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ABSTRACT 9 

Objectives: Autologous blood transfusion (ABT) enhances athlete´s performance, is banned as doping 10 

by the World Anti-Doping Agency (WADA). Currently, there is no implemented detection method for 11 

ABT. Transfusion of one´s own, long-term cryopreserved red blood cells (cryo-RBC) immediately 12 

increases circulating RBC count, hemoglobin mass, blood volume and oxygen carrying capacity, 13 

resulting in enhanced physical performance. Functional viablity of cryo-RBC are maintained for 14 

decades, but storage lesions lead to removal of damaged RBC from circulation days after transfusion, 15 

with remaining circulating cryo-RBC displaying normal half-life. Methods: The cytosolic RBC 16 

peptidome from 22 human subjects (12 men and 10 women) was analyzed by UHPLC-MS/MS before 17 

and after ABT with cryo-RBC. As a control group and for investigation of confounders, 14 elite 18 

athletes and 5 recreational subjects were sampled multiple times, also at high altitude. Results: Here 19 

we report alteration in the cytosolic peptidome of circulating RBC weeks after ABT, discriminating 20 

doped from non-doped human subjects. A valid discriminating multivariate model (OPLS-DA) based 21 

on <200 peptides was accomplished (R2/Q2 = 0.88/0.59, P CV-ANOVA < 0.0001, ROC AUC = 0.97). 22 

Models did not show bias for sex, high altitude or elite endurance training and racing. Conclusion: 23 

Identified peptides with low intra- and inter-individual variation, and high multivariate model weight 24 

and probability scores, create a direct method for the detection of autologous blood doping. 25 
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INTRODUCTION 29 

Autologous blood transfusion (ABT) enhances the athlete´s performance,1 and is viewed as doping, 30 

thus banned by the World Anti-Doping Agency (WADA); but with no implemented direct detection 31 

method,2 it remains difficult to survey by sporting authorities. Because cold-stored (+1º to +4ºC) blood 32 

is viable for a maximum of 42 days,3 during which time the athlete’s physical performance is 33 

compromised from blood donation,4, 5 and erythropoietin is readily detected;6 the blood doping method 34 

of choice for cheating athletes is transfusion of one´s own, long-term cryopreserved red blood cells 35 

(cryo-RBC). Upon  transfusion, increases are immediately observed in circulating RBC count, 36 

hemoglobin mass,7 blood volume and oxygen carrying capacity,8 resulting in enhanced physical 37 

performance.1, 9, 10 Cryo-RBC in storage maintain their function for more than a decade,11, 12 but 38 

display storage lesions altering physical properties13, 14 of both cytosolic15 and membrane 16 proteins, 39 

leading to an expedited removal of damaged cryo-RBC from circulation 6 h to 48 h after transfusion.17, 40 
18 The remaining circulating cryo-RBC display normal half-life19 despite observable altered metabolic 41 

profiles20 and irreversible cytosolic protein alterations, derived from the process of freezing and 42 

thawing.21 43 

Today, indirect detection of ABT exist using the hematological module of the Athletes Biological 44 

Passport (ABP). The ABP uses longitudinal monitoring of standard hematological parameters to 45 

identify possible blood manipulations,22 and can be considered less effective than anticipated in 46 

detecting ABT.23, 24 Also, the ABP is affected by exercise25 as well as increased fluid intake.26 47 

Moreover, several tests claim to detect ABT via: immunological reactions,27 hematological variables,28 48 

phthalate/metabolites29 and CO rebreathing30, 31, but no test is implemented for doping detection. 49 

A direct and valid detection method for ABT remains elusive and unavailable,1, 32, 33 but must include 50 

intracellular biomarkers, as all cell-surface alterations, including storage-induced,34 initiate rapid 51 

removal of cryo-RBC from circulation by spleen macrophages,18 thus circumventing the effectiveness 52 

of such markers for detection of ABT. 53 

Proteomic and bioinformatic methodologies allows detection of sample differences in minutiae across 54 

subjects and chronology. We proposed that screening the cytosolic fraction of circulating RBC 55 

(RBCc) sampled before and after cryo-RBC transfusion, will provide markers specific to ABT. 56 

Subsequently, applying liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis will 57 

generate biomarkers (proteins and/or peptides), differentiating the two states of pre- and post- 58 

transfusion, defining Clean and Doped samples, respectively. In addition, identified biomarkers will be 59 

curated to remove those markers biased for sex, exercise, hypoxia and high-altitude exposure. 60 

METHOD (APPENDIX 10) 61 

SUBJECTS 62 
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Autologous blood transfusion of eight men (age 29; 24-36 years [mean; min-max]) and seven women 63 

(age 27; 23-38 years) with peak oxygen consumption (VO2peak); Men (4.3; 3.2-5.0 L·min-1/53; 33-59 64 

mL·min-1·kg-1) and women (3.0; 2.4-3.6 L·min-1/48; 45-56 mL·min-1·kg-1) with five recreational 65 

Control subjects sampled in parallel (Appendix 2, 3 & 9). Fourteen international level elite endurance 66 

athletes investigated confounders by resting blood samples at: Sea Level (<80 m), High Altitude 67 

Training (>1500 m), Hypoxic Tents (>10 h/day, 14 days, 3-4000 m) and in the Hypoxia group up to 68 

28 days after a multisport race (700 km in 4.5 days reaching altitudes up to 4500 m, Appendix 2, 3 & 69 

9). 70 

TRANSFUSION 71 

Women donated one (450 mL) and men two (900 mL) units of whole blood as s described in detail 72 

previously 1, 18. Whole blood was collected and glycerolized RBC stored at -80°C until transfusion. 73 

SAMPLING 74 

In total, participants (21 men and 15 women, Appendix 2, 3 & 9) gave 307 venous blood samples, 75 

where 85 were in a Doped state after cryo-RBC transfusion, 173 in a Clean state and 49 samples taken 76 

directly from the Blood Donation Bag (timeline for Transfusion indicated in Figure 1). Some samples 77 

were used multiple times (noted as Batch I, II and III in Tables and Appendices), resulting in 392 LC-78 

MS/MS sample injections (Appendix 2, 3 & 9). 79 

PREPARATION 80 

Erythrocytes were lysed, the cytosol isolated and hemoglobin removed before determination of protein 81 

concentration. Pre-digest internal peptide standard was added before trypsin digestion. Clean-up of 82 

trypsin digest samples was performed by C18 and dried samples were stored at -80°C. 83 

NANO-UPLC-MS/MS ANALYSIS 84 

Internal retention time standards, pre-LC internal standard and TFA were added before injection using 85 

a nanoACQUITY UltraPerformance UPLC™ (Waters). Separated peptides were analyzed using a 86 

Synapt G2™ or G2Si™ (Waters). Initial data evaluation used the MassLynx™ software (Waters). 87 

DATA PROCESSING AND ANALYSIS 88 

Raw data processing, alignment, peptide identification, quantification (relative abundance) and 89 

comparative analysis were performed using Progenesis QI for Proteomics (Waters), Protein Lynx 90 

Global Server (Waters) and the open-source Skyline (https://skyline.ms). For peptide identification a 91 

curated human proteome database (Swiss-Prot) was used, acquired from Uniprot (www.uniprot.org). 92 

STATISTICS 93 

Mixed Model using Restricted Maximum Likelihood (REML) and multivariate analysis (MVA),1 with 94 

Principal Component Analysis (PCA), Orthogonal Projections of Latent Structures (OPLS)35, and its 95 
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discriminant analysis OPLS-DA36 were applied. Samples from blood donation (Clean) and after 96 

transfusion (Doped), High Altitude Training, Hypoxic Tents and Elite Endurance Athletes created 97 

MVA models (Appendix 5 & 9). Regression (R2) and prediction (Q2) were investigated, with valid R2 98 

and Q2 set to > 0.60, 35, 37, 38 in three datasets: Training (Men), Testing (Women) and Validation (Men 99 

and Women) for Screening, Selection and Validation of Biomarkers (Appendix 5 & 9). 100 

CONFOUNDERS 101 

Data from two LC-MS/MS analyses which differed to the biomarker screening dataset (Appendix 6), 102 

were used to create four OPLS-DA models investigating confounders. Appendix 7: 1) If peptides 103 

separating fresh and cryo-stored RBCc could separate Clean from Doped subject 2) Bias for Elite 104 

Endurance training and 3) Summary model (four Y -variables) of Clean, Doped, Elite Athletes and 105 

High-Altitude Training. Appendix 8: Bias for High Altitude Training and Hypoxic Tents. 106 

PATIENT AND PUBLIC INVOLVEMENT STATEMENT 107 

Participants in the study were recruited locally. Each participant was given continuous feedback. 108 

Lectures informed staff, participants and colleagues of the study objectives. 109 

ETHICAL CONSIDERATIONS 110 

The Ethics Board for Northern Sweden approved the study (DNr: Ö1-2009, 08-196M, 2011-408-111 

32M), and transfusions performed in a hospital clinical. Risks reviewed in Appendix 1. The study was 112 

conducted in accordance with the WMA Declaration of Helsinki 2013. Data is encrypted and stored on 113 

security protected servers. 114 

RESULTS (EXTENSIVE MODELS IN APPENDIX 5 & 9). 115 

Normal distribution of samples is visualized in a PCA model for Hematological (Figure 1A) and 116 

Proteomic (Figure 1B) data. 117 

HEMATOLOGY 118 

Autologous blood transfusion changed hematological variables (Figure 1, Table 3, Appendix 3 and 4), 119 

but with large individual variations, making regression analysis and prediction of samples to Clean 120 

(Before blood donation) or Doped (after transfusion of cryo-RBC) unreliable (Figure 2 and 3, 121 

Appendix 3 and 4). The visualized OPLS-DA analysis (Figure 3) indicate models with low R2 (<0.6) 122 

and Q2 (<0.2) in the Summary of Fit plot, and sensitivity and specificity displayed in the ROC curve, 123 

where AUC for Men = 0.97 and Women = 0.79. Selection for prediction by VIP Pred indicate 124 

different variables of importance for men and women. 125 

Interpretation: Hematological data can generate weak regression models with low predictive power, 126 

even when used in combinations. 127 
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FIGURE 1 HERE - Hematology 128 

 129 

FIGURE 2 HERE – PCA models 130 

PROTEOMICS 131 

Multivariate data analysis (MVA) of quantified and identified peptides from circulating RBC cytosol 132 

created significant and cross-validated PCA and OPLS-DA models for regression and prediction of 133 

analyzed samples to Clean and Doped groups (Figures 3, Appendix 6). Separation of Clean and Doped 134 

samples by OPLS-DA analysis resulted in R2 and Q2>0.9 for men, and R2>0.6 and Q2<0.2 for women, 135 

displayed in the Summary of Fit plot. Sensitivity and specificity are displayed in the ROC curve, 136 

where AUC for Men = 1.00 and Women = 0.68. Selection for prediction by VIP Pred indicate 137 

different variables of importance for men and women. 138 

Further results when screening for biomarkers are displayed in Figure 4, where data is divided into 139 

three sets; Training (Men), Testing (Women) and Validation (Men and Women). Because the RBC 140 

cytosolic fraction (Hb removed) of RBC (RBCc) had different peptidomic profile in men and women, 141 

R2(cum) = 0.99/Q2 = 0.92; P <0.0001, different biomarkers in each sex may be assumed. Models 142 

excluding sex-separating peptides were also investigated (Appendix 6). 143 

Training (Men) the model pared down data to the 200 most important peptides, separating Clean 144 

from Doped both in PCA and OPLS-DA analysis, with high R2/Q2 of 0.90/0.79, cross-validated by 145 

100 permutations and predicting 28/28 samples to the correct class. AUC = 0.96. 146 

Testing (Women) of the model as accomplished by applying the 200 peptides from the Training 147 

model on a cohort of women, resulted in R2/Q2 of 1.00/0.52, cross-validated by 100 permutations and 148 

predicting 28/28 samples to the correct class. AUC = 0.92. 149 

Validation (Men and Women) of selected peptides for prediction of Doping used both male and 150 

female subjects in combination, starting with the 200 peptides from men and removing peptides until 151 

an optimized model was achieved, containing 50 peptides, reaching, R2/Q2 of 0.88/0.59, cross-152 

validated by 100 permutations and predicting 56/56 samples to the correct class. AUC = 0.97. 153 

Ranking peptides by OPLS-DA loading scores suggests potential candidates for development of 154 

diagnostic tools applicable for the detection of autologous blood doping in humans (Figure 5). 155 

Merging hematological and peptidomic signature variables, demonstrate a lower loading impact of 156 

hematological variables, compared to peptides (Figure 5) in MVA modeling, supporting the previously 157 

demonstrated1 lack of predictive power using hematology (Figure 1, 2 and 3). 158 

FIGURE 3 HERE – OPLS-DA models 159 
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 160 

FIGURE 4 HERE – Training/Testing/Validation 161 

 162 

FIGURE 5 HERE – Loading plot 163 

CONFOUNDERS 164 

In vitro peptides quantified and identified from analysis of the cytosolic fraction of RBCs, harvested 165 

from transfusion bags before and after cryo-preservation, created significant and cross-validated 166 

OPLS-DA models for the two conditions (Bags, Figure 6). In vitro identified peptides did not create 167 

significant and cross-validated OPLS-DA models for venous blood samples taken before and after 168 

cryo-RBC transfusion (i.e. autologous blood doping, Blood Sample, Figure 6). In vivo peptides 169 

quantified and identified from analysis of RBCc taken by venous blood sampling in humans before 170 

and after cryo-RBC transfusion, created significant and cross-validated OPLS-DA models (Appendix 171 

9/Table 6/Model 19). In vivo Doped peptides (top 200 from the OPLS-DA coefficients for Doped) also 172 

separated venous blood samples taken from individuals (Elite Athletes) trained at High Altitude, living 173 

in Hypoxic Tents and Elite Athlete sampled at sea level (Figure 6, Appendix 9/Table 6). In the 174 

Summary plot (Figure 6), samples from Doped do not overlap with other investigated cohorts. 175 

FIGURE 6 HERE – Confounders 176 

Interpretation: Proteomic data can generate strong regression models with high predictive power, 177 

both for Men and Women, with no impact (bias) from investigated confounders. 178 

DISCUSSION 179 

Autologous blood doping with cryo-RBC is detected in human subjects by unlabeled, quantitative 180 

nano-UPLC-MS/MS. Comparing peptide patterns from RBCc separated Clean from Doped 181 

individuals using the multivariate discriminating method OPLS-DA (R2>0.90, Q2>0.90, p<0.001, 182 

X<200). Cross-validated models did not show bias for sex, strenuous physical exercise, hypoxia 183 

exposure and high-altitude training in elite athletes. In comparison, hematological variables alone 184 

failed to generate significant OPLS-DA models when analyzed in parallel blood samples. 185 

Investigations were executed using prospective case-control, cohort and cross-sectional study designs. 186 

BIOMARKERS IN BIOLOGICAL MATRIXES 187 

Biomarkers for any diagnostics must be reliable, sensitive, specific, and discriminative.39, 40 In 188 

addition, validation must determine predictability of unknown samples to correct state (i.e. Clean or 189 

Doped). For practical implementation in anti-doping efforts to keep sports clean, aspects such as 190 
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available sample matrices, Doping Control Laboratory (DCL) facilities, transport systems and cost are 191 

also important considerations. 192 

Red blood cells are closed systems, unable to synthesis protein and with a life cycle of approximately 193 

120 days in adult humans.41 Once set in circulation, RBC undergo an ageing processes, with changing 194 

plasma membrane and external structures,3, 41 making them susceptible to recognition and subsequent 195 

systemic removal  by spleen macropahges.18, 42 While homologous blood transfusion can be detected 196 

via surface antigens,3 the only current method to detect autologous blood transfusion is via Hb mass by 197 

CO-rebreathing.43, 44 The WADA research initiative states that there is no unequivocal detection 198 

method for autologous blood doping, as CO is toxic it has no relevance in anti-doping control of 199 

healthy athletes who would be reluctant to have a toxic agent imposed on them repeatedly. Autologous 200 

blood doping with cryo-RBC is the preferred choice of cheating athletes, as RBC in cold storage 201 

(+4ºC) has a known clinical safety limit of 42 days after donation, necessitating repeated blood 202 

donation, and subsequent decreased performance,45 during the preparation phase for competition as the 203 

red blood cell population are regenerated to compensate for the loss. Cryo-RBC on the other hand, 204 

may be stored for decades.12  205 

Regardless of storage procedure, a fraction of all transfused RBCs is damaged and, just as aging RBC, 206 

removed from circulation not in 120 days but within 6 h to 48 h.19 Consequently, RBC with intact cell 207 

surface proteins, and remaining in circulation 48 h after transfusion, may be viewed as circulating 208 

time-stamps, containing bioinformation useful in the detection of ABT.46, 47 The cryo-induced 209 

formation of ice crystals, permanently damaging cytosolic RBC proteins,21 serves as a probable, but 210 

not the only  inducer of potential biomarkers – creating unique detectable  peptide fragments after 211 

protein trypsinization. An additional advantage of using altered cytosolic biomarkers, compared to 212 

hematological variables, is that plasma volume changes will not influence analytical results. 213 

The present series of studies follows a general procedure for biomarker discovery and validation,39, 40 214 

including establishing robust baseline values by repeated sample collection at rest in all investigated 215 

groups, transports and storage conditions and routine procedures in accredited, clinical laboratories. 216 

Current approaches with multiplexing orthogonal biomarkers into one assay increase robustness to 217 

confounders and inter-laboratory variations, while reducing analytical costs. The results are reliable, 218 

validated for several known possible confounders, have high specificity, sensitivity and discriminating 219 

power.39 220 

TRUE POSITIVES AND NEGATIVES 221 

One unavoidable challenge when investigating ABT is the inclusion of true positives, vital for all 222 

statistical analysis and legal actions. As previously directly shown by us1, argued by others23 and here 223 

again demonstrated (Figures 2 and 3)  - hematological markers are indirect indicators of ABT, and will 224 

always be subject for interpretation (what are limits for normal intra-individual variation?) and 225 
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significant confounder (exercise, hydration, high altitude, diet, illness etc.) opening for cheating 226 

athletes to be legally dismissed from conviction. When investigating hematological intra- and inter-227 

individual variations over time in Clean vs. Doped subjects, neither regression nor prediction models 228 

are reliable (Appendix 5). In the context of doping detection, median/range values from elite athletes22, 229 
31, 48 (unknown status of doping) are not relevant for individual judgements, as mean/median values 230 

from true positively doped subjects1 can also stay within 95% CI (Figure 2 & Appendix 5). Also, when 231 

using cold stored RBC, detection of ABT by hematological measurements has shown low specificity 232 

and sensitivity31, 49, 50. Hematological variables changed with investigated confounders, even when 233 

more advanced statistical approaches are applied (Figure 1). 234 

The present use of clean elite athletes for comparison is not often possible when validating biomarkers 235 

for doping, as athletes cannot serve as subjects. Using cohorts of elite athletes from routine sampling 236 

as controls adds uncertainty to any model, as their true state of Clean or Doped cannot be known. Elite 237 

athletes participating in this study volunteered to live for extended periods of time in hypoxic tents, 238 

before training and competing at high altitude. Knowing they would be tested for blood doping, it is 239 

highly unlikely doped athletes are included, also confirmed by the OPLS-DA analysis. 240 

WINDOW OF DETECTION 241 

Theoretically, transfusion of cryo-RBC can be detected for up to 120 days, if the youngest RBCs at 242 

time of donation could be identified after transfusion.19 Limits of Quantification (LOQ) with the 243 

presented method is still not fully investigated, but a few samples (N=14) taken four and five weeks 244 

after transfusion (Batch I) are below critical limits (99%) when analyzed by Hotelling's T2 indicating 245 

that these samples are no different compared to samples taken one to three weeks after transfusion. 246 

Because cryo-induced peptide abundance diminish as RCBs are aged and removed, LOQ should be 247 

determined by target analysis methods. Determining LOQ will also be valuable for detection of micro-248 

dosing with cryo-RBC, a practice likely to be used by cheating athletes to avoid detection. 249 

ALTERNATIVE INTERPRETATIONS AND LIMITATIONS 250 

An alternative biomarker selection procedure for Clean vs. Doped models could be to exclude the 251 

most important (highest OPLS-DA coefficient scores) peptides separating RBCc from Men and 252 

Women taken at rest (Clean). This approach may potentially remove peptides important for detecting 253 

reinfusion of only one unit cryo-RBC. Creating OPLS-DA models that include 5000 peptides which 254 

are most relevant for separating of Men and Women, then selecting the 200 peptides with the highest 255 

coefficient score for Doped, creates models for Clean vs. Doped, still biased for sex in the regression 256 

models, but without predictive power: Men vs. Women R2 = 0.45 and Q2 = -1.55, CV-ANOVA p 257 

=1.00. Data remaining after removing 5 000 peptides from the model of Men vs. Women, provides an 258 

OPLS-DA model for Clean vs. Doped using 200 peptides with R2/Q2 = 0.64/0.24, CV-ANOVA p < 259 

0.001. Removing 10 000 peptides gives R2/Q2 = 0.79/0.38, CV-ANOVA p < 0.001. As discussed, 260 
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approaching the biomarker selection via a Training set consisting of Men (reinfused with two units 261 

RBC) resulted in stronger regression and prediction models (Figure 4). Alternatively, the models for 262 

sex investigate cryo-RBC reinfusion of one vs. two units. Data from the present study design cannot 263 

distinguish these two options. 264 

Regardless, with the presented list of peptides (Appendix 6 & 9) ABT can be detected in both men and 265 

women, reinfused with either one or two units cryo-RBC for at least two weeks after reinfusion. 266 

CONCLUSION 267 

• Doping with ABT is directly detected by cryo-induced alterations in cytosolic RBC peptides, 268 

with high sensitivity and specificity in both men and women. 269 

• Elite endurance training at low and high altitude did not significantly affect peptides 270 

discriminating Clean from Doped samples. 271 

• Presented peptides can be used for direct detection of autologous blood doping using standard 272 

equipment available in Doping Control Laboratories. 273 

FUTURE RESEARCH 274 

The potential of selected peptides for labeling and direct detection of autologous blood doping by 275 

target analysis should be explored, with independent prospective case-control trials and cross-sectional 276 

studies, including inter- and intra-laboratory analytical variability. Larger, both-sex cohorts of clean 277 

and doped subjects, elite athletes and different ethnic groups need to be sampled for investigation of 278 

sensitivity, specificity, false positive and likelihood ratios. 279 
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