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Abstract

We suggest a mathematical model for the spread of an infectious disease in human population,

with particular attention to the COVID-19. Common epidemiological models, e.g., the well-known

susceptible-exposed-infectious-recovered (SEIR) model, implicitly assume fast mixing of the pop-

ulation relative to the local infection rate, similar to the regime applicable to many chemical reac-

tions. However, in human populations, especially under different levels of quarantine conditions,

this assumption is likely to fail. We develop a continuous spatial model that includes five differ-

ent populations, in which the infectious population is split into latent (or pre-symptomatic) and

symptomatic. Based on nearest-neighbor infection kinetics, we arrive into a “reaction-diffusion”

model. Our model accounts for front propagation of the infectious population domains under

partial quarantine conditions, which is present on top of the common local infection process. Im-

portantly, we also account for the variable geographic density of the population, that can strongly

enhance or suppress infection spreading. Our results demonstrate how infected domains spread

outward from epicenters/hotspots, leading to different regimes of sub-exponential (quasi linear or

power-law) growth. Moreover, we show how weakly infected regions surrounding a densely pop-

ulated area can cause rapid migration of the infection towards the center of the populated area.

Predicted heat-maps show remarkable similarity to recently media released heat-maps. We further

demonstrate how localized strong quarantine conditions can prevent the spreading of the disease

from an epicenter/hotspot, significantly reducing the number of infected people. Application of

our model in different countries, using actual demographic data and infectious disease parameters,

can provide a useful predictive tool for the authorities, in particular, for planning strong lockdown

measures in localizes areas.
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I. INTRODUCTION

The COVID-19 pandemic is now spread over most of the globe. Its vast consequences

are associated with severe public health issues, i.e. overwhelmed health system and high

death toll, and a huge economic crisis worldwide [1–5]. In order to optimize decisions in

both aspects, health and economy, governments need information and predictions about

the spatial distribution of the disease [6], thereby allowing selective quarantine or lockdown

measures [7, 8].

Infectious disease spreading models are largely based on the assumption of perfect and

continuous “stirring”, similar to the one used to describe the kinetics of spatially-uniform

chemical reactions. In particular, the well-known susceptible-exposed-infectious-recovered

(SEIR) model, builds on this assumption. Early in the COVID-19 pandemic spread, different

modeling groups have used such models to predict the epidemic evolution in China and in

other countries [9–11]; these predictions urged WHO to issue a global warnings. Wu et

al. were the first to model the COVID-19 spreading [9]. They applied the SEIR model

based on data from the very early (exponential) stage of the outbreak, to predict epidemic

spread mainly in Wuhan and mainland China. Extensions for this first attempt were quick to

follow. Ivorra and Ramos applied the “Be-CoDiS” mathematical model – a multi-population

extension of SEIR model – to COVID-19 [12, 13]. Fitting the parameters of the latter model

to a longer period of evolution, up to the time the outbreak nearly peaked (maximum number

of new daily infected people), yielded remarkably accurate predictions for the following

stages. More recently, He et al. [14] and Giordano et al. [15] provided further improvements

and analysis on the original application of the SEIR model to COVID-19 [9].

As mentioned, the conventional epidemiological models assume spatially uniform (statis-

tical) frequency of encounters between infectious and susceptible people, which is associated

with uniform (spatial) densities of these populations at all times [9, 16]. As such, these mod-

els do not require any spatial variable. However, the assumption of “infinitely fast mixing”

might fail even in normal life conditions, let alone under (the often used) various gathering

restrictions or moderate quarantine conditions [7]. As a consequence, the predictions of

such models are relatively poor, and often require refitting the infection rate constant as

the epidemic progresses. Specifically, these models usually fail to predict correctly a cross-

over from the initial exponential growth of the number of infected people to sub-exponential
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growths which might even be a power-law behavior [17–19]. Early data from China and Italy

demonstrated such a wide temporal regime of quasi power-law growth, which occurred much

prior to the peak of the epidemic [20–22]. We hypothesize that such a temporal behavior

results partially from “front propagation” of infected geographical domains, similar to the

spreading of wildfire.

In this paper, we develop a novel model for viral infection. Our model improves on the

SEIR model, in particular in the context of the COVID-19 pandemic, in four major aspects.

The first is the derivation of a spatial spreading, diffusion-like, operator that takes account

of the front propagation of the epidemic. The second, and strongly linked to the first, is the

ability to account for the geographical population density variation and study its effect on

the spreading. The combination of these two aspects leads to spreading of the disease into

densely populated areas. The third aspect is the account of geographic variation in quar-

antine levels if such are employed. Lastly, for COVID-19 we split the infectious population

into a transient “infectious-asymptomatic” group and an “infectious-symptomatic” group.

Our results indeed demonstrate unique features of the disease spreading depending on the

spatial dependence of population density, location of the initial “hotspots”, and spatial vari-

ation of the quarantine levels. They show that the accumulated number of infected people

manifests major qualitative and quantitative deviations from the classical (yet generalized

to five populations) SEIR model.

A. Generalized SEIR model

Our model, which stems from the SEIR model, includes five populations associated with

different stages of the disease. Furthermore, we account for the spatially varying density of

people, n(x), between different areas of the geographical region under study, which assumed

in the present study disconnected from other regions. Our model also aims to predict the

effect of different quarantine levels imposed in different areas within the region of study,

which is modeled via spatial dependence of infection rates.

Let h (x, t) be the 2D (areal) concentration of susceptible (healthy but not immune)

people, b (x, t) – the concentration of infected people that do not yet infect others and are

not yet symptomatic (i.e within the incubation period [23]), w (x, t) – the concentration of

infected people that can already infect others but are still asymptomatic (i.e. still within
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the incubation period), f (x, t) – the concentration of infected and symptomatic people, and

r (x, t) – the concentration of people that have recovered from illness, thus assumed (here)

to be immune from a second infection. We require that the total local concentration of

people is equal to prescribed values n(x) at different positions x (obtained, e.g., from public

databases) and independent of time:

h (x, t) + b (x, t) + w (x, t) + f (x, t) + r (x, t) = n (x) . (1)

It follows that the total population number, N =
∫
area

d2x n (x), is also not changing with

time. We note in passing that, if spatial dependence could be ignored, these variables corre-

spond to the variables of the well-known SEIR epidemiological model [16, 24, 25] as follows:

h ↔ S (susceptible), b ↔ E (latent), w + f ↔ I (infectious), r ↔ R (removed). Unlike in

the SEIR model, in our model the infectious population (I) is split into two populations,

symptomatic (“sick”, f) and pre-symptomatic (w). In what follows, capital letters will

denote the corresponding numbers in the whole population, e.g., H(t) =
∫
area

d2x h (x, t),

B(t) =
∫
area

d2x b (x, t), etc.

In order to develop the (continuous) space epidemic spread model, we consider first a

(2D) discrete space, in which the nodes are defined as either homes, building apartments,

or units of area (e.g., quarantine units of 104m2), and so on. We define by hi(t) the number

of susceptible people at node i at time t. Similarly bi(t), wi(t), fi(t), and ri(t) describe

the numbers of the different populations at each node. Infection can occur with a rate

constant k1(i) when an infectious person and a susceptible person meet at the same node

i, and at a rate constant k2(j, i) = k2(i, j) when infectious and susceptible persons meet at

nearest-neighbor (NN) nodes i and j (independent whether the infectious person is at i and

susceptible is at j or vice versa). The total number of people at node i is denoted by ni.

Accordingly, the set of master equations for the distribution of these populations is

∂hi
∂t

= −k1(i)
hi
ni

(wi + fi)−
hi
ni

∑
j∈i

k2(j, i)(wj + fj)

∂bi
∂t

= k1(i)
hi
ni

(wi + fi) +
hi
ni

∑
j∈i

k2(j, i)(wj + fj)−K0bi

∂wi

∂t
= K0bi −K1wi

∂fi
∂t

= K1wi −K2fi

∂r

∂t
= K2fi . (2)
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where j ∈ i stands for node j that is NN to i. In Eq. (2), K0, K1, and K2 are the rate

coefficients for the transformation of the b-population to w, of w to f , and of f to r,

respectively.

We now transform the master Eq. (2) to the continuum using the Kramers-Moyal ex-

pansion [26], x ↔ i, in which each node is assumed to occupy and area δ2 where δ is the

grid spacing (lattice constant). Using the symmetry for infection rates between NN nodes

i and j, k2(j, i) = k2(i, j), and defining the local concentration (i.e. number density) of a

population y as y (x, t) ≡ yi(t)/δ
2, we obtain

∂h

∂t
= −k (x)

h

n
(w + f)− h

n
~∇
[
Dk (x) ~∇(w + f)

]
∂b

∂t
= k (x)

h

n
(w + f) +

h

n
~∇
[
Dk (x) ~∇(w + f)

]
−K0b

∂w

∂t
= K0b−K1w

∂f

∂t
= K1w −K2f

∂r

∂t
= K2f . (3)

where the last line in Eq. (3) can be replaced – using the conservation law Eq. (1) – by

r = n − (h + b + w + f). In Eq. (3), k (x) = k1 (x) + zk2 (x) defines an effective local rate

coefficient of infection growth, and Dk (x) = k2 (x) δ2 is an effective diffusion coefficient of

the infection spreading; δ is the inter-node spacing, and z is the coordination number of

the grid. The gradient term in the first two equations describes “front propagation” and

domain growth of infectious people under quarantine conditions. Note that for the case

of homogeneous distribution of all populations and homogeneous rate constants, k can be

identified as the SEIR parameter ratio R0/τI , where R0 is the basic reproductive number and

τI is the mean infectious period. The latter can be related to our rate coefficients K1 and K2

by τI = K−11 +K−12 . It is easy to verify by summing all lines in Eq. (3) that ∂n (x, t) /∂t = 0,

as required. Thus, any initial inhomogeneous population density distribution n (x) is not

altered by our infection spreading model.

For simulation purposes we rescale the local densities by the mean total population density

(in the whole region under study), n0, such that ỹ (x, t) ≡ y (x, t) /n0. In particular, ñ (x) =

n (x) /n0 presents the relative local population density. In addition, distance is scaled by

δ, i.e. x̃ = x/δ, such that ~∇ becomes dimensionless. This leads to the following scaled
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equations

∂b̃

∂t
= k (x̃)

h̃

ñ
(w̃ + f̃) +

h̃

ñ
~∇
[
D̃k (x̃) ~∇(w̃ + f̃)

]
−K0b̃

∂h̃

∂t
= −k (x̃)

h̃

ñ
(w̃ + f̃)− h̃

ñ
~∇
[
D̃k (x̃) ~∇(w̃ + f̃)

]
∂w̃

∂t
= K0b̃−K1w̃

∂f̃

∂t
= K1w̃ −K2f̃

∂r̃

∂t
= K2f̃ . (4)

where D̃k = Dk/δ
2 = k2

The parameters to be used for COVID-19 pandemic should be obtained from the up-to-

date literature. In the absence of any quarantine conditions or safety measures (e.g., use

of masks), R0 = 2.5 and τI = 16.6 days [27] and thus the growth rate k = R0/τI is about

0.15 days−1. The rate k can be reduced only by reduction of R0, i.e. putting in place

quarantine/safety measures. The mean time for symptoms to appear (from the moment

of infection), τS, is known to be about 5 days (ranging between 2-11 days) which sets up

K−10 + K−11 = τS=5 days. However, K0 itself, describing the transition from “infected but

non-infecting” to “asymptomatic-infecting”, is not reported; a reasonable guess would be

K0 ' 1/(2 days) [28]. This is supported by the hypothesis that people are infecting already

about 2-3 days before they show symptoms; therefore a reasonable choice would be K−11 = 3

days, in agreement with K−10 = 2 days. The rate coefficients K1 and K2, describing the

transitions from asymptomatic-infecting to symptomatic-infecting, and from symptomatic-

infecting to recovered, respectively, must obey K−11 + K−12 = τI=16.6 days (i.e. the whole

infection period), implying K−12 = 13.6 days. The dimensionless effective diffusion coefficient

D̃k = k2 is the most difficult model parameter to estimate and is sensitive to the choice of

nodes. Likely D̃k � k, since k = k1 + zk2 and we may also assume k2 . k1 and z ' 4, 6

(square and hexagonal lattices). For numerical purposes in the present study study we chose

k1 = k2 = 0.03, and z = 4 yielding k = 0.15 and D̃k = 0.03.

In the proceeding section we solve this spatially dependent multiple population model,

at different initial conditions and parameters, and use a few specific inhomogeneous density

populations n (x) as an example. Obviously, for realistic predictions one requires: (i) detailed

local population density data (i.e. density maps), and (ii) data for the initial local densities of
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the above five different populations (i.e. “heat-maps”), both given to the grid size resolution

– requiring cooperation with authorities. The present work is therefore limited to present the

strength of the model and its ability to give insight on the way the infection spreads under

different levels and spatial variation of quarantine. For brevity, henceforth, we drop the ‘∼’

sign from the notations of (density) normalized spatially dependent variables, i.e. ỹ → y.

We also define by capital letters global quantities, i.e. spatial integrals of the lowercase

spatially dependent quantities, e.g., F =
∫
f(x)d2x, representing the fraction of the specific

population – out of the total population – as now f(x) implies f̃(x).

II. RESULTS

20 40 60 80 100 120 140 160 180 200 220

Time t

0

0.2

0.4

0.6

0.8

1
(a)

F
H
B
W
R

10 0 10 1 10 2

Time t

10 -5

10 0
(b)

F+R
slope: 1.2
slope: 4.2

FIG. 1. (a) Solution of the epidemic model for the case of spatially uniform population densities

n, b, h, w, f , and r. All curves depict the global population quantities (capital letters), amounting

here to simple multiplication of the local densities by the area. The initial conditions are B = 10−3

and W = F = R = 0. (b) A log-log plot of the total symptomatic and recovered populations

(F + R) vs time. The dashed and dash-dotted lines are fits at t = 10 and t = 73, respectively.

In this and in all other figures Dk = 0.03, k = 0.15 days−1, K0 = 1/2 days−1, K1 = 1/3 days−1,

K2 = 1/13.6 days−1.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.20148767doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20148767
http://creativecommons.org/licenses/by-nc-nd/4.0/


-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Latent 'b', t=0

(a)

0

0.01

0.02

0.03

0.04

0.05

-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Symptomatic 'f', t=44

(b)

0

0.01

0.02

0.03

0.04

-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Symptomatic 'f', t=88

(c)

0

0.01

0.02

0.03

0.04

-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Symptomatic 'f', t=132

(d)

0

0.01

0.02

0.03

0.04

-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Symptomatic 'f', t=176

(e)

0

0.01

0.02

0.03

0.04

-20 0 20

X

-30

-20

-10

0

10

20

30

Y

Symptomatic 'f', t=220

(f)

0

0.01

0.02

0.03

0.04

FIG. 2. Time evolution of an epidemic with spatially nonuniform infection centers. (a) At t = 0

(top-left panel), there are small infection centers of the latent population ’b’ distributed randomly

in space. The integrated value of b is the same as in Fig. 1, i.e. B = 10−3. n is uniform and all

other populations are set initially to zero: w = f = r = 0. Panels (b)-(f) show the spread of the

symptomatic population ’f ’ as time progresses.

The initial conditions of an epidemic are unknown unless in exceptional cases, yet they

have major consequences on the number of infected people. In all examples below, we shall

use identical initial conditions for the global quantities as follows: W = R = F = 0 and

B = 10−3. In our non-uniform model, we are able to analyze the effect of the different, non-

uniform, initial conditions, yet identical global initial conditions. Comparing the evolution

in time of the global quantities, between the locally different – yet globally identical – initial

conditions, we will assess both the spreading patterns and the overall effect of the epidemic.

Before we investigate the importance of population heterogeneity, we analyze the model

results in the special case where all population densities are kept uniform at all times. In

this limit, our model converges to an effective SEIR-type model, with just a single addi-

tional population. It should be emphasized that the SEIR-type limit cannot be achieved

realistically as it requires rapid mixing of people, and is studied here only for comparison.
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Obviously, in this case of uniform distributions, the global (spatial integral) quantities do

not provide additional information.

Figure 1 shows the model predictions when n, b, h, w, f , and r are spatially uniform and

for the above stated initial conditions (W = R = F = 0 and B = 10−3). Figure 1(a) shows

the time evolution of the model variables H, B, W , F , and R. At a time t ' 90 the epidemic

attains its peak, i.e. the number of symptomatic people (F ) attains a maximum (blue curve)

and later declines. The number of recovered/removed, R (green curve), is increasing. In this

particular example, at very long times R attains a value of R ≈ 90% and correspondingly

H ≈ 10%. Thus, within our five-population SEIR-type model, and the parameters chosen,

“herd immunity” is reached at 90% infection.

A common quantity used to follow the epidemic is the number of people that have been

infected until time t. If we limit the analysis to only those that showed symptoms, this

number is the sum of the total symptomatic and recovered populations, F + R. In Fig. 1

(b) we show F + R vs time on a log-log scale. We observe a separation of the growth into

two power-law regimes, with the early evolution exponent ' 1.2 being much smaller than

the late evolution exponent ' 4.2.

Let us now now look at epidemic evolution that initiates from different nonuniform ini-

tial conditions, in either uniformly or non-uniformly populated area. Consider, first, several

infection centers of the latent b-population, randomly distributed within a uniformly pop-

ulated area, Fig. 2 (a), t = 0. Although n is uniform at all times, all specific populations

are nonuniform at t > 0 (even when h, w, f , and r are set uniformly to zero at t = 0).

The integrated value of b is therefore the same as in Fig. 1, i.e. B = 10−3, and obviously

all other populations vanish at t = 0. Panels (b)-(f) show the time evolution of the symp-

tomatic population f . As can be seen, each infection point grows locally and develops into

a “ring” centered around the original point. These rings further grow and coalesce into a

complex boundary pattern which keeps evolving. Figure 3 shows the integrated values of

F , H, B, W , and R (g) and F + R (h). Compared to Fig. 1 for the case of uniform b,

here the epidemic peak (maximum in the F -population) occurs at a longer time and, more

importantly, is significantly smaller – an effect often termed as “curve flattening”. The

early evolution power-law exponent is similar to the uniform b case, however, the long-time

exponent ' 2.8 is significantly smaller, leading to a significantly longer saturation time

where“herd-immunity” is reached.
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FIG. 3. (a) Global population curves F , H, B, W , and R vs time corresponding to the random

infection centers in Fig. 2. (b) F + R vs time in with log-log axes. Dashed and dash-dot curves

are linear fits at t = 10 and t = 73, respectively.

Consider a rather different initial spreading of the b-population, still with n uniform in

space. In Fig. 4 the initial conditions are two relatively large infection centers, instead of

many small ones as in Fig. 2. These centers grow and develop into ring-like structures, later

start to overlap, and subsequently merge into one big ring that continuously spreads out-

wards. The core of the rings is seen to evolve quickly to contain mostly recovered population

(since r ' n− f).

In Fig. 5 we show the evolution in time of global populations corresponding to the

evolution patterns depicted in Fig. 4. Comparing to the above cases of uniform (Fig. 1)

or random (Figs. 2-3) initial infection centers b, here the peak of the epidemic occurs at

much longer times and is much smaller in magnitude. The early-time power-law regime

is much shorter and quickly crosses over (at t = 10) to the long-time power-law behavior

with exponent ' 2. The latter exponent signifies the 2D front propagation of the domains,

whose core corresponds to mostly recovered population (r) and ring corresponding to mostly

symptomatic population (f). It implies that the front is moving with constant velocity,

leading to the ∼ t2 domain growth.
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FIG. 4. Time evolution of an epidemic starting from two infection centers. (a) Initial conditions

of b. B – the global value of b – is the same as in Figs. 1-3. n is uniform and all other populations

are initially zero: w = f = r = 0. Panels (b)-(f) depict the spreading pattern of the symptomatic

population ’f ’ as time progresses. The two circular domains grow and merge into one oval-like

domain.

We now turn to study situations in which the given population density is not uniform in

space, and our model is highly suitable to handle such cases. As case studies, we mimic large

density variations, such as those created by cities surrounded by suburban areas. In Figs. 6,

7 and 8 we examine the outbreak near a highly populated circular “city” whose population

declines from its center as a Gaussian whose standard deviation (width) is denoted by R. We

consider here three different cases for the initial conditions: (i) the infection (b-population)

initiates from inside the city (Fig. 6), (ii) the infection evolves from several, randomly

distributed, centers in the city periphery (Fig. 7), and (iii) the infection evolves from two

major centers in the city periphery (Fig. 8). In all figures, the population heat-maps are on

the left-hand-side, and the corresponding global quantities are depicted on the right-hand-

side.

Consider first an infection initiating from around the city center (case (i)), and so we take,
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FIG. 5. Global population curves it vs time corresponding to the circular infection centers in Fig.

4. Compare to the cases of uniform (Fig. 1) or random (Figs. 2-3) distributions of ’b’. Dashed

and dash-dotted curves are linear fits at t = 10 and t = 83, respectively.

as the initial conditions for b, several small centers randomly distributed within the city core.

Initially, the epidemic consumes non-negligible portion the susceptible (h) population within

the city core, associated with a substantial growth of f , see Figs. 6 (b) and (c). After this

initial evolution (t & 90) the infection slowly spreads outward by formation of ring-like

patterns. Conversely, when the infection initiates from the city outskirts (case (ii), Fig. 7),

the pattern is more heterogeneous, and local infection centers grow effectively independently

of each other. However, as the epidemic reaches the core of the city, the relatively high

density of susceptible population (h) allows the f -population to keep rising. Hence F (t),

seen in Fig. 7 (g), grows for a longer time and reaches higher values, as compared to case

(i) (Fig. 6). The curve F (t) it is also broader, i.e., we find again the curve flattening effect

occurring naturally.

To further investigate this phenomenon, we consider in Fig. 8 (case (iii)) an epidemic

that initiates from two larger infection centers on two sides of the city core. We observe

that epidemic peak timing and duration is intermediate between cases (i) and (ii). Note

the remarkable strong influx of the epidemic towards the densely populated area, as evident
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FIG. 6. Time evolution of an epidemic starting from multiple infection centers inside a heavily

populated region (“city”, panel (a)). The population density of the city n is nonuniform and given

by n(r) = 10ae−r
2/R2

+ a, with r = (x, y), R = 10, and a taken such that the spatial average of

n is 0.2. The integrated value of b is the same as in Figs. 1-3. All other populations are initially

zero: w = f = r = 0. Panels (b)-(f) show the spread of the symptomatic population ’f ’ as time

progresses. The global populations and the sum F + R are shown in (g) and (h), respectively.

from panels (d) and (e); the two growing infection centers merge into one large spot with

significantly more symptomatic people. The “late” power-law exponent in this case is ' 3.2.

So far we looked at the unperturbed spread of an epidemic. Yet, authorities often use

numerous active tools to slow down and/or confine the spread of the disease. Usually

people are instructed to stay home for a considerable period, the so-called “quarantine” or

“lockdown”. In addition, roads connecting “hotspots” to uninfected regions are sometimes

blocked. Under quarantine, there are fewer and less frequent encounters between people

implying locally reduced values of Dk and k.

To mimic harsh movement restrictions between a city and its surroundings, we impose

significantly reduced values of Dk and k within a “belt” surrounding the city, which we term
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FIG. 7. The same as in Fig. 6 but with the infection centers at t = 0 located outside of the “city”.

“belt quarantine”. In Figs. 9 and 10 we examine the effectiveness of belt quarantine. In

both figures, the city is modeled as a region of high population density of radius R = 10. In

addition, at time t = 0, there are small random infection centers surrounding the city. Figure

9 depicts the case of no belt quarantine (uniform Dk and k), whereas Fig. 10 represents

belt quarantine – between R = 10 and R = 12 – with values of Dk and k reduced to 20% of

their background values. As seen from the comparison of the epidemic spreading patterns,

with belt quarantine (Fig. 10 (a)-(f)) the infection takes considerably longer time to invade

into the densely populated region. The overall effect of the belt quarantine is shown in Fig.

10 (g), where the increase of the global fraction of symptomatic population (F ) is seen to

slow down significantly; e.g., at the longest simulation time we obtain F ' 9% without

quarantine (Fig. 9 (h)), and F ' 2.6% with belt quarantine (Fig. 10 (h)). The difference in

the accumulated infected population, F + R, is less significant – at the longest simulation

time F +R ' 54% without quarantine, and F +R ' 23%.

Finally, we turn to investigate a neighborhood, which is considered as the epidemic epi-

center, within a large urban area. Namely, within the neighborhood there is a high fraction

of infected population. The population density n is uniform in the whole region of study.

In addition to the belt quarantine, we examine here the effect of a more severe measure:
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FIG. 8. Time evolution of a epidemic starting from two infection centers near a heavily populated

region, see (a) (top-left panel). n is nonuniform and given by n(r) = 10ae−r
2/R2

+ a, with R = 10

and a taken such that the spatial average of n is 0.2. The global value of b is the same as in previous

figures, B = 10−3, and all other populations are initially zero: w = f = r = 0. Panels (b)-(f) show

the spread of the symptomatic population ’f ’ as time progresses. The symptomatic population

quickly diffuses into the denser region in the center and its density there increases dramatically.

The global populations and the sum F + R are shown in (g) and (h), respectively.

lockdown on the whole neighborhood, which we term “area lockdown”. The neighborhood

is modeled again as a high population density region of radius R = 11. At time t = 0, we

impose small randomly distributed infection centers within the neighborhood.

Figure 11 depicts the spreading patterns for the case of no quarantine and uniform values

of Dk and k. Figure 12 represents the effect of belt quarantine between R = 10 and R = 11.

Figure 13 depicts the consequences of area lockdown within the whole neighborhood (circular

region of R = 11). In both belt quarantine and area lockdown the values of Dk and k are

reduced to 20% of their background values.

The comparison of the epidemic spreading patterns, with belt quarantine (Fig. 12), shows

that the escape of the infection from the neighborhood to its surroundings takes longer time
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FIG. 9. Time evolution of a epidemic starting from multiple random infection centers near a

heavily populated region mimicking a city, see (a) (top-left panel). n is nonuniform and is given

by n = 10a inside a circle with radius R = 10 and n = a outside of that circle, with a taken such

that the spatial average of n is 0.2. The integrated value of b is the same as in previous figures,

B = 10−3. All other populations are initially zero: w = f = r = 0. Panels (b)-(f) depict how the

symptomatic population ’f ’ spreads with time and “invades” the city.

in comparison with the no quarantine situation (Fig. 11). However, area lockdown (Fig.

13) is even more efficient than belt quarantine in reducing this escape time. Moreover, it

appears that in the case of belt quarantine the late-time spreading pattern is nearly isotropic,

while in the case of area lockdown the escape pattern is highly non-isotropic. This occurs

since prior to the escape, in the case of belt quarantine the infected population homogenizes

rather quickly within the neighborhood, while for area lockdown the slow spreading within

the neighborhood prevents this homogenization.

The overall effect of the different quarantine measures on the global populations is shown

in panels (g) and (h) of the respective figures. The increase of the global fraction of symp-

tomatic population (F ) is the smallest under area lockdown; at the longest simulation time,

we obtain F ' 3.9% without quarantine, F ' 3.8% with belt quarantine, and F ' 3.2%
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FIG. 10. Belt quarantine. Same as Fig. 9 but now the “city” is under protective circumferential

“belt” quarantine. Both Dk and k are reduced to 20% of their values elsewhere between the two

concentric circles (radii R = 10 and R = 12). The infection spreads quickly within the external

area, but penetrates very slowly into the protected region.

with area lockdown (relative reduction by 15%). These values are small since, for very

slow epidemic evolution, symptomatic people have enough time to recover, such that the

“in-flux” of people to this group (from the w-population) nearly equals the “out-flux”. A

more pronounced effect of the two types of quarantine, which implies on their effectiveness,

appears in the accumulated values of infected populations, F +R: at the longest simulation

time we obtain F + R ' 44% without quarantine, F + R ' 33% with belt quarantine, and

F +R ' 11.7% with area lockdown (relative reduction by about 70%).

III. DISCUSSION

An epidemiological spreading model with inherent spatial dependency of the different

populations is presented. We take into account nearest-neighbor infection kinetics and show

that they lead to diffusion-like terms in the dynamical equations, thereby providing a unified

framework for a heterogeneous spread of the epidemic. We show that the complex pattern
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FIG. 11. (a)-(f): Time evolution of a epidemic starting from multiple random infection centers

with uniform n, see (a). The global value of b is the same as in previous figures, B = 10−3.

All other populations are initially zero: w = f = r = 0. Both Dk and k are uniform. The

symptomatic population ’f ’ spreads and forms a ring-like structure that expands in time. (g) and

(h) show (respectively) the different global populations and the fraction of population that has

been infected until time t, F + R, vs time.

formation is sensitive to the initial conditions, i.e., to the spatial location of initial infected

population, which has important consequences for the total number of infected people. Thus,

the observed deviations from the early evolution can be rationalized without assuming time

variation in the infection rates, as is customary done in the conventional SEIR-type models.

Our model can naturally describe the flux of infection from a suburban area into a densely

populated city, or in the opposite direction. Interestingly, we find that relative “curve

flattening” of the infected-symptomatic population (F ) can naturally occur due to either

non-uniform population density, non-uniform distribution of infectious populations, or the

combination of both. This may have important implications when comparing the epidemic

evolution in different regions or states, where one needs to distinguish between the effects

of quarantine measures and population conditions. For example, when comparing Sweden
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FIG. 12. Belt quarantine. Same as in Fig. 11 but now with a protective “belt” quarantine in the

region between the two concentric circles (R = 10 and R = 11). Within the belt, the values of Dk

and k are 20% of their values in other regions. Initially the infection is confined to the protected

region, but at long times it leaks out through the belt and contaminates the exterior. Note the

relatively isotropic spreading patterns in the exterior.

(essentially no quarantine measures) and Israel (severe quarantine measures), conclusions

might be hampered.

Importantly, the possibility to mimic in our model spatially-varying and evolving quar-

antine or lockdown conditions, by using both spatially-dependent (as done in this work)

and time-dependent values of Dk and k, will allow a quantitative predictive tool for the

effectiveness of quarantine measures. This will require complete data sets for the variable

population density and the initial “heat maps” for the different types of population defined

in our model. Such heat maps are currently produced for COVID-19 by different authorities

using extensive testing, and appear occasionally in the media or public websites; some of

them resemble our ring patterns [29]. We hope authorities will use this tool in addition to

established venues [8, 30] to simulate different lockdown policies for choosing the best exit

strategy [31].
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FIG. 13. Area lockdown. Same as Fig. 12 but now the quarantine is throughout the whole area

of the circle (R = 11). Within this quarantined area, the values of Dk and k are 20% of their

values in other regions. The contamination of the exterior is slower than in Fig. 12. Also note the

relatively anisotropic spreading patterns seen at long times in the exterior, as compared to Fig.

12.
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is higher compared to sars coronavirus,” Journal of travel medicine, 2020.

[28] K. Mizumoto, K. Kagaya, A. Zarebski, and G. Chowell, “Estimating the asymptomatic pro-

portion of coronavirus disease 2019 (covid-19) cases on board the diamond princess cruise

ship, yokohama, japan, 2020,” Eurosurveillance, vol. 25, no. 10, p. 2000180, 2020.

[29] Heatmaps of the Orlando municipality, https://www.orlando.gov/COVID-19/

Data-Tracker. Note that the color scale in these heat-maps is not presented and may

be different from ours.

[30] Modeling 2019-nCov, https://systems.jhu.edu/research/public-health/

ncov-model-2.

[31] Z. Klausner, E. Fattal, E. Hirsch, and S. C. Shapira, “A single holiday was the turning point

of the covid-19 policy of israel,” medRxiv, 2020.

24

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.20148767doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20148767
http://creativecommons.org/licenses/by-nc-nd/4.0/

