and T2W-FS sequences, but CNN-derived 

delineation was more prone to overestimation on the CE-T1W sequence than on T2-FS 

sequence. (CNN = convolutional neural network; DSC = Dice similarity coefficient; NPC = 
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nasopharyngeal carcinomas; CE-T1W = contrast-enhanced T1-weighted; T2W-FS = T2-

weigthed fat-suppressed) 
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Tables 

Table 1 Key training parameters 

Training parameters Values 

Initial learning rate 1 × 10−4 

Initial momentum 0.95 

Training mini-batch size 4 

Learning rate decay  0.005 

Total epochs ran 75 
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Table 2 Non-parametric One-way ANOVA on ranks (Kruskal-Wallis H test) of CNN 

performance metrics across folds.   

 

  

Performance Metric 
Means (n=65) ANOVA 

p-value Fold 1 Fold 2 Fold 3 

CE-T1W     

DSC 0.70 ± 0.09 0.71 ± 0.09 0.71 ± 0.10 0.84 

ASD (cm) 0.18 ± 0.17 0.25 ± 0.77 0.21 ± 0.27 0.78 

T2W-FS     

DSC 0.71 ± 0.09 0.70 ± 0.08 0.70 ± 0.11 0.56 

ASD (cm) 0.19 ± 0.21 0.15 ± 0.13 0.17 ± 0.21 0.50 

Data are presented as mean ± standard deviation. ANOVA = analysis of variance, 

ASD = average surface distance, DSC = Dice similarity score, CNN = 

convolutional neural network, CE-T1W = contrast-enhanced T1-weighted, T2W-

FS = T2-weighted fat-suppressed. 
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Table 3 Wilcoxon rank-test and Bland-Altman analysis of CNN performance across 

sequences. The paired t-test shows there are significant bias for the PTVs across sequences 

but not for the DSC and ASD. 

Performance 

Metric 

(n = 195) 

CE-T1W T2W-FS Bias 

95% Confidence 

Interval 
p-value 

Lower 

Bound 

Upper 

Bound 

DSC  0.71 ± 0.09 0.71 ± 0.09 0.001 -0.01 0.02 0.50 

ASD (cm)  0.21 ± 0.48 0.17 ± 0.19 0.04 -0.03 0.11 0.34 

PTV (cm3)  26.3 ± 25.5 24.2 ± 23.7 2.1 0.75 3.4 < 0.001 

Data are presented as mean ± standard deviation. Bold face indicates statistical 

significance. ASD = average surface distance, DSC = Dice similarity score, CNN = 

convolutional neural network, CE-T1W = contrast-enhanced T1-weighted, T2W-FS = T2-

weighted fat-suppressed, PTV = primary tumor volume. 
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