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Abstract 
Objectives:  
Microbial resistance exhibits dependency patterns between different antibiotics, termed 
cross-resistance and cross-sensitivity. These patterns differ between experimental and 
clinical settings. It is unclear whether the differences result from biological reasons or from 
confounding, biasing results found in clinical settings. We set out to elucidate the underlying 
dependency patterns between resistance to different antibiotics from clinical data, while 
accounting for patient characteristics and previous antibiotic usage.  
Methods:  Additive Bayesian network modelling was employed to simultaneously estimate 
relationships between variables in a dataset of bacterial cultures derived from hospitalized 
patients and tested for resistance to multiple antibiotics. Data contained resistance results, 
patient demographics, and previous antibiotic usage, for five bacterial species: E. coli 
(n=1054), K. pneumoniae (n=664), P. aeruginosa (n=571), CoNS (n=495), and P. mirabilis 
(n=415). 
Results: All links between resistance to the various antibiotics were positive. Multiple direct 
links between resistance of antibiotics from different classes were observed across bacterial 
species. For example, resistance to gentamicin in E.coli  was directly linked with resistance 
to ciprofloxacin (OR = 8.39, 95%CI[5.58, 13.30]) and sulfamethoxazole-trimethoprim (OR = 
2.95, 95%CI[1,97, 4.51]). In addition, resistance to various antibiotics was directly linked with 
previous antibiotic usage. 
Conclusions:  Robust relationships among resistance to antibiotics belonging to different 
classes, as well as resistance being linked to having taken antibiotics of a different class, 
exist even when taking into account multiple covariate dependencies. These relationships 
could help inform choices of antibiotic treatment in clinical settings. 
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Introduction 
The increase in antibiotic resistance frequencies of bacterial pathogens is leading to an 
ever-growing burden on healthcare systems, in terms of costs for newer drugs, extended 
hospital stays, and increased followup visits, as well as increased cost in terms of lost 
productivity and mortality [1,2]. According to a new report by the United States Centers for 
Disease Control, annually in the USA, 2.8 million people suffer from infections that are 
resistant to antibiotics, resulting in 35,000 deaths per year. They reported that 
multidrug-resistant P. aeruginosa, one of the bacterial species examined in the present 
paper, was estimated to cause nearly 10% of the deaths attributable to antibiotic resistant 
bacteria and over $750M dollars in direct healthcare costs in the USA in 2017 [3]. Hence, 
understanding the nature of the relationships among patient covariates and the resistance to 
the different drugs in the current arsenal of antibiotics is crucial. 
 
Beyond well studied, patient-related predictors for antibiotic resistance, such as age, 
patients’ independence status, previous antibiotic usage, and more [4–6], resistance to 
different antibiotics is often not independent. Cross-resistance, for instance, refers to the 
existence of positive associations between resistance to different antibiotics across bacterial 
pathogens. Such dependencies are a phenomenon known for nearly as long as antibiotics 
have been available [7], with the mechanisms behind it numerous [8]. 
 
Cross-resistance can occur due to inherent biological attributes of bacterial pathogens, when 
antibiotics have similar mechanisms of action and hence shared mechanisms of resistance; 
cross-resistance between chemically dissimilar antibiotics can also occur due to horizontal 
gene transfer of genetic elements coding for resistance to multiple antibiotics [9]. 
Conversely, there is also evidence of cross-sensitivity, or collateral-sensitivity, where 
negative associations between resistance to different antibiotics are observed. However, 
while cross-sensitivity has been demonstrated in laboratory experiments [10–13], when 
examining cultures obtained from patients in a hospital setting, it appears that host factors 
induce mostly positive correlations between resistance to different antibiotics [8]. As a result 
of the complex relationships of resistance among different antibiotics, examining resistance 
to a single antibiotic or even pairs of antibiotics is insufficient. A multivariate approach which 
allows multiple drug resistances as dependent variables is warranted to allow uncovering the 
underlying structure of the observed resistance patterns, which can include conditional 
dependencies between the antibiotics. One such approach, that we utilize in this paper, is 
additive Bayesian network (ABN) modelling [14]. 
 
ABN modelling is a purely data-driven approach to inferring underlying probabilistic structure 
of a set of variables. By essentially searching all possible directed acyclic graphs (DAGs) 
linking a set of variables, evidence for potential causal links can be revealed from the data 
without making strong prior assumptions. An approach with few prior assumptions regarding 
dependencies is of great utility in this area, where resistance to many different drugs and the 
presence of several important covariates need to be analyzed, but no strong hypotheses 
regarding many of the connections are available.The method has been successfully applied 
in veterinary studies of disease [15], as well as to antibiotic resistance in animals [16–18]. A 
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related Bayesian approach was employed in a study of meticillin-resistant Staphylococcus 
aureus transmission in humans [19]. However, to our knowledge the present application is 
the first time ABN has been used in a study of antibiotic resistance to infer cross-resistance 
patterns in human infections. 
 
In this study, we employed ABN modelling to explore the interrelationships among bacterial 
resistance to several antibiotics, using data from bacterial cultures obtained from a single 
hospital in Israel. We used ABN modeling separately on each of the five bacterial species 
most frequent in our dataset, to examine predictors of resistance and the interrelationships 
among the antibiotics tested. 

Materials and methods 

Ethics 
The study was approved by the Helsinki Committee of Rabin Medical Center. 

Data 
We obtained data pertaining to bacterial cultures drawn in Rabin Medical Center, Israel, from 
2013-05-01 to 2015-12-31. The corresponding demographics, previous hospitalizations,  and 
previous in-hospital antibiotic usage in the year prior to the infection, of patients from whom 
the cultures were drawn, were also available. Bacterial cultures were tested for antibiotic 
resistance for an array of antibiotics which had varying rates of resistance, and results of 
non-susceptibility and resistance were combined into a ‘resistant’ category. Bacterial 
infections were considered nosocomial if infections occurred >48 hours after admission. A 
summary of these variables is presented in Table 1. For our analysis, we selected the five 
bacterial species with the largest sample sizes available in the dataset (in order of 
decreasing sample size): Escherichia coli, Klebsiella pneumoniae, Pseudomonas 
aeruginosa, Proteus mirabilis, and Coagulase-negative staphylococci (CoNS). 
 
Table 1:  Descriptive statistics of patients and bacterial isolates. 
 

 E. coli 
(n=1054) 

K. pneumoniae 
(n=664) 

P. 
aeruginosa 

(n=571) 

P. mirabilis 
(n=415) 

CoNS 
(n=495) 

Age: Mean (SD) 76.7 (14.8) 73.5 (15.0) 71.7 (16.1) 74.8 (14.1) 72.8 (18.0) 

Female 568 (53.9%) 251 (37.8%) 197 (34.5%) 131 (31.6%) 221 (44.6%) 

T.F.aminoglycoside 142 (13.5%) 137 (20.6%) 120 (21.0%) 101 (24.3%) 90 (18.2%) 

T.F.fluoroquinolone 268 (25.4%) 214 (32.2%) 142 (24.9%) 97 (23.4%) 136 (27.5%) 

T.F.betalactam 515 (48.9%) 468 (70.5%) 437 (76.5%) 271 (65.3%) 305 (61.6%) 

T.F.other 406 (38.5%) 354 (53.3%) 380 (66.5%) 237 (57.1%) 268 (54.1%) 

Hosp: Mean (SD) 2.05 (1.29) 2.68 (1.10) 2.91 (1.11) 2.91 (1.29) 2.41 (1.19) 
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Nosocomial 237 (22.5%) 244 (36.7%) 344 (60.2%) 198 (47.7%) 196 (39.6%) 

Polymicrobial culture 192 (18.2%) 225 (33.9%) 289 (50.6%) 213 (51.3%) 35 (7.1%) 

Amikacin  93 (14.0%)    

Ampicillin 858 (81.4%)     

Ceftazidime   74 (13.0%)   

Cefuroxime    233 (56.1%)  

Chloramphenicol     239 (48.3%) 

Ciprofloxacine 523 (49.6%) 389 (58.6%)  241 (58.1%)  

Erythromycin     328 (66.3%) 

Fusidic acid     218 (44.0%) 

Gentamicin 216 (20.5%) 279 (42.0%) 87 (15.2%) 219 (52.8%) 196 (39.6%) 

Imipenem   91 (15.9%)   

Ofloxacin     291 (58.8%) 

Oxacillin     366 (73.9%) 

Sulf-Trim 534 (50.7%)   279 (67.2%) 253 (51.1%) 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Sulf-Trim = 
sulfamethoxazole-trimethoprim. Antibiotics listed refer to resistance to those antibiotics. 
Hosp = Log of the number of days hospitalized in the prior year plus 1. 

Statistical analysis 
We selected which antibiotics to include in the analysis by keeping only those with minimal 
missing data and which did not reduce the number of complete cases appreciably (<10% 
loss). We performed some variable selection to assure stable statistical models with no 
perfect or near-perfect separation, by not including perfectly or near perfectly correlated 
antibiotics and selecting only antibiotics which contained a minimum of 3% resistance in 
each bacterial subsample. Variables excluded from analysis are presented in Supplementary 
Table S1, along with their tetrachoric correlations with the relevant included variables. This 
resulted in analysis of between three and seven antibiotics for the five bacterial species, 
each analyzed separately. When constructing the ABN, the following covariates were 
included, in addition to the antibiotic resistance variables: demographic variables (age, sex, 
and days hospitalized in the previous year), binary culture type variables (nosocomial and 
polymicrobial), and antibiotic use in the previous year. Antibiotics used were first grouped 
into classes and the three most frequent classes across the entire dataset were included, 
along with whether any other antibiotics were taken which did not belong to the three largest 
classes. The classes were aminoglycosides, fluoroquinolones, betalactams, and other 
antibiotics not part of these three classes. Table 1 presents summary statistics for all 
variables used in our models. 
 
Data were analyzed using additive Bayesian network (ABN) modelling [14,20], with version 
2.1 of the R package abn [21] on an R 3.6.1 installation [22]. Briefly, ABN modelling is a 
purely data-driven, exploratory approach, originating in machine learning, that is often used 
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for hypothesis generation for causation among a set of variables. By essentially searching all 
possible directed acyclic graphs (DAGs) linking a set of variables, a model for the 
dependency of the variables in the data can be inferred without making strong prior 
assumptions. This model, depicted in a DAG, shows which variables are directly connected, 
or linked, via arcs, and the coefficients of these arcs are directly analogous to the adjusted 
odds ratios obtained from multiple logistic regression analysis. While no assumptions of 
causal relationships are required, we restricted the model space to disallow causal paths 
that made no sense for our study: (1) sex could only cause other variables and not be 
caused by any other variable, (2) age at testing could be caused by sex but no other 
variable, (3) the four variables for antibiotics given in the previous year could only be caused 
by age and sex and no other variable, (4) hospitalization in the prior year could not be 
caused by presence of nosocomial infection but could be caused by any other variable, (5) 
nosocomial infection could not be caused by resistance to any drug but can be caused by 
any other variable; and (6) polymicrobial cultures as well as all drug resistances could be 
caused by any of the variables. In addition, no causal paths were forced to be in the model. 
 
There are several steps involved when implementing an ABN analysis. We first used the 
exact search method to determine the maximum number of parents (i.e., nodes that have an 
arc causing another node) needed for any child (i.e., variable caused by another variable) in 
the model, above which there was no improvement in likelihood, by repeatedly running the 
exact search and setting the maximum number of parents between one and six. Never were 
more than four parents needed (see Supplementary Table S2). Next, we used a parametric 
bootstrapping approach to correct for overfitting [23]. This was done by simulating 1000 
samples of the same size as in the original data, by feeding the ABN model chosen (which 
arcs were present and their parameter estimates) to the JAGS software, version 4.3.0 [24]. 
This produces random samples generated from the parameter estimates of the chosen 
model. These samples were each analyzed with ABN in exactly the same way as performed 
initially. Next, we examined each of the 1000 ABN models and retained only those arcs 
present in a majority (at least 50%) of them, a common cutoff as suggested by the ABN 
developers [14]. Supplementary Table S2 contains the number of arcs present in the model 
both before and after bootstrapping. Finally, we ran ABN on the original dataset constraining 
the model to only include the selected consensus arcs.This final model was used to produce 
95% Bayesian credible intervals for each of the parameter estimates, which are analogous 
to coefficients from logistic regression models, i.e., the odds ratio (OR) of the effect of parent 
(independent) on child (dependent) variable. Due to the existence of topologies that are 
equivalent in terms of likelihood in Bayesian networks [18,25–30], we present the models’ 
arcs and their corresponding parameters, but not interpreting their direction. 

Results 
Before fitting the ABNs, we removed antibiotic variables which were nearly identical in their 
resistance patterns. This yielded expected results between similar antibiotics but also some 
extremely high associations between antibiotics of different classes. For example, we found 
that in all cultures where they were tested, the betalactams ceftazidime, ceftriaxone, and 
cefuroxime were all perfectly inter-correlated, and ertapenem and piperacillin were nearly 
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perfectly correlated with them. However, amikacin and ampicillin were nearly perfectly 
correlated in the E.coli dataset, yet are members of different drug classes. These and 
additional highly correlated pairs of antibiotics can be found in Table S1. It is important to 
note that the results derived below are practically identical for members of the antibiotic pairs 
presented in Table S1. 
 
We present the final ABNs estimated from our data, for five bacterial species, in Figures 1 
through 5. Each arc in the plots represents an estimated direct link between the variables, 
where adjacent numbers are the parameter estimates of the OR of this link. In addition, 
these values along with their 95% credible intervals are presented in Tables 2-6. Notably, 
none of the credible intervals contained the value one, i.e. no association, although this is 
not a required condition by the Bayesian network structure discovery algorithm [14]. This 
strengthens the notion that the connections found by our models are robust. 
 
To summarize the analyses across the five bacterial species examined, we constructed a 
matrix of all possible arcs present in any of the five models (see Supplementary Figure 1). 
Within each cell, we present the number of models which contained the corresponding arc 
over the number of analyses which could have contained that arc (that is, counting datasets 
in which both variables were present). For ease of interpretation, variables which appeared 
in only a single model were omitted (Figure 6). Importantly, the signs of all coefficients, when 
arcs were found, were consistent throughout the analysis of all five datasets. That is, no link 
between variables was found negative for a certain bacterial species and positive in another. 
 
The most important results from our analyses were the direct connections found between 
resistance to different antibiotics. These were consistently positive throughout all 
antibiotics and all bacterial species (Tables 2-6) . This implies that even when accounting 
for the possible connections between the different variables, acquisition of resistance to a 
certain antibiotic only served to enhance the probability of resistance to other antibiotics in 
our data.  
 
Interestingly, we found several robust links between antibiotics of different classes. Direct 
links from different antibiotic classes to gentamicin were especially prevalent. Gentamicin 
and sulfamethoxazole-trimethoprim were directly linked in the E. coli (Table 2 and Figure 1) 
and P. mirabilis datasets (Table 5 and Figure 4). Furthermore, gentamicin resistance was 
directly linked to resistance to several betalactam antibiotics. It was directly linked to both 
resistance to ceftazidime and imipenem (Table 4 and Figure 3) in the P. aeruginosa dataset 
and to cefuroxime (Table 5 and Figure 4) in the  P. Mirabilis dataset. Gentamicin resistance 
was also directly linked to resistance to ciprofloxacin, a fluoroquinolone, in the E. coli, K. 
pneumoniae, and P. mirabilis datasets. Additionally, sulfamethoxazole-trimethoprim, was 
directly linked to ciprofloxacin in both datasets where they were tested (E. coli [Table 2 and 
Figure 1] and P. mirabilis [Table 5 and Figure 4]). 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://www.zotero.org/google-docs/?yVpkbN
https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

Figure 1:  ABN model for E. coli. Arcs denote direct links between variables and adjacent 
values are ORs derived from the model (see Table 2). Nodes with antibiotic names denote 
resistance to those antibiotics (enclosed in a green rectangle). T.F. prefix denote variables 
indicating having taken an antibiotic from the given class in the prior year (enclosed in a red 
rectangle); Hosp = log(days hospitalized + 1); Poly = polymicrobial culture; AMP = ampicillin; 
CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim = sulfamethoxazole-trimethoprim. 
Sex=male. 
 

 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 5, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

Table 2 : Escherichia coli OR estimates and their 95% credible intervals. None of the credible 
intervals contains zero. 
 
Variable|Affected by 2.5% OR 97.5% 

T.F.aminoglycoside|Sex 2.18 3.24 4.79 

T.F.fluoroquinolone|Sex 1.69 2.27 3.04 

T.F.betalactam|Sex 1.92 2.48 3.18 

T.F.other|Age 0.69 0.79 0.90 

T.F.other|Sex 1.64 2.13 2.76 

Hosp|T.F.aminoglycoside 1.20 1.38 1.58 

Hosp|T.F.fluoroquinolone 1.57 1.77 1.98 

Hosp|T.F.betalactam 1.56 1.74 1.94 

Hosp|T.F.other 1.64 1.84 2.06 

Nosocomial|T.F.aminoglycoside 0.23 0.39 0.60 

Nosocomial|Hosp 2.75 3.36 4.17 

Poly|T.F.betalactam 1.87 2.66 3.82 

Poly|Nosocomial 1.64 2.34 3.30 

AMP|CIP 10.45 17.51 32.46 

CIP|Sex 1.46 1.93 2.51 

CIP|T.F.fluoroquinolone 1.72 2.47 3.55 

CIP|Hosp 1.23 1.44 1.67 

GEN|T.F.other 1.34 1.89 2.64 

GEN|CIP 5.58 8.39 13.30 

Sulf-Trim|CIP 4.58 6.14 8.19 

Sulf-Trim|GEN 1.97 2.95 4.51 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = log(days 
hospitalized + 1); Poly = polymicrobial culture;  AMP = ampicillin; CIP = ciprofloxacin; GEN = 
gentamicin; Sulf-Trim = sulfamethoxazole-trimethoprim. 
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Figure 2:  ABN model for K. pneumoniae. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model (see Table 3). Nodes with antibiotic names 
denote resistance to those antibiotics (enclosed in a green rectangle). T.F. prefix denotes 
variables indicating having taken an antibiotic from the given class in the prior year 
(enclosed in a red rectangle); Hosp = log(days hospitalized + 1); Poly = polymicrobial 
culture; AMK = amikacin; CIP = ciprofloxacin; GEN = gentamicin. 
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Table 3:  Klebsiella pneumoniae OR estimates and their 95% credible intervals. None of the 
credible intervals contains zero. 
 
Variable|Affected by 2.5% OR 97.5% 

T.F.other|Age 0.60 0.72 0.84 

Hosp|T.F.aminoglycoside 1.31 1.53 1.78 

Hosp|T.F.betalactam 2.00 2.32 2.68 

Hosp|T.F.other 1.57 1.80 2.06 

Nosocomial|Hosp 2.19 2.70 3.38 

Poly|Nosocomial 2.06 2.90 4.09 

AMK|CIP 6.06 12.90 35.65 

CIP|T.F.other 1.50 2.16 3.09 

CIP|GEN 5.10 7.46 11.12 

GEN|Hosp 1.28 1.52 1.80 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = log(days 
hospitalized + 1); Poly = polymicrobial culture; AMK = amikacin; CIP = ciprofloxacin; GEN = 
gentamicin. 
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Figure 3 : ABN model for P. aeruginosa. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model (see Table 4). Nodes with antibiotic names 
denote resistance to those antibiotics (enclosed in a green rectangle). T.F. prefix denotes 
variables indicating having taken an antibiotic from the given class in the prior year 
(enclosed in a red rectangle); Hosp = log(days hospitalized + 1); Poly = polymicrobial 
culture; CAZ = ceftazidime; GEN = gentamicin; IPM = imipenem. 
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Table 4:  Pseudomonas aeruginosa OR estimates and their 95% credible intervals. None of 
the credible intervals contains zero. 
 
Variable|Affected by 2.5% OR 97.5% 

Hosp|T.F.aminoglycoside 1.21 1.44 1.70 

Hosp|T.F.fluoroquinolone 1.14 1.34 1.56 

Hosp|T.F.betalactam 1.82 2.19 2.61 

Hosp|T.F.other 1.52 1.79 2.10 

Nosocomial|T.F.fluoroquinolone 0.28 0.45 0.69 

Nosocomial|Hosp 2.37 2.97 3.82 

Poly|Nosocomial 1.43 2.03 2.88 

CAZ|Sex 1.37 2.45 4.74 

CAZ|Nosocomial 1.48 2.62 4.88 

GEN|CAZ 4.71 8.28 14.46 

IPM|CAZ 2.24 4.15 7.51 

IPM|GEN 2.09 3.79 6.71 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = log(days 
hospitalized + 1); Poly = polymicrobial culture; CAZ = ceftazidime; GEN = gentamicin; IPM = 
imipenem. 
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Figure 4:  ABN model for P. mirabilis. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model (see Table 5). Nodes with antibiotic names 
denote resistance to those antibiotics (enclosed in a green rectangle). T.F. prefix denotes 
variables indicating having taken an antibiotic from the given class in the prior year 
(enclosed in a red rectangle); Hosp = log(days hospitalized + 1); Poly = polymicrobial 
culture; CXM = cefuroxime; CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim = 
sulfamethoxazole-trimethoprim. 
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Table 5:  Proteus mirabilis OR estimates and their 95% credible intervals. None of the 
credible intervals contains zero. 
 
Variable|Affected by 2.5% OR 97.5% 

Age|Sex 0.55 0.69 0.84 

T.F.aminoglycoside|Sex 1.51 2.59 4.68 

T.F.betalactam|Sex 1.73 2.68 4.16 

T.F.other|Sex 1.51 2.35 3.59 

Hosp|T.F.aminoglycoside 1.31 1.57 1.86 

Hosp|T.F.betalactam 1.54 1.85 2.20 

Hosp|T.F.other 1.91 2.27 2.69 

Nosocomial|Hosp 2.46 3.20 4.32 

Poly|Nosocomial 2.05 3.09 4.68 

CXM|T.F.other 2.16 3.26 4.95 

CIP|Poly 0.17 0.29 0.45 

CIP|CXM 4.00 6.28 10.19 

GEN|CXM 7.47 12.44 21.57 

GEN|CIP 2.80 4.71 8.04 

Sulf-Trim|T.F.other 1.50 2.45 4.07 

Sulf-Trim|CIP 1.51 2.57 4.38 

Sulf-Trim|GEN 3.51 5.96 10.58 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = log(days 
hospitalized + 1); Poly = polymicrobial culture; CXM = cefuroxime; CIP = ciprofloxacin; GEN 
= gentamicin; Sulf-Trim = sulfamethoxazole-trimethoprim. 
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Figure 5 : Directed acyclic graph of the final reduced model for CoNS. Arcs denote direct 
links between variables, and adjacent values are ORs derived from the model (see Table 6). 
Nodes with antibiotic names denote resistance to those antibiotics (enclosed in a green 
rectangle). T.F. prefix denotes variables indicating having taken an antibiotic from the given 
class in the prior year (enclosed in a red rectangle); Hosp = log(days hospitalized + 1); Poly 
= polymicrobial culture; CHL = chloramphenicol; ERY = erythromycin; Fusid = fusidic acid; 
GEN = gentamicin; OFX = ofloxacin; OXA = oxacillin; Sulf-Trim = 
sulfamethoxazole-trimethoprim. 
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Table 6:  Staphylococcus coag. neg. group OR estimates and their 95% credible intervals. 
None of the credible intervals contains zero. 
 
Variable|Affected by 2.5% OR 97.5% 

T.F.aminoglycoside|Sex 1.31 2.15 3.56 

T.F.betalactam|Age 0.58 0.71 0.86 

T.F.other|Age 0.53 0.65 0.79 

Hosp|T.F.aminoglycoside 1.36 1.65 1.98 

Hosp|T.F.fluoroquinolone 1.29 1.52 1.78 

Hosp|T.F.betalactam 1.67 1.98 2.33 

Hosp|T.F.other 1.35 1.59 1.86 

Nosocomial|Hosp 2.66 3.42 4.48 

CHL|OFX 5.13 7.72 12.03 

ERY|OFX 5.80 8.94 14.06 

Fusid|OXA 2.88 4.64 7.73 

GEN|T.F.aminoglycoside 1.51 2.57 4.42 

GEN|OFX 5.09 8.04 13.48 

OFX|T.F.fluoroquinolone 1.49 2.52 4.37 

OFX|Hosp 1.69 2.11 2.64 

OXA|OFX 9.90 18.77 40.75 

OXA|Sulf-Trim 5.22 10.51 24.46 

Sulf-Trim|OFX 6.11 9.27 14.35 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = log(days 
hospitalized + 1); Poly = polymicrobial culture; CHL = chloramphenicol; ERY = erythromycin; 
Fusid = fusidic acid; GEN = gentamicin; OFX = ofloxacin; OXA = oxacillin; Sulf-Trim = 
sulfamethoxazole-trimethoprim. 
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Figure 6:  Consistency matrix showing proportion of models which contain a given arc. Each 
cell contains the proportion of models containing both variables and having a direct link 
between them. Colors correspond to positive or negative links (all signs of links were 
consistent between the datasets).  Variables which appear with only one of the  5 bacterial 
species were omitted for clarity (but are found in Figure S1). T.F. prefix denotes having 
taken an antibiotic from the given class; Hosp = log(days hospitalized + 1); Poly = 
polymicrobial culture; CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim = 
sulfamethoxazole-trimethoprim.  

 
In all bacterial species we found a positive, direct link between having taken a betalactam, 
aminoglycoside, or “other” (i.e., any antibiotic not a member of the three classes which were 
most frequently used) antibiotic in the prior year, with days hospitalized in the prior year. In 
addition, three out of five of the analyses found a relationship between days hospitalized in 
the prior year and having taken a fluoroquinolone antibiotic. These relationships are 
somewhat expected, as more days spent at the hospital likely positively associated with 
having received antibiotic treatment, and vice versa. 
 
Age and sex were only directly linked in the P. mirabilis dataset (Table 5 and Figure 4), with 
females being older at the time of the bacterial infection. When analyzing E. coli (Table 2 
and Figure 1), K. pneumoniae (Table 3 and Figure 2), and CoNS (Table 6 and Figure 5), we 
found that older people were less likely to be prescribed an antibiotic in the “other” category. 
Older people were also less likely to be prescribed a betalactam in the CoNS model (Table 6 
and Figure 5). Males were more likely to be prescribed aminoglycosides (E. Coli [Table 2 
and Figure 1], P. mirabilis [Table 5 and Figure 4], and CoNS [Table 6 and Figure 5]), 
betalactams and other antibiotics (E. Coli [Table 2 and Figure 1] and P. mirabilis [Table 5 
and Figure 4]), and fluoroquinolones (E. Coli [Table 2 and Figure 1]). Additionally, males had 
infections with increased resistance to ciprofloxacin in the E. coli dataset (Table 2 and Figure 
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1), and to ceftazidime in the P. aeruginosa dataset (Table 4 and Figure 3). Resistance to 
cefuroxime was also positively linked to age in the E. coli dataset.  
 
Having a nosocomial infection was directly linked to the presence of multiple bacteria in the 
culture in nearly all bacterial species, as has been shown [31,32], with CoNS being the one 
exception. This is plausible, as CoNS are often isolated as a result of culture contamination 
[33], and their presence might be associated with a decreased probability of the culture 
yielding other bacterial species. Correspondingly, the presence of additional bacterial 
species in a sample containing CoNS was less frequent than in all other bacterial species 
(7%, see Table 1). Nosocomial infection was also related to the number of days hospitalized 
during the prior year in all five bacterial species. This is expected, since acquiring a 
nosocomial infection by definition entails that the patient was hospitalized beforehand. 
Additionally, nosocomial infections were directly linked to having taken a fluoroquinolone in 
the P. aeruginosa dataset (Table 4 and Figure 3) and having taken an aminoglycoside in the 
E. coli dataset (Table 2 and Figure 1). Polymicrobial cultures were only directly linked to 
decreased resistance to one drug (ciprofloxacin) in only one bacterial species (P. mirabilis; 
Table 5 and Figure 4 ). 

Discussion 
We have performed an additive Bayesian network analysis in an attempt to uncover the 
underlying dependency structure among patient covariates, measures of antibiotic use and 
different antibiotic resistance types, in cultures of five bacterial species. Such an analysis 
has the advantages of not only shedding light on the relationships between all pairs of 
variables examined, but can identify which variables are directly linked rather than only 
having indirect associations. 
 
All the connections between resistance to antibiotics identified by our statistical models, in all 
examined bacterial species, indicated positive associations. That is, resistance to a certain 
antibiotic was never found to decrease resistance to other antibiotics. Furthermore, some of 
the associations between resistance to different antibiotics were so strong they could not be 
included in the ABN models without causing numerical issues. This is expected with very 
similar antibiotics, but surprisingly appeared between antibiotics of different classes as well 
(Table S1). 
 
Altogether, our results appear at odds with recent experimental findings. Although 
cross-resistance is prevalent in experimental settings, even between different classes of 
antibiotics, cross-sensitivity is also often observed  [10–13,34]. Nevertheless, as opposed to 
experimental data, clinical findings usually identify positive associations between resistance 
of different antibiotics [35]. However, the reasons for the discrepancy between the 
experimental and clinical results may be hard to elucidate due to the potential presence of 
confounders in observational, clinical data. By using ABN modelling, we made a step 
towards resolving this problem and obtained estimates that reflect innate cross-resistance 
patterns rather than heavily confounded associations. Hence, our results strengthen the 
notion that at least some of the cross-resistance patterns observed in clinical settings relate 
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to innate bacterial mechanisms of resistance acquisition. For instance, the direct 
cross-resistance we identified between fluoroquinolones and macrolides, between 
beta-lactams and aminoglycosides, and between aminoglycosides and quinolones, have 
been previously demonstrated in other clinical settings [36–38]. 
 
Our results have practical implications on antibiotic treatment. Knowledge of predictors for 
antibiotic resistance, and in particular for cross-resistance and previous antibiotic usage, is 
important for tailoring efficient antibiotic treatment regimes to patients. Combination therapy, 
for example, where a patient is treated with multiple antibiotics simultaneously, has been 
shown to yield beneficial results to mitigate resistance [37,39,40]. However, the efficiency of 
combination therapy can be hampered by acquisition of multiple antibiotic resistance of the 
infecting bacteria. By having estimates of risks for cross-resistance based on patient 
demographics and previous antibiotic usage, we can mitigate this risk and seek to treat with 
combinations of antibiotics which have lower probability of cross-resistance. 
 
Moreover, our results could be used to suggest appropriate drugs for alternating or cycling 
regimes of antibiotic therapy, which have been hypothesized in various settings as a way to 
reduce emergence of antibiotic resistance [41–43]. Suggestions for selecting such drugs 
using estimates inferred from ABNs take into account the clinical characteristics of the 
patients and circulating bacterial strains. Hence, ABNs can identify patterns of 
cross-resistance which might be different than those obtained in vitro and can provide 
additional information about the potential efficiency of different antibiotic regimes. 
 
However, the main limitation of our study is that our data lacks previous exposure to 
antibiotics outside the hospital. Potentially, patients could have been exposed to antibiotic 
treatment in the community rather than during hospitalization, introducing noise into our 
estimates of the effects of previous antibiotic usage. However, our previous study on a 
similar dataset showed that prior antibiotic use in the hospital is a strong predictor for 
antibiotic resistance which can yield high accuracy predictions even without outpatient 
antibiotic use [5]. Additionally, the consistency of our estimates between bacterial species, 
as well as relatively narrow coverage of the estimated CIs indicate that our results should be 
robust to these mising data.  
 
To conclude, our study provides estimates for cross-resistance between different antibiotics 
in bacterial pathogens isolated in clinical settings. By using an ABN model, we control for 
confounders and provide results for direct and indirect links between different patient 
characteristics and antibiotic resistance. Although our analysis does not provide direct 
causal effect estimates, it presents a step towards studying causal effects on antibiotic 
resistance patterns. Revealing the dependency structures of multiple variables 
simultaneously instead of analysing associations affecting a single dependent variable 
should provide more robust and less spurious relationships between variables. Hence, our 
results should be of utility in decision making regarding antibiotic treatments strategies. 
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