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COVIDPEN: A Novel COVID-19 Detection Model
using Chest X-Rays and CT Scans

Amit Kumar Jaiswal, Prayag Tiwari, Vipin Kumar Rathi, Jia Qian, Hari Mohan Pandey, Victor Hugo C.
Albuquerque

Abstract—The trending global pandemic of COVID-19 is the
fastest ever impact which caused people worldwide by severe
acute respiratory syndrome (SARS)-driven coronavirus. How-
ever, several countries suffer from the shortage of test kits and
high false negative rate in PCR test. Enhancing the chest X-ray
or CT detection rate becomes critical. The patient triage is of
utmost importance and the use of machine learning can drive
the diagnosis of chest X-ray or CT image by identifying COVID-
19 cases. To tackle this problem, we propose COVIDPEN - a
transfer learning approach on Pruned EfficientNet-based model
for the detection of COVID-19 cases. The proposed model is
further interpolated by post-hoc analysis for the explainability
of the predictions. The effectiveness of our proposed model is
demonstrated on two systematic datasets of chest radiographs
and computed tomography scans. Experimental results with
several baseline comparisons show that our method is on par
and confers clinically explicable instances, which are meant for
healthcare providers.

Index Terms—Neural Network, Deep Learning, COVID-19, CT
Scan

I. INTRODUCTION

World Health Organization (WHO) declared COVID-19 as
global pandemic in March, 2020. It has caused catastrophic
damage globally with more than four million confirmed cases
and, more than 280 thousand deaths reported at the time of
this writing. Countries across the world have taken stringent
measures to flatten the curve corresponding to new cases and
to slow down the rate of spread of the virus. Such efforts
would buy the scientists more time for vaccine development.
It is also imperative to improve diagnostic techniques to
facilitate early detection of the virus. This is also required
in order to reduce the time to declare the test results as well
as to enhance the accuracy of the test. With the massive testing
everyday, achieving the aforementioned goals is need of the
hour.
As of now, there are three main methods to detect COVID-19:
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• Polymerase Chain Reaction (PCR)
• Chest Computed Tomography (CT)
• Detection of Antibodies

PCR is based on the respiratory samples obtained by
sputum, nasopharyngeal swab, etc. There are numerous issues
in utilizing this technique at present. It takes a lot of time
to produce the massive test kits and to output the available
result. Also, the positivity rate is only 63% [1]. In [2], the
authors point out that the false negative result produced by
PCR is due to the inappropriate way of extraction of nucleic
acid from clinical substrates and lesser cellular material
for identification. This increases the risk of inaccurate and
delayed diagnosis leading to more people being effected from
the individual under test.
CT has been considered as a promising method to assist
the final diagnosis, in particular, when the amount of test
kits cannot meet the testing requirement. A study in Wuhan
suggests that the CT method has been significantly more
sensitive than PCR at early stages. These images may help
in early detection of the disease. The problem, however, in
this approach is that the images from COVID-19 infections
are similar to those of different types of viral pneumonia
that relate to inflammatory lung diseases. Hence, the CT
images demonstrate similar patterns like bilateral, multifocal,
opacities, mainly in the lower lobes, in the early stage and
pulmonary consolidation in the late stages [3]. This increases
the chances of a false negative or false positive.
Significant researches suggest notable changes in the CT
scans of infected individuals with respect to time . In the
study performed on 121 symptomatic patients in four centres
in China, it was reported that in the early stages, the CT
scans were relatively normal. After the onset of symptoms,
the findings become more prominent with greater total lung
involvement, crazy-paving patterns and reverse halo signs.
For instance, bilateral lung involvement was visualized in
only 28% of early patients, increased to 76% in the medieval
period and rose to 88% in later stages. Hence, CT scans
can be extremely useful to detect the infection in at least
intermediate stages if not initial ones. In [4], the authors
acknowledge the presence of ground glass and consolidative
opacities in CT scans of infected patients, confirming four
other researches. They also pointed towards inability of
CXR images to help visualization of such manifestations.
The authors also mention infected cases with no chest CT
abnormalities that raises the challenge for detection and calls
for improved techniques.
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In the present work, an autonomous COVID-19 detection
technique has been proposed utilizing Artificial Intelligence
to analyze CT scans. Deep learning techniques have been
deployed to study the images and classify them as COVID-19
positive or negative. Several papers have highlighted the
usage of deep learning for detecting lung diseases like
pneumonia. In [5], the authors devised a 3D-deep learning
framework for identification of COVID-19. It extracts both
2D local and 3D global representative features. The results
show high specificity of 96% in detecting COVID-19. The
model can delineate pneumonia and other similar diseases
from COVID-19 to quite a good extent saying a lot about the
potential of the framework.

We summarise our contributions as follows:
• We propose COVIDPEN - a transfer learning approach

adapted on Pruned EfficientNet [6] model for automatic
detection of COVID-19 disease.

• The feasibility of our proposed method on a real COVID-
19 chest X-ray / CT scans dataset demonstrates its
effectiveness.

The paper has been structured as follows. The next section
discusses some related work in the area of medical image
analysis using machine learning tools. Section III presents the
proposed COVID-19 detection model. Section IV outlines the
experimental evaluation obtained and performance analysis of
this approach. The last section concludes the paper.

II. RELATED WORK

Analysing chest radiographs and CT scans has been seen as
a manual task for medical practitioners / experts due to signifi-
cant time effort. However, medical imaging has been advanced
to current trend of technologies such as predictive modeling
using machine learning and vision-driven tools (computer
vision). Past work demonstrated few methods [7], [8] to
diagnose diseases by means of providing decisions [9] and
exploratory insights to X-ray images. This formulates as a
precise use case for the Deep Learning framework.
Deep Learning (DL) algorithms are widely applicable on
high-dimensional datasets, for instance, images. In particular,
with the increasing computation power (GPU), grasp of error
propagation and, improved optimization methods, more and
more practical problems can be addressed by DL. It allows
multiple layers to stack together enabling it to learn complex
representations. These representations placed on layers corre-
spond to different abstract levels and eventually collaborate to
implement the objective task (e.g., classification) at the last
layer. The process equates to the linear combination of all the
representations (features).
Many researchers investigated the application of DL on several
medical imaging tasks. Earlier work such as [10], [11] intro-
duced a neural network approach to identify the lymph node
under low contrast background composition in a diagnostic
tasks and the classification of lung disease using deep neural
network including the identification of thoraco-abdomincal
lymph. They also made an extensive comparative analysis with
baseline neural network models which showed the effective-
ness of their method where recall of 85% with the rate of

3 false positives patient. A semi-supervised learning approach
was adapted on a deep convolutional neural network to identify
the metastases cancer cells in histopathological scans [12].
Their proposed model is generalizable on smaller set of image
sample and shown to be effective (in terms of performance). A
recent work [13] on magnetic resonance imaging (MRI) used
CNN-based model to analyze the samples from spinal lumber
images. Also, their CNN model shown to be effective in
creation of Pfirrmann grading of spinal lumber MRIs. In [14],
an initial model that pre-trained on ImageNet was developed
and then fed into a classifier for further classification.
A deep neural network was designed for the chest X-ray14
dataset, claiming to have the capability to identity 14 cate-
gories of diseases with high efficiency [15]. In [16], Mask-
RCNN was deployed for pneumonia identification. The pro-
posed method follows residual proposal network alongwith
pixel-wise segmentation of augmented pulmonary images.
A follow-up work on the similar line of research [17] for
pediatric pneumonia detection used a residual network com-
posed of 49 convolutional layers which has one 2D-global
average pooling layer and two dense layers. In [18], two CNN
based models were used: AlexNet-based convolutional neural
network and ResNet18. The first was used for the classification
of lung patches and the the deep neural network-based model
on ResNet18 were used to generate the hidden region of
the lung image. Th outputs are the initial segmentation and
reconstruction via ensembling models.
Some researchers have proposed techniques based on DL to
diagnose for COVID-19 based on CT images. We discuss some
of these works below.
A ResNet-50 based CNN model was proposed by Fu et.
al. [19] to classify CT scans into five categories: COVID-
19, non-COVID-19, normal, pulmonary tuberculosis, and bac-
terial pneumonia. The pre-trained residual network (ResNet)
model was initially trained on ImageNet where tuning were
performed on the weights of the last three convolutional layers
alongwith the last fully connected layer. The accuracy on
test data were reported to be 99.4%, 98.8%, 98.5%, 98.3%,
and 98.6% for normal lungs, COVID-19, non-COVID-19 viral
pneumonia, bacterial pneumonia, and pulmonary tuberculosis
respectively. In [20], the authors used five state of the art
CNN models: VGG19, Mobile Net, Inception, Xception, and
Inception ResNet v2 for the classification of X-Ray images
into one of the diagnosis label such as pneumonia, COVID-
19, and normal. Transfer learning was used to be able to
develop a good model trained on a small image dataset
as the authors worked on a dataset with 224 COVID-19
positive images. Best results were obtained with VGG-19
and Mobile Net with accuracy of 98.75% and 97.40 %
respectively while detecting COVID-19 only. Highest overall
accuracy was reported as 93.48%. Also, it was shown that
Mobile Net outperformed VGG19 on the basis of specificity
and proved to be a relatively better model. Wang et.al. [1]
suggested a deep neural network-driven model for prediction
of Covid-19 which is termed as Covid-Net trained on the
dataset COVIDx. The architecture built on a PEPX design
pattern was first pre-trained on ImageNet and also utilized data
augmentation. An accuracy of 92.4% was reported with 80%
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sensitivity for COVID-19 and very few false positive COVID-
19 detections. This work [21] suggests the use of test-time
augmentation (TTA) to improve the model’s accuracy. TTA
produces transformed versions of images for prediction and
the paper shows that even simple TTA techniques like rotation
can improve the results significantly. The authors used TTA
with two deep learning models (UNet and Mask R-CNN) built
to segment nuclei in microscopic images. The results show
higher segmentation accuracy.

III. THE PROPOSED MODEL

A. Problem Formulation

An overview of a classification task we tackle in this work
is outlined. In this paper, we consider a task of identifying
COVID-19 disease which is a binary classification, where the
input to COVIDPEN is a chest X-ray or CTs image Ix and
the model outputs a binary label Py ∈ {positive, negative}
delineating whether the coronavirus prediction is positive or
negative. For training optimization on imbalanced dataset, we
use the Focal loss [22]

FL (l±) = −αl±(1− l±)θ log(l±) (1)

where l± and α± are defined as

l± =

{
l if Py = 1,

1− l otherwise
and α± =

{
α if Py = 1,

α− 1 otherwise

where Py ∈ {−1, 1} represents a binary label which contains
positive and negative classes of COVID-19 bacterial disease
labels, l ∈ [0, 1] represents the detected probability class
label of model l = 1, and the parameter α ∈ [0, 1] depicts
threshold which is to adjust the needfulness of positive and
negative labeled disease samples, whereas the non-negative
tuning parameter θ smoothly balances the rate at which sample
instances are down weighted. However, when λ equals 0, the
focal loss become sigmoid cross-entropy loss.

The usefulness of such loss function is that it corrects
samples with implicit values which fits hard classification,
which means the loss function is down-weighted for detected
samples so that their role to the overall loss is comparatively
small.

B. Modelling

This section details the proposed model shown in Fig. 1
which is based on the EfficientNet model [6]. We employ
several convolutional neural network (CNN) based models
such as VGG19 [23], ResNet [24] variants and DenseNet [25]
which in particular is developed for image classification and
other computer vision tasks. However, these CNNs differs in
a way as it captures the temporal and spatial dependencies (or
features) from the input image and optimizes the number of
parameters. We found residual networks [24] to perform better
for our task, which is identifying a frontal-view X-ray image
that outputs a binary prediction label to whether it is positive
or negative. However, from performance perspective of the
classifier ResNet50, it stands as a significantly best model
among others but it lacks an inherent way to encode image

features due to unbalanced COVID-19 chest X-ray samples.
We examine the performance of other CNN-based models
across different evaluation measures and found EfficientNet [6]
to be a better alternative that imposes a symmetry between
all convolutional layers. However, EfficientNet-B0 does not
perform well as ResNet does, and we fine-tuned [6] which
gives the classifier a significant improvement. Although, the
test accuracy of fine-tuned EfficientNet on improvement is
lower than ResNet50 which posed a major challenge for such
deep neural networks to reason themseleves. To overcome the
performance issue on less samples of image data, we adopted
transfer learning mechanism to avoid overfitting, error and
time for pseudo-labelling. The transfer learning technique is an
effective approach to inherently ship the extracted knowledge
from a network (ImageNet) trained on large collection of
images with diverse features (such as color, shape etc.). The
major importance of transfer learning approach is to enrich
the existing parameters such as convolution weights which is
trained on ImageNet.

In this paper, we make use of pre-trained ImageNet weights
in EfficientNet-B0 model and perform transfer learning on the
disease1 classifier. Our proposed model COVIDPEN - Transfer
learning (TL) on pruned EfficientNet-B0 model shown in
Fig. 1. Our proposed model builds upon the original Effi-
cientNet [6] architecture representing a intensive configuration
in Fig. 1. It consists of 18 convolutional layers where each
layer is equipped with a filter of dimensions (1,1), (3,3) and
(5,5). The input to the model is a chest X-ray / CT image
consists of three color channels (R, G, B) of which each of
them having size 224x224. Each convolutional layer having
corresponding filters to output a feature map which can be
computed by convolving the input feature map and the kernel.
The next layers are down-scaled to minimize the size of feature
map. The feature map are kept equal in size. Also, the second
convolution layer is made of 16 filters and then next layer
of 24 filters. However, the entire number of filters is of 1280
depth for the last layer which then fed to the fully-connected
layer. Such an increasing number of convolution layer with
proper depth allows to inherently capture complex features [6].
And, a kernel with larger size keeps high-resolution patters,
whereas a small size kernel is better for extraction of low
resolution patterns. We then adopt transfer learning on the
pruned EfficientNet-B0 model, where it outputs the biases and
weights and is used to classify the inputted frontal-view chest
X-ray or CT images.

C. One Cycle Policy

We prefer one cycle policy over global learning rate with
decay due to earlier convergence mechanism. One cycle policy
was initially introduced in [26] for stochastic gradient de-
scent (SGD) and it differs from cyclical learning rate in a way
that the extent of learning rate for its minima and maxima
can be fixed with a step size. It allows the model to attain
better accuracy with a faster convergence. This reward policy

1Disease in this paper refers to COVID-19 symptoms, however we do not
use any external data (other bacterial disease such as Pneumonia) to train over
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Fig. 1: COVIDPEN: Transfer learning on pruned EfficientNet-B0 based model for COVID-19 disease identification

approach benefits both the simulated annealing and curriculum
learning which are well-known used in deep learning.

Fig. 2: Learning rate and Momentum plot based on the
One Cycle Policy

We report the progress of learning rate and momentum
during one cycle policy in Fig. 2 of our proposed model.
In plot, the number of iterations depicts the step size, where
it forms a cycle made of multiple steps, and one among
with the learning rate steeply decreases and for the second

step in which it steeply increases. In this policy, the total
number of iterations is always higher than the cycle due to
monotonically decreasing orders of magnitude less than the
warm-up learning rate for the remaining iterations. When
learning rate reaches the critical point (maximum bound), at
the same time, momentum starts to descend from 0.954 to
0.846 linearly. Deep neural networks, especially pretrained
models manifest varied levels of information in their layers,
which initially emanates from initial layers to learn specific
features to the final layer learning domain-wise high-level
features. So, it depends on the layers of the network which
needs different learning rates to be fine-tuned upon some task.

IV. EXPERIMENT

A. Dataset

We use two kinds of datasets - COVID Computed Tomog-
raphy (CT) scans [27] and chest radiographs collections [28]
with labels delineating the clinical findings in the correspond-
ing datasets. The chest CT scans of COVID-19 and non-
COVID-19 samples were collected from several published arti-
cles in Journals. This dataset constitutes two kind of samples
categorized (or labelled) as COVID-19 and non-COVID-19
with over 746 image samples. In combination, we split the
dataset for training steps of our proposed models and other
baselines which contains 75% of images for training and rest
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Fig. 3: COVID-19 Chest X-ray Sample

for test set. The resolutions of CT scans samples in terms of

TABLE I: COVID-19 Datasets

# Images Computed Tomography Chest X-ray
Train 596 246
Test 150 66

image size and pixels are diverse. The width×height range of
image samples are between 124×153 and 1,458×1853 . The
train and test splits comprises of both positive and negative
samples of COVID-19 CT scans which is kept for conciseness.
A visualisation of CT scans after augmentation is shown
in Fig. 4. We demonstrate the proposed model effectiveness
on the second dataset which contains a detailed diagnosis
information of labelled chest radiographs image samples. This
dataset contains five classes categorized as Normal, Bacterial,
Tuberculosis, Viral, and COVID-19 due to their generic differ-
ences in radiologic and clinical features. To diagnose COVID-
19 cases, we sampled other classes apart from COVID-19 as
non-COVID for the detection of coronavirus disease. Overall,
the entire chest radiographs dataset were randomly splitted
into train and test sets with the ratio of 0.8 and 0.2. We report
a visualisation of this dataset after augmentation in Fig. 3.

We detail the augmentation method and steps in IV-C.

B. Training

In this section, we report a detailed analysis of the training
steps of our proposed model with parameter settings. The
proposed model uses the pre-trained weight of ImageNet for
the network to initialise which then trained using the chest
radiographs and CT scans dataset. A detailed analysis of
EfficientNet-B0 model [6] when trained with original archi-
tecture, on fine-tuning and then transfer learning mechanism.

Fig. 4: COVID-19 Computed Tomography Scans Sample

We found the transfer learning mechanism on EfficientNet-B0
model makes the training stable even on a limited labelled
data. For training optimization, we use Adam optimizer at a
learning rate of 1e−4 which is trained for over 30 epochs. The
training steps make use of a learning rate scheduler (ReduceL-
ROnPlateau) at alpha of 0.2 based on validation performance
metrics. The batch size of 32 was used for all baselines and
the proposed model. We make use of one cycle policy and
a detailed overview is reported in Section III-C. However, a
learning rate of 2e − 6 were used to train on for 5 epochs
after loading the trained model weight which was trained for
over 30 epochs. To minimize overfitting, we make use of L2
regularization as it is a common problem for using deep neural
networks on limited data, in particular for image datasets.

C. Test Time Augmentation

We use test time augmentation to improve the test accuracy.
TTA is used for data augmentation on a test set of images
to generate several variety of it and average the prediction
for them. There are several image classification tasks such as
employed TTA for cell segmentation of microscopy images.
Several transformations such as horizontal / vertical flipping,
cropping, rotation, lightning, zooming, scaling, warping, etc.
can be applied to form a concrete augmentation of image
dataset. In our work, we apply some of the transformations
during test-time augmentation which includes flipping, vertical
flipping, lightning by 5%, zooming by 10%, and 10% of
warping. Also, we normalized the augmented data using
ImageNet transfer learning after the final transformations.
TTA based transformations shows improvement for some of
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the CNN-based models such as variants of EfficientNet and
ResNet. However, for some of the models TTA prediction
improved a bit and descends for some. We report the TTA
predictions in Table II. We used test-time augmentation to
ensure that it resembles cross-validation scores which is a
reliable measure of how well neural networks perform on
unseen image samples.

D. Performance Measure

To evaluate our proposed model and comparable baselines,
we use several metrics such as test accuracy, precision, recall,
F1 measure, and area under the probability curve - ROC. A
detailed overview of the evaluation metrics is as follows:

• Accuracy: The accuracy here refers to the test accuracy
i.e., accuracy on hidden / test samples.

• Precision: Precision refers to the positive predictive value
and is the ratio of true positive samples to the samples
containing true and false positives.

• Recall: This measure is the most well-known metric to
test the effectiveness of a classifier. Recall, also refers
to Sensitivity or true positive rate which represents a
classification model discards a positive prediction.

• F1: Similarly, a well-known measure for several kind of
tasks related to machine learning problems, in particular,
classification. It is the harmonic mean between precision
and recall estimations.

• Area under the receiver operating characteristic (AU-
ROC): The AUC metric is one of the most common
measure which sum-up the information contained within
the ROC curve, which depicts sensitivity versus false pos-
itive rate at some certain thresholds. A better AUC score
falls under the higher values to differentiate between
COVID and non-COVID images. We report AUROC
score in Table II for each and every model which includes
baselines as well.

All of the measures are used to report an extensive evaluations
across different baseline models in Table II.

E. Results

In this section, we report the experimental results i.e., the
COVIDPEN performance and an extensive comparison with
CNN-based baselines across varied evaluation measures. A
detailed result is reported in Table II The main metric measures
are test accuracy and test-time augmentation scores as it
correctly classifies the cases into each label - positive for
COVID-19 and negative for non-COVID-19. We employ seven
CNN-based models which are VGG19 [23], ResNet34 [24],
ResNet50 [24], DenseNet201 [25], EfficientNet-B0 [6], fine-
tuned EfficientNet-B0, and COVIDPEN. For chest X-rays
dataset, we found that based on the accuracy, apart from
the proposed model, VGG19 and ResNet50 performances are
equal and shown to be second best model. However, we
performed test-time augmentation to see which one stands best
among themselves, and then TTA prediction for ResNet50 is
90% which shown to be effective than VGG19, but there is
almost no-difference betweeen ResNet50’s accuracy and TTA

Fig. 5: COVIDPEN Confusion Matrix

score which is the reason why it was better than VGG19. In
other case, based on the TTA score, DenseNet201 performance
is shown to effective among all models.

For CT scans dataset, we found ResNet50 to be effective
after our proposed model. However, for this dataset, our
proposed model performances based on test accuracy and TTA
score shown to be among the highest.

V. INTERPRETABILITY

In this section, we investigate the apparent benefits of our
proposed model with explainable approach to describe the
prediction outcome. As this allows healthcare organisations
to benefit patients by ensuring responsible predictions made
by our proposed model. The idea of explainability stems
from [29] to provide accountability and transparency of clas-
sification models. The deep neural network is a black-box
which makes difficult to explain its predictions. In terms of
medical imaging datasets, especially COVID-19 chest X-ray
and CT scans to which interpretability is of utmost importance.
We can see from the saliency maps shown in Fig. 6 and

Fig. 7 of region (or patch) importance that the bacterial
features (coronavirus or other non-COVID diseases) have the
greatest influence on the result of the prediction in the selected
model is the mean area, followed by mean concave region and
mean texture.

We employ local interpretable model-agnostic explana-
tions (LIME) [29] for the interpretability of the predictions
made by our proposed model. The trained model weight were
the input to LIME explainer which perform perturbations on
the features (at pixel level) over a set of predicted samples (we
have taken 200 samples which is shown as plotted over the
axes in Fig. 6 and Fig. 7) on test set of both datasets, and
it interprets the weight resulted after training our proposed
model - COVIDPEN at the local region in the feature space.
The masks around images are generated by segmenting the
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TABLE II: Evaluation Results: Comparison of baseline models where cell coloured in yellow is for the best model in
corresponding evaluation measures. The Chest X-ray dataset columns are shaded in gray and CT scans dataset are
shaded in cyan.

Model
Metric Chest X-ray Computed Tomography (CT)

Evaluation Metrics
Accuracy Precision Recall F1 AUROC TTA Accuracy Precision Recall F1 AUROC TTA

VGG19 0.91 0.91 0.93 0.92 0.92 0.86 0.69 0.73 0.79 0.76 0.71 0.70
ResNet34 0.69 0.72 0.89 0.80 0.75 0.76 0.77 0.81 0.86 0.83 0.78 0.78
ResNet50 0.91 0.92 0.95 0.94 0.94 0.90 0.84 0.80 0.89 0.84 0.87 0.84

DenseNet201 0.88 0.95 0.88 0.91 0.95 0.96 0.74 0.79 0.91 0.85 0.80 0.80
EfficientNet-B0 0.83 0.87 0.87 0.87 0.83 0.89 0.74 0.80 0.88 0.84 0.76 0.79

Fine-tune EfficientNet-B0 0.89 0.88 0.88 0.88 0.91 0.90 0.81 0.79 0.85 0.82 0.83 0.82
COVIDPEN (Ours) 0.96 0.92 0.96 0.94 0.92 0.93 0.85 0.81 0.92 0.86 0.84 0.85

Fig. 6: Model Interpretability - COVID-19 CT Scan Dataset

Fig. 7: Model Interpretability - COVID-19 Chest Radiographs Dataset

predicted sample (CT scan in Fig. 6 and Chest X-ray in Fig. 7)
into superpixels and superpixels then inspected based on
the predictions values. Superpixels are interconnected pixels
composed of similar colors and pixels can be lightened based
on the user-defined color such as gray. However, in our
case the mask boundaries are in yellow color. The exposed
interpretability is an informed feature engineering driven by
some inconsequential features which can be understandable
to medical experts. We segment such behavioural features by
removing and in-painting textual regions. The interpretability
plots are the top two images from our prediction set made by
the TL EfficientNet-B0 classifier. The regions shaded in pink
and green detect superpixels that contributed to and against
prediction of chest radiographs and CT scans.

The model explainability is a part of post-hoc analysis
on the trained model to ensure predictions feasibility in real
scenario for healthcare providers.

VI. CONCLUSION AND FUTURE WORK

In this work, a deep neural network-based classifier is
proposed i.e., COVIDPEN to diagnose COVID-19 and non-
COVID-19 cases from chest radiographs and chest X-ray
datasets. We begin with the initial baseline models composed
of neural network based architectures which can be adopted to
detect or classify COVID-19 cases. Our proposed model based
on EfficientNet is shown to perform better based on the predic-
tion using accuracy and test-time augmentation measures. The
granularity of predictions from our proposed model is on par
among other DNN based models. We further show that our
predictions are interpretable using LIME framework. It also
describe the implications of our proposed model thoroughly.

In future, we intend to scale experimentation on a larger
dataset for expliciting the capability of our proposed model.
Based on our results, it signifies that architectures such as
EfficientNet and EfficientDet2 could be leveraged to assist

2https://github.com/google/automl/tree/master/efficientdet

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.08.20149161doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20149161
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

radiologists in the CT or chest X-ray mediated diagnosis of
COVID-19 cases.
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