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Abstract (238 words, 250 max) 

Background:  The draconian measures used to control COVID-19 dissemination 
have been highly effective but only at enormous socioeconomic cost. Evidence 
suggests that “superspreaders” who transmit the virus to a large number of 
people, play a substantial role in transmission; recent estimates suggest that about 
1-20% of people with the virus are the source for about 80% of infections. We 
used an agent-based model to explore the interplay between social structure, 
mitigation  and superspreading.  

Methods: We developed an agent-based model with a subset of “superspreader“ 
agents that transmit disease far more efficiently. These agents act in a social 
network that allows transmission during contacts in three sectors: “home,” 
“work/school” and “other”. We simulated the effect of various mitigation 
strategies that limit contacts in each of these sectors, and used the model to fit 
COVID-19 mortality data from Sweden. 

Findings: Reducing contacts in the “other” sector had a far greater impact on 
epidemic trajectory than did reducing “home” or “work/school” contacts; this 
effect was substantially enhanced when the infectivity of children was reduced 
relative to that of adults. The model fit Swedish hospitalization data with 
reasonable assumptions about the effect of Sweden’s mitigation policies on 
contacts in the different sectors.  
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Interpretation: Our results suggest COVID-19 could be controlled by limiting 
large gatherings and other opportunities for contacts between people in 
restaurants, sporting events, concerts and worship services) while still allowing 
regular contacts in the home or at work and school. 

Keywords: SARS-CoV-2, coronavirus, COVID-19, agent-based model, 
superspreader, mitigation strategies. 
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Research in context: 

Evidence before this study: 
Superspreading events have long been known to be important in the epidemiology 
of many infectious diseases, including tuberculosis, measles, Ebola and SARS. 
Since the emergence of SARS-CoV-2, epidemiologic analyses have inferred 
substantial individual-level variation in transmissibility, with an estimated 1% to 
20% of infected persons causing about 80% of all COVID-19 cases. 

Added value of this study: 
We developed an agent-based socially structured model to simulate the effect of 
superspreaders in COVID-19 transmission in the context of country-wide 
“lockdown” policies. These simulations indicate that COVID-19 can be 
effectively mitigated by limiting contacts between people who otherwise rarely 
meet, while allowing home and most work/school contacts to continue. 

Implications of all available evidence: 
It is crucial to include heterogeneity in individual infectiousness when modeling 
the impact of mitigation strategies on observed COVID-19 epidemic patterns. 
Reducing opportunities for superspreading by limiting random contacts outside 
home and work could be the most effective way to control COVID-19. Our 
findings suggest why the epidemic has continued to decline following re-opening 
of work and school in European countries. The superspreader phenomenon may 
also explain the variability in COVID-19 incidence in rural and urban areas 
within a country. 

Text: 2911 words 
 
Introduction 
Countries worldwide have responded to the COVID-19 pandemic by 
implementing an unprecedented lock-down strategy: banning large gatherings of 
any kind, closing schools and most workplaces, and prohibiting many normal 
activities such as walking in parks, eating at restaurants and attending large 
gatherings such as sporting events and religious services. These lock-downs have 
dramatically limited disease transmission, but only at enormous socioeconomic 
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cost; however, Sweden became an outlier among European countries by only 
prohibiting large gatherings and relying on the population to practice social-
distancing while leaving schools and workplaces open.1  Unfortunately, we do 
not know enough about which aspects of such lockdowns are most effective. 
Given that many countries are already in the process of easing lockdown 
restrictions, the relative contribution of reducing contacts at home, schools, 
workplaces and other sectors of society needs to be thoroughly understood as 
soon as possible. 

“Superspreaders”—single individuals who infect a large number of people in 
a short time—must be considered when trying to determine which mitigation 
strategies work best. Heterogeneity in transmission risk is a well known 
phenomenon in infectious diseases2,3. Superspreaders had a large impact on the 
transmission dynamics of the recent coronavirus threats SARS4 and MERS5. In 
2005, Lloyd-Smith et al. concluded that ‘superspreading events’ are important in 
epidemics of many infectious diseases, with about 20% of the infected 
population being responsible for about 80% of transmission events6.  

Considerable evidence indicates that superspreaders are also important in the 
spread of COVID-192, and a list of 1100 outbreaks around the world involving 
superspreaders have been compiled7. Examples include an outbreak in South 
Korea in which a single infected person at a night club causing at least 50 new 
infections, and a 2.5 hour choir rehearsal in Skagit, Washington where 52 out of 
61 attendees were infected.8 Such events, as well as outbreaks in prisons and 
hospitals, are reminiscent of documented superspreader events in the 2003 SARS-
CoV outbreak. Morever, multiple studies of COVID-19 have quantitatively 
assessed the heterogeneity of infectivity among infected individuals, finding that 
1% to 20% of infected people cause about 80% of new infections.9–13   

Given the evidence that superspreaders are important in COVID-19 
transmission, models should not rely on a single parameter such as the basic 
reproductive number (R0), because doing so obscures the considerable impact of 
individual variation in infectivity on an epidemic’s trajectory.3,15–17 Agent based 
models, however, are very well-suited to investigate the role of superspreaders. 
Like standard compartmental SEIR models, they can easily reproduce the 
epidemic curves observed in a population. Unlike purely compartmental models, 
however, agent-based models can adjust individual infectivity and mimic repeated 
social interactions within defined groups. In an agent-based model an agent goes 
to the same workplace in the morning and home to the same household at night.  
In contrast, inhabitants of standard compartmental models go to a new workplace 
and home to a new family in every time step. Agent-based models thereby can 
capture effect the disease saturating a household or workplace as the available 
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susceptible agents become infected. These are exactly the properties needed to 
investigate how superspreaders might affect the various mitigation strategies 
government officials might choose to combat COVID-19. 

We have used agent-based models to investigate how superspreaders in a 
population might affect non-pharmaceutical mitigation efforts to control 
COVID-19. Our findings suggest that COVID-19 might have an Achilles Heel, 
namely that limiting contacts in the portion of the social environment where 
many new and random contacts are encountered and in which superspreading 
events can occur likely has a far greater benefit than closing workplaces, schools 
and other places where repeated contacts occur among small social circles. 

Methods 

We developed an age-stratified, agent-based model with three simulated 
sectors of social contact through which the disease can be transmitted. Each 
agent was assigned to one “home” and one “work/school” unit and participated 
in random ``other” contacts. Agents were stratified in 10 year intervals and 
assigned age-dependent social activity 18. Each home had an average of 2.1 
members, in which adults were in the same or adjacent age band and children 
were 20-40 years younger than their parents. Adult agents 20-70 years of age 
were assigned a “workplace,” a Poisson distributed cluster of average size 6 
agents; to simulate interactions between workplaces, each agent’s connections 
were assigned to two random persons outside this cluster.  Agents under 20 years 
old were assigned a “school” class of 18 members; each school class was also 
assigned two “teachers” age 20-70, which constituted the teachers’ workplace. 
Agents older than 70 years were not assigned to a workplace. “Other” contacts 
were chosen at random from the entire population.  

Progression of disease was modeled in a Susceptible, Exposed, Infected, 
Recovered (SEIR) framework, with agents passing through each stage according 
to preset rules (Figure 1). The exposed period was set to 5 days, extending from 
infection to symptom onset. Agents became infectious 2.5 days after infection 
and remain so through day 3 after symptom onset19. All transitions between 
stages were implemented as a corresponding probability per time to pass to next 
stage. Age-dependent conditional probabilities governed progression from 
symptomatic illness to hospitalization and intensive care (ICU) use (Table S1)20; 
probability of death was calibrated to produce a rate of 0.3%.  
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Most agents were assigned an infection activity parameter (si) of 1, indicating 
that the agent has one chance of transmitting the virus at a given contact. A 
chosen proportion of agents were designated as superspreaders, with si >1; unless 
otherwise noted, 10% of agents were assigned si = 50. Simulations were run in a 
population of 1 million seeded with 100 infected agents.. In defined time steps 
Δt within an agent’s infectious period, each infected agent was chosen for a 
contact with an age-dependent probability. For each chosen agent we assigned a 
contact in one of the three sectors: home, work/school, other. The  were selected 
with probabilities such that they occur in a ratio of 1:1:1 across the population18 
Contacts were selected contacts so that 1/3 occurred in each of our three social 
sectors, after Mossong et al. (2008), which weighted the “home” sector at 19% 
to  50% of all contacts,  the “work/school” sector at 23% to 37% and the 
remaining sectors at  27% to 44%.18 Potential targets for infection were also 
selected based on the age dependent probability.   

At each contact, the disease was transmitted with probability Pt = β si  Δt, 
where the rate constant β is adjusted to fit the observed 23% growth per day of 
an unmitigated COVID-19 epidemic21.  The time step length was chosen to 
ensure that the probability of infection was always less than 1.  We simulated 
mitigation strategies by not permitting infection during a portion of contacts in 
one or more of the contact categories. We began mitigation when the infected 
population reached 1% of the total.  

In a sensitivity analysis we explored the effect of agents having a gamma-
distributed infectivity β si , where si was drawn from a Gamma distribution P(s) 
proportional to s^{k-1} exp(- k s) with continuous s>0 and where k is the 
dispersion parameter.6 For each simulation the rate β is adjusted to fit the 
exponential growth of an unmitigated epidemic of 23% per day. Attempts at 
infection were implemented as described above, using discrete time steps Δt in 
which agent i  has a probability to transmit Pt = β si  Δt.  

We fitted model-generated epidemic curves to real-life daily numbers of 
COVID-19 fatalities in Sweden.22 To mimic Sweden’s unusual mitigation 
strategy, we left “work” contacts at 100% and varied 1) the date of onset of the 
mitigation effort, 2) the assumed proportion of cases at the start of mitigation 
and 3) the proportion of “other” contacts left active to achieve best chi-squared 
fit to the data. The fit assumes an overall mortality rate of 0.3% for COVID-19 
in Sweden; if this mortality were higher, then the the fitted number of infected 
persons at onset of mitigation would be smaller. 
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Results 

We first simulated epidemic trajectories in our socially structured model both 
without and with superspreaders. We began with all contacts allowed, then 
applied two simulated mitigation strategies, removing in turn “work/school” and 
“other” contacts (Figure 3). As expected, when we allowed all contacts (i.e., no 
mitigation), the presence of superspreaders changed the epidemic trajectory very 
little compared to the model with no superspreaders (panels a, d). When 
“work/school” contacts were eliminated, the epidemic curves with and without 
superspreaders were still similar: the epidemics had been broadened and 
flattened somewhat, with slightly lower peaks in cases and in ICU demand 
(panels b, e). However, including superspreaders in the model greatly increased 
the impact of preventing “other” contacts (panels c, f) compared to the cases 
where superspreaders were not present. The projected number of cases and ICU 
admissions were both substantially smaller when superspreaders were included 
in the model, and peak ICU demand was far smaller. In terms of cumulative 
infections, with no superspreaders total cases dropped from 89% of all agents in 
the unmitigated case to 79% and 55% of the simulated population when closing 
the “work/school” and “other” sectors, respectively. But with superspreaders, 
closing “other” contacts had a dramatic impact, essentially halting the epidemic 
in its tracks and reducing cumulative cases to only 17% of the population, with 
an even greater impact on ICU demand.   

Next, we assessed the sensitivity of the impact of reducing “other” contacts 
in the superspreader model in several ways. First, we varied the infectivity we 
assigned to designated superspreaders (si,) from the base model value of 50 
(Figure 3a). As expected higher values for si, increased the impact of closing 
“other” contacts and vice versa. We also increased from zero the proportion of 
“other” contacts allowed (Figure S1). Second, we assigned every agent a value 
for si according to a gamma distribution, then varied the dispersion factor k in 
the distribution (Figure 3b). A k of about 0.13 produced an impact similar to an 
si, of 50 with 10% of the population is designated as a superspreader. Third, we 
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increased the size of the workplace from an average of 6 members to 12 (Figure 
S2b). We also varied the ratio of contacts from 33%:33%:33% to 40%:40%:20% 
for “home,” “work/school”, and “other” sectors (Figure S2a). 

Because considerable confusion surrounds the contribution of children in the 
dissemination of COVID-19, we also conducted a sensitivity analysis in which 
children contributed less than adults to the epidemic.23 We reduced si for agents 
assigned an age of <20 years by a factor of three, i.e., to 0.33 for most and to 
16.67 for superspreaders; we also reduced both the infectivity and infection rate 
(i.e. “exposure”) of children by half. In both cases, a smaller role for children in 
transmission increased the benefit of reducing “other” contacts (Figures 4c, S3). 

Last, we tested the model’s ability to simulate real-life mortality data from 
Sweden’s experience with COVID-19 up to June 7 2020. To mimic Sweden’s 
relaxed COVID-19 policy, we fixed work/school contacts at 100%.  Best fit 
occurred when “other” contacts were reduced by 90% (Figure 4a). As might be 
expected, when we removed superspreaders from the model but used the same 
parameters, the generated curve no longer fit the data; however, reducing the 
“work/school” contacts by 60%, while maintaining the 90% reduction in “other” 
contacts, restored a good fit to the data.     

 
 

Discussion  

Policy makers face excruciating choices as they seek to open up economies 
and societies as much as possible without causing a surge in COVID-19 cases 
that would kill many and overwhelm health care systems, especially by exceeding 
available ICU beds and mechanical ventilators needed to keep critically ill 
COVID-19 patients alive. Our model results suggest that the to the extent that 
superspreaders are driving the epidemic, those choices should tend toward 
allowing workplaces, schools and other groups with a relatively small number of 
regular participants to continue, while activities that bring together people who 
otherwise would not come into contact, as occurs at sporting events, restaurants 
and bars, large parties and worship services. To our knowledge, this is the first 
agent-based modeling study to test how superspreaders change the impact of 
different mitigation strategies on an epidemic. 

Evidence is mounting that superspreaders play a large role in COVID-19 
transmission.  Studies based on observational data estimate that 1% to 20% of 
infected cases cause ~80% new transmissions. This means that the majority of 
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cases cause less than one secondary case and thus cannot sustain the epidemic on 
their own. The attack rate in households is in fact low,10 as documented and 
among Chinese household contacts (15%)10 and in the context of a superspreading 
event in a South Korean call center (16%).24  

We found that the large benefit from closing “other” contacts was robust in all 
of our sensitivity analyses. The impact of closing “other” contacts changed under 
these various conditions, but the effect was always substantially greater than 
when superspreaders were not in the model. In particular, regardless of how we 
reduced the role of children in the spread of the virus, we got an even stronger 
effect of mitigating of “other” sector contacts (Figure 3 and S3 

We further tested the model by fitting it to daily numbers of Swedish COVID-
19 deaths, and found that it could be fit to real-world data. Sweden famously did 
not close its schools and workplaces, instead deciding to increase overall social 
distancing in public places and to prohibit large events25. The parameters that 
produced the best fit when superspreaders were included in the model broadly 
reflected what actually occurred in Sweden—workplaces and schools were not 
closed, but other contacts were limited. When we removed superspreaders those 
parameters no longer produced a curve that fit the data.  We restored the fit, but 
only by removing a substantial portion of “work/school” contacts as well as the 
90% of the other contacts needed to fit the “with superspreaders” model. This is 
not realistic, as work and especially schools remained open in Sweden 
throughout.  

Our model demonstrates that the presence of superspreaders substantially 
favors mitigating “other” sector contacts over mitigating the home and 
work/school sectors. When the “other” sector is closed, “work/school” contacts 
constitute the majority of remaining individual contacts. But because the number 
of connections is limited in a “work/school” social unit, a superspreader soon 
infects all the available susceptible contacts, and that saturation limits the potential 
to transmit widely. When the “other” sector is open, however, the superspreader 
faces no such limitation. This means that an epidemic driven by superspreaders is 
fueled by the diversity of personal contacts, and is less dependent on the duration 
of contacts. Therefore closing the “work/school” sector in the model provides less 
benefit than closing the “other” sector.  

Our model results indicate that mitigation policies designed to limit 
transmission during random contacts between people not otherwise linked will 
likely provide a far greater benefit than closing workplaces and schools. That is, 
mitigation strategies should aim to limit the opportunities for large numbers of 
people to come into contact with a superspreader. These opportunities include 
large events as well as contacts in other public spaces such as public 
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transportation. For situations where such contacts cannot be avoided, steps such as 
wearing face masks and moving events outdoors could have the an impact similar 
to that of preventing the contact altogether.  

Our study is subject to several limitations. The most obvious is a model’s 
simplicity compared to the complex reality of human society. We relegated all 
random (non-repeating) contacts to the “other” category, so that contacts with 
known persons occurred only through fixed social networks at home or the 
workplace. In reality, many interactions in the “other” sector would be with 
familiar persons such as friends and extended family, while some of the 
interactions in the “work/school” sector would involve unknown persons, such as 
in cafeterias, conferences and workshops. But even though the reality of where 
these random contacts take place unquestionably differs from our model, the 
sensitivity analyses indicate that does not undercut end result.  

We chose to create “superspreaders” in the model by increasing the infectivity 
of a fixed minority of those infected, as if it were a biological property such as 
high viral load. But many factors are needed to create a super-spreading event. 
These may include specific behaviors of infected persons such as coughing, 
singing, shouting, as well as being in a crowded situation with many random 
contacts. However, regardless of biological mechanism, superspreading will be 
largely preventable with a policy that limits opportunity to make many contacts. 

In closing, we note that our results may help to explain observed differences 
in patterns of COVID-19 transmission in different parts of a single country, 
especially between urban and rural areas. The amount of time people spend with 
other people is likely similar in the city and countryside, but the diversity in 
contacts would be far higher in urban areas, thereby allowing superspreaders to 
transmit the virus to their full potential. Superspreading also likely explains the 
surprising success of country lock-downs in Europe, as well as the lack of a 
resurgence following reopening of the work and school sector in Denmark and 
elsewhere. Superspreading may indeed be the Achilles Heel of the novel 
coronavirus that allows it to be at least partially controlled at a bearable socio-
economic cost.  
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Main Text Figures 
 

 

 

 

 

 

Figure 1: Schematic representation of our agent-based model.  Agents progress in an 

SEIR framework,  becoming infectious 2.5 days before symptom onset [12] (panel A). Most 

agents enter the recovered pool after 5 days with symptoms; some are hospitalized, and 

some of those enter the ICU or die according to conditional probabilities given in Table S1. 

The model’s social network (panel B) allows contacts in three sectors, “Home”, 

“Work/School” and “Other”, with equal frequency.   

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2020. ; https://doi.org/10.1101/2020.05.17.20104745doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.17.20104745
http://creativecommons.org/licenses/by/4.0/


14 

 

Figure 2: The impact of mitigation on modeled incidence and ICU use. The number 

of symptomatic agents per 1000 (gray) and ICU cases per 100,000 (blue line) is scarcely 

affected by the presence of superspreaders (10% of population, si=50) when no mitigation 

is applied (panels a, d), and only modestly more so when “work/school” contacts are 

eliminated (panels b, e). However, eliminating “other” contacts (panels c, f) has a far 

greater impact on epidemic trajectory when superspreaders are included. The black and red 

stacked bar chart shows the proportion of “work/school” and “other” contacts allowed. 
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Figure 3. Sensitivity of model results to changing superspreader strength si (a), 

distributing infectiousness on a gamma distribution with various dispersion factor k 

(b) and reducing infectivity of children (c).  In all cases, the probability of transmission 

was  adjusted to produce an initial growth rate of 23%/day, and mitigation was instituted 

when infected agents reached 1% of the total population. The black and red stacked bar 

chart shows the proportion of “work/school” and “other” contacts allowed.  
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Figure 4. Model fit to daily COVID-19 fatalities in Sweden. Red lines shows average 

of 20 model runs; gray area is area into which 95% of trajectories fall. Best fit occurred 

when “other” contacts were reduced to 90% of normal (panel a).  However, when 

superspreaders were removed from the model, those parameters no longer fit (panel b). Fit 

could be restored if “work/school” contacts were reduced to 40% of normal to achieve best 

fit while still reducing “other” contacts by 90%. The black and red stacked bar chart shows 

the proportion of “work/school” and “other” contacts allowed. 
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Supplementary Material 
 

 

 

 
 
Figure S1. Sensitivity of results to opening “other” contacts. Panels a-c show the 

effect of increasing “other” contacts to 10% , 20% and 40% when si = 50; panels d-f show 

effect when si = 100. The black and red stacked bar shows the proportion of “work/school” 

and “other” contacts allowed. 
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Figure S2. Sensitivity of results to proportion of contact type and size of 

workplace. The top panel (a) shows effect of reducing contact type “other” to 20% of total, 

while the bottom panel (b) shows effect of doubling the workplace to 12 members (with two 

more participating in a second workplace). The black and red stacked bar shows the 

proportion of “work/school” and “other” contacts allowed. 
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Figure S3. Sensitivity of results to children’s infectivity and susceptibility to 

infection. The top panel (a) shows effect of the effect of  while the bottom panel (b) shows 

effect of doubling the workplace to 12 members (with two more participating in a second 

workplace). The black and red stacked bar shows the proportion of “work/school” and 

“other” contacts allowed. 
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Age 

(years) 

Percentage 

of 

population 

Probability of 

hospitalization 

given infection 

Probability  

of ICU given 

hospitali-

zation 

Probability 

of death 

given 

infection 

Relative 

# social 

contacts 

0-9 10.9% 0% 5% 0.029% 1.21 

10-19 11.9% 0.013% 5% 0.029% 1.70 

20-29 13.3% 0.37% 5% 0.020% 1.45 

30-39 11.7% 1.1% 5% 0.029% 1.45 

40-49 13.6% 1.4% 6.3% 0.059% 1.38 

50-59 13.6% 2.7% 12.2% 0.137% 1.31 

60-69 11.7% 3.9% 27.4% 0.450% 1.06 

70-79 8.9% 5.5% 43.2% 1.133% 0.81 

80- 4.3% 5.5% 70.9% 2.06% 0.81 
Table S1: Distribution of simulated population by age groups, with conditional 

probabilities for hospitalization, Intensive Care Unit care or death,1 plus relative social 

contact.2 The hospitalization and ICU occupancy probabilities calibrated to an estimated 

infection fatality rate for COVID-19 of 0.3%. 

1 Norwegian Institute of Public Health. Situational awareness and forecasting. 2020; : 
1–22. 

2 Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the 
spread of infectious diseases. PLoS Med 2008; 5: 0381–91. 
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