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Abstract—Modern health research is increasingly separated
into various ”omics” fields. Omics provides a quantified approach
to the total collective information about the various realms of
biology. One aspect of omics called the exposome relates to
the collective exposures an individual is placed in throughout
their life. A subset of this exposome, is the atmospheric ex-
posome, which we name as the atmosome”. Air surrounds
individuals from the moment they are born till they take their
last breath. The atmosphere is constantly changing, given our
location and surroundings are always dynamic throughout life.
The atmosphere inevitably plays a massive role in our health
such as impact on DNA damage, metabolism, skin integrity,
and lung health. In this work, we discuss the significance of
the atmosome in personalized health and present our atmosome
sensing system. We developed and analyzed data from our IoT,
microcontroller-based system which collects real-time individual
air quality data and posts it to a cloud server for immediate
access. Our experimental results demonstrate the accuracy of the
data we collected and the avenues our system creates for direct
lifestyle to environment correlations. Quantifying the individual
atmosome is a next step in advancing personalized health and
medical research. Our two main goals in this paper are to present
the atmosome as a concept and to explain how to track it using
low-cost electronics.

Index Terms—Exposome; Exposomics; Personal Health Navi-
gation; Cross-Modal Data; ; Health State Estimation; Cybernetic
Health; Multimedia; Multi-modal Data; Wearables; Health In-
formatics; N=1

I. INTRODUCTION

”Our most basic common link is that we all inhabit this
planet. We all breathe the same air. We all cherish our
children’s future. And we are all mortal.”

- John F. Kennedy

Health is a constantly changing state that is affected by
various internal and external factors, including the genome,
microbiome, and exposome. An individual’s exposome con-
sists of all of their exposures, from their time in their mother’s
womb through the rest of their life. It considers lifestyle
factors, occupational and socioeconomic conditions, and en-
vironmental settings to develop an in-depth understanding of
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how an individual’s surroundings directly impact their health
state. The atmospheric exposome focuses on the effects of
the environment, and specifically air, on health. Air surrounds
everyone, no matter where they live or what they are doing.
Thus, it inevitably plays a crucial role in determining health.

Americans spend approximately 90 percent of their time
indoors, where the concentrations of some air pollutants are 2
to 5 times higher than in the outdoors [8]. This poor indoor air
quality can cause various infections, lung cancer, and chronic
lung diseases such as asthma [1]. It also can contribute to the
development of atherosclerosis, an underlying cause for many
cardiovascular diseases [30]. The detrimental health effects of
air quality are just as prominent in the outdoors. Ambient air
pollution was responsible for 3 million deaths worldwide in
2017, and it is the single biggest environmental health risk
[32]. Annually, 9 out of every 10 people breathe air containing
high levels of pollutants [24]. To improve air quality and
minimize pollution-related deaths, we must identify, measure,
and analyze our atmosome to study how the air we breathe
affects our health. Exposome research is expanding rapidly
and public environmental data is becoming more detailed and
accessible. However, the need for a personal, real-time, multi-
stream air measurement system from which researchers can
easily mine data is still unsolved.

Currently, there are no research investigations that character-
ize the body’s interactions with air as an “omics” field. Thus,
we coined the word atmosome to describe the atmospheric
sub-component of an individual’s exposome. Broadly, the
motivation for this work is to use the atmosome to further
personalized health state estimation from multi-modal data
[18], [15]. Continued research in this field will look into
expanding to other health domains, improving quality met-
rics, tackling performance issues, and developing methods to
combine the atmosome data with other data streams. Finding
unique relationships between these data streams allows for bet-
ter models of the user’s individual lifestyle. In the atmosome
case, this allow us to find the impact of different atmospheric
and environmental data streams on behavioral outcomes such
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as sleep using appropriate N=1 modelling techniques [28].

II. RELATED WORK

Before assessing the novelty and efficacy of the atmosome
data collection system, we must become familiar with existing
air quality measurement systems. In this section, we will
survey current solutions in the market and discuss their uses
and shortcomings.

The EPA gathers outdoor air pollution data from several
federal, state, and local agencies and stores it in a database
called the Air Quality System (AQS). However, these monitor-
ing systems are usually only installed in urban areas and take
measurements for only some air pollutants every few days.
Moreover, they do not consider indoor air quality or assess
the living conditions of specific individuals [7]. Thus, the data
in the AQS is pretty limited.

Some existing commercial air monitoring systems in-
clude Dyson Pure Hot+Cool™ HPO04 purifying heater + fan
tool, Molekule, Honeywell True HEPA Air Filter, and Alen
BreatheSmart 75i [11] [10]. The Dyson, which costs $649.99,
uses HEPA filters and senses airborne particles (PM 2.5 and
10) and gases (VOC and NO2). It comes with a smart app
feature. However, it lacks the capability to destroy Formalde-
hyde, is unable to sense very small particles (i.e. 0.1 microns),
is not approved by the Association of Home Appliance Manu-
facturers, and is very expensive [6]. Molekule, priced at $799,
actively filters the air using Photo Electrochemical Oxidation
(PECO) filters to destroy pollutants at the molecular level.
It kills RNA/DNA viruses, VOCs, and more, but its price
is still quite high for many potential buyers. It also has no
air temperature controls, is not AHAM (Association of Home
Appliance Manufacturers) approved, and is not HEPA filter-
equipped [13].

As with the aforementioned examples, listed in Table I,
most commercial air monitoring systems tend to be very
expensive and are not geared towards research. They lack a
cloud component to easily post and retrieve time-stamped data
and focus on air purification as opposed to varied air stream
data collection. Most significantly, they are not accessible to
most individuals due to their prices. AMS is built with these
characteristics and costs between $83 and $107, making it
significantly cheaper than the industry alternatives.

Product Measurements

PM2.5, PM10, VOC, NO2, Formaldehyde

RNA/DNA viruses, VOCs, Formaldehyde, allergens, and more
Odors, VOCs, certain germs

Particles larger than 0.3 microns

Price

Dyson Pure Hot+Cool™  $649.99
Molekule $799
Honeywell $179.99
Alen Breathesmart $749

TABLE I
EXAMPLES OF EXISTING AIR QUALITY MEASUREMENT AND CLEANSING
PRODUCTS IN THE INDUSTRY.

III. PERSONAL ATMOSOME SENSOR SYSTEM

AMS (Atmosome Measurement System) is a low-cost tool
for capturing raw data on individuals’ atmospheric exposomes.
This IoT air monitoring kit considers geospatial data to track
air quality from seventeen different streams. It enables the

Fig. 1. System hardware, including a monitor in a Piper Kit box, a
Raspberry Pi, an Arduino, and a PCB.

user’s environment to be monitored over an indefinite period
and posts their data to the cloud in real-time. These features
allow for easy atmosome monitoring without interfering with
a user’s natural lifestyle, which makes it simple for users
or researchers to connect their actions at every moment to
changes in their environment. They can then use this data
to generate reports, study action-to-environment patterns, and
make algorithms to predict behavioral or environmental trig-
gers for atmosome state. Another advantage of the system
being cloud-based is that it allows researchers to compare and
study data from different users around the world, or even from
the same user during travel, to analyze correlations between
lifestyle and atmosome.

AMS comes in two variations: a portable version with a
reduced number of sensors that charges via a USB cable and
laptop or a complex version that plugs into a wall outlet
for indoor room measurements. The former version costs
approximately $84 and the latter version costs approximately
$108. Figure 2 shows the advanced model.

The Arduino Mega powers the sensors, collects sensor data,
and sends the readings to a Raspberry Pi. The Pi records this
data onto the cloud. The cloud system is built using a Python
Flask framework and provides a REST API for retrieving and
posting data. It also comes with an API to query based on
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Fig. 2. Circuit diagram of the PCB:, This board holds the Arduino and 17 environmental sensors.

specific locations. Users and researchers can easily collect
and parse this data to generate graphs and study patterns
over time. Figure 3 shows the two aspects of the system
architecture: hardware components and cloud mechanisms.
Figure 1 displays a photograph of AMS.

The air quality system includes sensors and microcontrollers
which measure various air streams, listed in Table II.

AMS collects data from seventeen sensor streams. Each gas
has unique effects on health and different threshold values for
what is considered dangerous for humans. Understanding the
basics of the major factors the system measures is crucial to
utilizing its data for lifestyle and health state analysis.

IV. EXPERIMENTAL RESULTS

We conducted various experiments to test the sensor kit
in both outdoor and indoor conditions. In this paper, we
discuss the parameters displayed in III discussion. Green lines
represent optimal healthy values, red lines represent dangerous
or unhealthy values, and yellow lines represent sub-optimal
values.

A. Temperature and Humidity

Figures 4 and 5 show graphs of humidity and temperature
measurements taken from three different locations, including
a household and minimal travel in the US, a household and
minimal travel in India, and an airplane flight of 17 hours.
The low humidity readings from the plane confirm dryness
and discomfort effects felt in air travel and align with the
United States CDC’s air travel yellow book [7].

A second sensor kit in another user location gathered data
yielding the time series data shown in Figures 6 and 7.

B. Carbon Dioxide

Figure 8 shows a graph of the CO, measurements. The
results were different than expected because the readings in the

US showed much higher indoor CO, levels than the readings
in a more polluted area in India. Further analysis revealed,
however, that the closed windows and doors throughout the
day in wintery US weather reduced circulation and increased
CO; concentration indoors. Results also led to the conclusion
that the higher CO, levels in the US setting were correlated to
constant drowsiness reported in the home. This data highlights
the importance of ventilation, even through the winter. The
readings in the lengthy airplane journey confirmed that AMS’s
readings and the airline’s advertised AQI were within range of
each other. Figure 9 displays the time-series values of Carbon
Monoxide [14].

C. Farticulate Matter 2.5um (PM2.5)

Experiments measured particulate matter in 4 different con-
ditions: daily residential life in the US, open traffic in India,
daytime, and nighttime. The goal in the second condition was
to see how the atmosome data, displayed in Figure 10, corre-
lated with the throat infection that a participant sitting in an
open 3-wheeler during the India traffic stretch developed after
the journey. Analysis revealed that the particulate matter they
inhaled, which exceeded the healthy recommendation, played
a causal role in the sudden bout of throat and respiratory
discomfort. The user’s cumulative PM2.5 exposure data is
plotted in Figure 11. If a physician or user could access this
kind of data regularly, they would gain insights on how their
behavior and surroundings affect their bodies and take tangible
steps towards staying healthy in traffic on vacation or other
similar situations.

D. Volatile Organic Compounds (VOC) and Ozone

Figure 12 shows data collected by AMS for Total Volatile
Organic Compounds (tVOC) and ground-level ozone. The
time-series data, displayed in Figure 13 from the second user
location, reflects unhealthy spikes in tVOC data on specific
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Fig. 3. System architecture chart: Red denotes hardware components while blue represents cloud computing components

Sensor Measurements Producer Type
CCS811/BME280 tVOC, eCO,, altitude, temp, pressure Sparkfun Environmental combo sensor
MQ2 Smoke Keywish Metal oxide Semiconductor (MOS) gas sensor
MQ3 Alcohol Keywish MOS gas sensor
MQ4 Methane Keywish MOS gas sensor
MQ5 Natural gas Keywish MOS gas sensor
MQ6 Liquefied Petroleum Gas Keywish MOS gas sensor
MQ7 Carbon Monoxide Keywish MOS gas sensor
MQ8 Hydrogen Keywish MOS gas sensor
MQ9 Flammable Gases Keywish MOS gas sensor
MQ131 Ozone SainSmart MOS gas sensor
MQ135 Aromatic Compounds, Sulfide SainSmart MOS gas sensor
MQ136 Hydrogen Sulfide SainSmart MOS gas sensor
MQ137 Ammonia SainSmart MOS gas sensor
NOx Nitrogen Oxides Ogam MOS gas sensor
HCHO Formaldehyde Gravity MOS gas sensor
CO, Carbon Dioxide DFRobot NDIR
PM2.5 Particulate Matter Keyestudio Optical, IR emitting diode
Arduino Mega 2560  Reads all the sensors values periodically and performs calculations Arduino Microcontroller
Raspberry Pi Receives data from Arduino using a Python program and calls REST API to the cloud  Raspberry Pi ~ Microcontroller
TABLE II

INFORMATION ABOUT HARDWARE COMPONENTS OF AMS, INCLUDING SENSORS AND MICROCONTROLLERS
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Fig. 4. Humidity (%): These are color coded humidity conditions of the user atmospheric home conditions in Cupertino, California, Hyderabad, India, and
a commercial airplane. 30% to 50% marks the healthy range (green vertical lines). We can clearly see the effect on the atmosome humidity during air travel.
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Fig. 5. Temperature (Celsius): User atmospheric temperature at home in Cupertino, California, Hyderabad, India, and a commercial airplane. 20 degrees to

27 degrees marks a comfortable and healthy range (green vertical lines).

——  humidity
60
@50|l|| L L] [
=}
£
S 40
T
Qo
h,.r(u ' "l‘ rn [ P ’I I‘|I'I 1|l“'|| i J !
20
2020-02-12 2020-02-19 2020-02-26 2020-03-04 2020-03-11 2020-03-18 2020-03-25 2020-04-01 2020-04-08

Timestamps

Fig. 6. Humidity (%): User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California. 45% is the optimal value

(green), while 30% (red) to 50% (pink) is the healthy range.
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Fig. 7. Temperature (Celsius): User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California. 20 degrees to 27

degrees marks the healthy range (red horizontal lines).

Parameter Good Average Poor Bad

Humidity 30-50% 50-60% <30%,>60% <20%,>70%

Temperature ~ 20-24°C (winter)24-27°C (summer)  16-20°C,27-28°C ~ 28-30°C <16°C,>30°C

PM2.5 0-12pg/m? 12-15pg/m? 15-35ug/m? >35ug/m?

tvOC 0-220 ppb 221-660 ppb 661-2000 ppb >2000ppb

O3 0.05 ppm 0.08 ppm 0.1 ppm >= 0.2ppm

CO, 350-1000 ppm 1001-2000 ppm 2001-5000 ppm  >5000 ppm

co 0-3 ppm 3-8 ppm 8-10 ppm >10 ppm
TABLE III

ENVIRONMENTAL PARAMETERS AND REFERENCE RANGES.

days. Evaluation by the user of potential indoor environmental
stress factors on those days revealed that a running 3D printer

in the user’s home caused these spikes. Further research
confirmed that 3D printing is indeed a source of many VOCs
[5]. Filament types varied from PLA, ABS, and TPU. This
analysis established the need for extra ventilation when using
a 3D printer.

Figure 14 displays a strong correlation between tVOC and
ground-level ozone. For the most part, spikes in tVOC result in
increases in ground-level ozone, conforming with the chemical
reactions that cause Nitrogen Oxides to react with tVOCs in
the presence of sunlight to create ground-level ozone. This
chemical process is demonstrated in Figure 15.
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Fig. 9. Carbon Monoxide (ppm): User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California. 0 to 3 ppm
(green horizontal line) is the optimal range, and anything higher than 5 ppm (yellow horizontal line) is unhealthy.
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Fig. 10. PM2.5 (in 11g/m?): Personal atmosome in Hyderabad, India during the daytime, nighttime, and in traffic, and in Cupertino, California throughout
the day in the home. 0 to 12.5 pg/m? marks the healthy range (left of green vertical dash).

Cumulative pollution data of tVOCs and ozone in the
time-series user location shows how much tVOC and ozone
pollution the user has been exposed to each day. Figures 16
and 17 show these plots. Acquisition of the 3D printer by the
user shows how ozone and tVOC levels started to rise rapidly.
Alerting the user of these changes can help with improving
the personal atmosome.

V. DISCUSSION

The brief survey of currently available indoor air quality
systems shows that AMS is one of the most comprehensive

and low-cost IoT, indoor, real-time air monitoring systems.
AMS also provides data accessible from anywhere in the
world with internet connectivity. The data can be analyzed and
compared across locations and time to identify patterns and
provide recommendations to improve indoor environments. In
this section, we will discuss how this data can directly reveal
vital information about users’ health.

The atmosome, when combined with lifestyle and biological
data collected from different wearable devices and smart
phone applications presents a number of opportunities for
personal health estimation and navigation [16], [15], [18].
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Fig. 11. PM2.5 (in pg/m?) Cumulative Exposure: User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California.
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Fig. 13. tVOC (ppb): User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California. 0 to 200 ppb (below green
horizontal line) marks the healthy range, and anything above 2200 ppm is extremely unhealthy (above red horizontal line).

We can perform N=1 experiments using the user’s lifestyle
and atmosome data, and find the impact of atmospheric data
streams on different aspects of user’s biology and behavior.
The atmosome can also act as a confounding factor in many
such relationships and thus should be further incorporated into
the analysis.

A. Temperature

Extreme changes in temperature increase mortality [25].
They also speed up the rate of some chemical reactions,

including the rate at which ground-level ozone forms [9]. Our
system is very effective in detecting such events, because of its
capabilities to collect and post data to the cloud in real-time.
Another characteristic that the system can give information
on is brown adipose tissue metabolism. Colder temperatures
correlate with activation of brown adipose tissue metabolism,
which burns more calories [4]. The atmosome temperature
sensor can collect data through the night to provide users and
researchers with insight on their metabolism.

We characterize the direct impact of temperature reflected in
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Fig. 14. Ozone (ppb): User home ozone levels from February to April 2020 at home in the Sierra Mountains, El Dorado County, California.
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Fig. 16. tVOC Cumulative Exposure: User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California.
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Fig. 17. Ozone Cumulative Exposure: User home from February to April 2020 at home in the Sierra Mountains, El Dorado County, California.
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Fig. 18. Personal Atmosome-Biology Modelling: This graph shows us how
ambient temperature affects the user resting heart rate

user’s heart rate data stream during their sleep. Figure 18
shows the effect of ambient temperature during the night on
a user’s heart rate while sleeping. This data was collected for
one user over 424 nights of sleep using the iPhone mobile
device with Sleep Cycle Application and Garmin Fenix 5
Watch. We clearly see increases in ambient temperature causes
increases the user’s circulation flow (reflected by resting heart
rate). Similar analyses can be performed to find the effect of
other atmospheric streams on the user’s observed health and
behavioral outcomes.

B. Humidity

Humidity affects skin dryness and corneal dryness as well
as nasal passages and sinusitis [27]. Lower humidity levels
can trigger the aforementioned conditions, while higher rel-
ative humidity levels promote the growth of mold, bacteria,
and viruses. Inhaling mold particles leads to asthma attacks,
respiratory infections, nose and eye irritations, and more [2].
Time series humidity data from AMS can provide users with
valuable insight, such as whether to purchase a humidifier or
take other actions to maintain an ideal health state.

Some of the health impacts of humidity can be seen in user
input data streams. The measurable effects can include skin
dryness, eye irritation, and can be recognized from images
using image processing techniques such as color and line
detection of redness and vessel structure on the sclera surface.

C. Particulate Matter

Particulate matter refers to mixtures of microscopic solid
and liquid particles suspended in air. There are two types of
particulate matter that are most relevant to air pollution: PM10
and PM2.5. PM10 refers to particles that are between 2.5 and
10 microns; some examples of these include dust, pollen, and
particles of mold. PM2.5 consists of fine particles that are
2.5 microns in diameter or less; fuel combustion, cigarette
smoke, aerosols, and more can form them. Particulate matter
is a health risk because it is small enough to be inhaled and
deposits itself in airways of the human body. The smaller

particles can even lodge themselves deep in the lungs or enter
the bloodstream. Even short term exposure to PM10 has been
associated with worsening respiratory diseases and can lead
to emergency room visits. Long-term exposure (months to
years) has been linked to premature death, especially in people
with chronic conditions, and leads to reduced lung function
in children [3]. WHO recommends a maximum exposure of
20 pg/m3 for PM10 and a maximum exposure of 10 ug/m3
for PM2.5 [31]. Measuring particulate matter in indoor air
can lead to user implementable corrective actions. Users or
researchers can view both event-specific and long-term PM
levels, allowing them to assess the risks or benefits of specific
lifestyle actions (i.e. being in an open vehicle in traffic) and
their living environments at home (i.e. cooking practices and
household chemical products).

We can observe the user’s response to particulate matter
exposure using audio streams from a mobile phone or wearable
device. The collected audio stream can be used to detect
coughs [12], and allows us to monitor the changes in coughing,
sneezing, wheezing and other audible symptoms in relation to
changes in exposure to both PM2.5 and PM10 particles.

D. Volatile Organic Compounds

A variety of household items, such as candles, cooking
fumes, room fresheners, cosmetics, cleaning products, and
paints, emit Volatile Organic Compounds (VOCs). VOCs are
organic chemicals that are usually in gaseous form at room
temperature, and they are photo-chemically active. Short-term
exposure to VOCs can cause optic or respiratory irritation,
headaches, memory lapses, and dizziness. Long-term exposure
can also incite nausea, fatigue, organ damage, and cancer [20].
In our experimental results, we see that 3d printer use causes
high spikes in tVOCs.

0-220ppb of tVOC is healthy, 221-660ppb is average, 661-
2000ppb is dangerous, and greater than 2000 is very unhealthy
[26]. AMS measures not just long-term general exposure, but
also hyper-local short-term exposure through its collection of
data every ten minutes.

E. Carbon Dioxide

Carbon dioxide (CO,) classifies as a dominant air pollutant.
Moderately high concentrations of CO;, in indoor air can
lead to drowsiness, fatigue, and headaches, and increasing
amounts can cause dizziness and nausea [19]. At extremely
high concentrations, CO, can even cause displacement as-
phyxia [23]. In our experimental data, we also see increases
in CO, during indoor exercise events. The simple process
of improving ventilation can reduce high concentrations of
CO; in homes and workplaces and improve productivity and
comfort.

Health effects of varying levels of CO, are as follows: 351-
450ppm is a healthy outdoor level, 451-700ppm is normal,
701-1000ppm is acceptable, 1001-2500ppm causes drowsi-
ness and other symptoms of discomfort, 2501-5000ppm is
detrimental to health, and anything higher than 5000ppm is
extremely unhealthy [21].
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F. Ozone

While ozone in the stratosphere protects the Earth from
the harmful rays of the sun, the ozone created at the ground
level due to pollution is dangerous and can harm both humans
and crops. Breathing ozone can trigger a variety of health
problems, including chest pain, coughing, throat irritation, and
airway inflammation. It can also worsen bronchitis, emphy-
sema, and asthma, leading to the need for increased medical
care [29]. In the United States in 2016, 90 percent of non-
compliance to the national ambient air quality standards was
due to ozone. Both short-term and long-term exposures to
ozone, at concentrations below the current regulatory stan-
dards, are associated with increased mortality due to respira-
tory and cardiovascular diseases [33].

The guidelines for ozone exposure are the following:
0.05ppm is considered safe for up to 8 hours of exposure
for someone doing heavy work outdoors. 0.08ppm is safe
for up to 8 hours of exposure for someone doing moderate
work outdoors. 0.1ppm is considered safe for up to 8 hours
of exposure for someone doing light work outdoors. No more
than 2 hours of exposure if safe for anyone for an ozone level
of 0.2ppm or more [22].

VI. CONCLUSIONS

In this paper, we present the concept of an atmospheric
exposome — atmosome — and propose a low-cost approach to
leverage multi-modal sensors in building a personal atmosome.
Implications: The utility of this work is to create both the
concept and system to quantify and measure the atmosphere
that surrounds each individual in with continuosu real-time
data streams and to give researchers access to this raw data
though a cloud computing architecture. This system is useful
for various audiences including user focused and research
focused. For instance, it is important to detect smoke, CO,
volatile compounds, gas leakage, and more in the houses
of the elderly to avoid accidents that might result due to
forgetfulness. AMS comes equipped to set up an email alert
system to alert a caregiver immediately upon detecting any
harmful levels of the indoor air and incite external action. It
can also provide valuable feedback for medical professionals
and researchers with both event-specific and time-series data.
Limitations: AMS is limited in its capacity in various ways.
This system at the current stage cannot yet give a validated
prediction window of an adverse health event, such as cancer,
that may happen. Although the Raspberry Pi has memory
storage capabilities, we have not yet utilized these to allow
the system to store data locally. Furthermore, the system is
rather bulky at this stage, making it difficult to pocket or use
as a constant tracker. By miniaturizing the system, we can
incorporate it within mobile devices or wearable devices, thus
giving a more unobtrusive experience for the user to collect
more thorough and accurate atmosome data.

Future Directions: Cybernetic and navigational health ap-
proaches enable individuals to be in control of their health
throughout their lives and strives to maintain an ideal health

state at all times [17], [16]. It consists of real-time, personal-
ized data collection to pinpoint an individual’s current health
state, followed by appropriate lifestyle recommendations to
direct them towards their ideal state. Currently, the atmosome
measurement system accomplishes the step in detecting events
that impact the health state. In the future, we hope to develop
a more robust health estimation and recommendation system
that acts upon the atmosome data to advise individuals. This
can help alter user behavior and lifestyle, especially regarding
location and activities that affect atmosome health quality.
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