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ABSTRACT Digital contact tracing is increasingly considered as a tool to control infectious disease outbreaks.

As part of a broader test, trace, isolate, and quarantine strategy, digital contract tracing apps have been proposed

to alleviate lock-downs, and to return societies to a more normal situation in the ongoing COVID-19 crisis.1,2 Early

work evaluating digital contact tracing1,3 did not consider important features and heterogeneities present in real-world

contact patterns which impact epidemic dynamics.4,5 Here, we fill this gap by considering a modeling framework

informed by empirical high-resolution contact data to analyze the impact of digital contact tracing apps in the COVID-

19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can

mitigate the spread of COVID-19 in realistic scenarios such as a university campus, a workplace, or a high school.

We find that restrictive policies are more effective in confining the epidemics but come at the cost of quarantining a

large part of the population. It is possible to avoid this effect by considering less strict policies, which only consider

contacts with longer exposure and at shorter distance to be at risk. Our results also show that isolation and tracing

can help keep re-emerging outbreaks under control provided that hygiene and social distancing measures limit the

reproductive number to 1.5. Moreover, we confirm that a high level of app adoption is crucial to make digital contact

tracing an effective measure. Our results may inform app-based contact tracing efforts currently being implemented

across several countries worldwide.1,6–11

1 Introduction

As of mid-June 2020, the COVID-19 pandemic has resulted in over 7.5 millions detected cases

worldwide,12 overwhelming the healthcare capacities of many countries and thus presenting ex-

traordinary challenges for governments and societies.13–16 At present, no effective pharmaceutical

treatments are known, and a vaccine is estimated to be approximately one year away.17 Non-

pharmaceutical interventions (i.e. social distancing, wearing masks and reinforced hygiene) are
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therefore currently the main path towards mitigating the intensity of the pandemic and returning

society to near-normal functioning without substantial new outbreaks.

Rigorous restrictions such as lock-downs and quarantine have prove effective in many countries

as a measure to curb the spread of SARS-CoV-2, limit contagions and reduce the effective re-

production number Re .13,18–25 Many areas have now entered a transition phase, slowly lifting the

restrictions. This transition phase is fragile, and an effective and affordable long-term plan is re-

quired to avoid resurgences of infections and new outbreaks.26 This is particularly pressing given

the possibility that the COVID-19 pandemic will come in waves as anticipated by several early

models,27,28 and since the fraction of the population which has been infected is still far too low to

provide herd immunity.16

Despite their efficacy, large-scale quarantine and lock-down strategies carry enormous costs.19

Moreover, population-wide measures are non-specific: in a situation where most of the population

is not infected, population-wide lock-downs are far from optimal, and interventions at smaller scale,

selectively targeting individuals at higher risk of spreading the disease, are more desirable.

While the testing and isolation of symptomatic cases is certainly crucial, it is insufficient in the case

of SARS-CoV-2, since there is clear evidence of presymptomatic transmission,1,29,30 and a fraction

of infected individuals do not develop symptoms at all.31,32 Thus, the identification and isolation of

infected cases must be coupled with a strategy for tracing their contacts who may have become

infected. That way, contacts who may pass on the infection before the onset of symptoms, can

then be quarantined and their health status monitored.33 In this context, recent modeling studies

have shown1,34–36 that contact tracing may reduce epidemic spreading, and that the efficacy of its

realization – contact identification and timing – plays a pivotal role for mitigation.

Traditional contact tracing is performed manually, i.e. by interviews of cases. While this ensures a

thorough assessment of the actual risk of individuals who have been in contact with these cases,

it is slow and labor intensive37–39 and can be efficiently implemented only when the number of in-

fected individuals is low. In addition, the accuracy of manual tracing is limited by the ability to recall

and identify close proximity contacts: contacts without a social connection have a lower probability

of being recalled, and contact duration is in general overestimated in retrospective surveys.40,41

Thus, technologies based on proximity sensors are currently being considered to complement

manual tracing. Specifically, the idea is to leverage the widespread dissemination of smartphones

to develop proximity-sensing apps based on the exchange of Bluetooth signals between smart-

phones,1,6–11,42,43 which makes it possible to build privacy-preserving contact tracing frameworks.6

The efficacy of app-based contact tracing has been discussed in several recent papers.2,44–47 Here,

we start from the work by Fraser et al.,3 recently adapted to the case of COVID-19.1 This work
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describes the evolution of the spread using recursive equations describing the number of infected

individuals in a homogeneously mixed population, taking into account the (evolving) infectiousness

of the infected individuals. These equations are modified by two effective parameters, εI and εT ,

to represent the ability to identify and isolate infected people, and to correctly trace their contacts,

respectively. Assuming an exponential growth for the number of infected people (applicable in

early phases of an epidemic outbreak) the authors study how the growth rate depends on the

intervention parameters. This approach, however, has several limitations, both from the point of

view of modeling and visa-vis applicability. First, the assumption of full homogeneous mixing is an

important limitation in epidemic modeling,4,5,48,49 and realistic social network architectures might

be particularly relevant for contact tracing.44 Second, the mathematical framework is limited to

exponential growth. Third, the parameters εI and εT are assumed to be independent.

Here, to better understand the concrete efficacy of real-world contact tracing, we expand this ap-

proach with respect to these three aspects.

First, we provide a realistic quantification of the tracing ability by performing simulations of spread-

ing processes and of contact tracing strategies on real-world data sets collected across different

social settings (i.e., a university campus, a workplace, a high school).50–52 This allows us to esti-

mate the actual “tracing ability” parameter εT for different possible tracing policies (i.e., the thresh-

olds considered to define a contact measured by the app as “at risk”) and for different values of

εI (Section 4.1). The parameter εT can then be inserted into the mathematical model to study

the impact of the tracing policy on the spread. By making use of real contact network data sets,

we capture complex interaction structures that are necessary for a realistic quantification of this

parameter, although the data sets represent small groups compared to e.g. a city or a country. It

is important to emphasize that the evolution of epidemic is based on a solid theoretical model and

using real data of social contacts does not affect the reliability of results and does not limit them to

special settings, as the contact data are only used to simulate the impact of isolation and tracing

in different contexts and under different restrictions. In order for app-based contact tracing to work

properly, it is necessary that the potential infection events estimated by smartphones constitute a

reasonable proxy for real-world infection dynamics. However, little is currently known about the

relationship between actual biological infections and the type of proximity interactions detected us-

ing smartphones. Here, we assume that the probability of a contagion event occurring during a

proximity event between a healthy and an infected individual depends both on the duration and on

the distance between those individuals53,54 (along with other epidemiological variables such as the

infectiousness of the individual – see Supplementary Information A). Note that, as Bluetooth signal

strength is not trivially converted to a distance,55 we rely – as the apps being currently developed

will do6 – on the received signal strength as a proxy for distance.
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Secondly, we restructure and generalize the mathematical framework of the approach proposed

by Fraser.1,3 This allows us to completely avoid assumptions regarding the functional form of the

epidemic growth, making the setting applicable to any possible evolution shape and any phase of

the epidemic. Moreover, we have modified the epidemiological aspect of the model according to

recent literature on COVID-19,56–58 to fully consider asymptomatic cases and the delay in isolating

individuals after they are identified as infected (Supplementary Information B).

Our third key contribution concerns the modeling and the detailed investigation of the contact

tracing procedure. We devote a particular attention to the tracing parameter εT , which unavoidably

depends on the ability to detect infected people whose contacts can then be traced: in other words,

εT is not independent from εI . Moreover, when gathering information on the recent contacts of

an infected individual, it is obviously not possible to know which interactions, if any, really did

correspond to a contagion event. Any contact tracing policy is thus based on thresholds on the

duration and proximity of a contact to define the associated infection risk. Among ‘risky’ contacts,

some correspond to infections while others do not. The latter correspond to “false positives”, i.e.,

non-infected individuals who will be quarantined. Similarly, among the contacts considered as non-

risky by the contact tracing, some might actually be infected (“false negatives”). The use of real-

world data makes it possible to evaluate the number of false positives and negatives for various

policies, together with their effectiveness in containing the spread. These outcomes represent

crucial information as they might determine the usefulness of contact tracing apps. On the one

hand, a low number of quarantined, or mis-calibrated policies, can unwittingly omit many potential

spreaders. On the other hand, highly restrictive policies might require to quarantine large numbers

of individuals, including non-infected people, with a consequent high social cost.

Overall, our approach allows us to evaluate the effect of different contact tracing policies, not only

on the disease spread but also in terms of their impact on the fraction of quarantined individuals.

We develop our main analysis adopting the most recently described epidemiological characteristics

of COVID-19, and we consider a scenario with a reproduction numberR0 = 1.5, representative of a

situation of a re-emerging outbreak that may be faced after the release of the lock-down measures.

Moreover, we investigate a range of possible values of R0 and, by clearly identifying the relevant

variables, we can provide insights on how to tune and adapt policies to be maximally effective. This

novel combination of a well-established epidemic model with state-of-the-art, empirical interaction

data collected via Bluetooth technologies or similar radio-based proximity-sensing methods, allows

us to understand the role played by intrinsic limitations of app-based tracing efforts, affording an

unprecedented viewpoint on the ambition of achieving containment with app-based interventions.

Namely, we are able to test and quantify the role that a real contact network plays both for the

infectiousness of a contact and for the ability of a policy to detect it and to respond optimally.
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Identifying a tracing policy that is able to contain the epidemic is a non-trivial task, and our aim

is to quantify and describe the properties that makes a policy effective, in terms of duration and

signal strength thresholds, tracing period of time and isolation efficiency. Furthermore, we show

that isolation and tracing measures are only as effective as the technology they rely upon: No

tracing is possible if adequate proximity and time resolutions are not available.

Even if it is clear that the choice of a particular policy should be primarily guided by its effectiveness

in containing the virus, we find that not all successful policies are equal. In particular, we demon-

strate that beyond a certain accuracy, stricter policies do not improve the containment. Hence,

comparing policies also at this level allows one to improve their design and to reduce their side

effects.

2 Results and Discussion

We evaluate the effect of measures based on the deployment of a digital contact tracing app on the

mitigation of the Covid-19 pandemic. As we do not consider geography nor large-scale mobility,

our modeling can be considered as referring to a limited geographical area, similarly to previous

modeling efforts.1,35

In particular, we assume two types of interventions to limit the spread of the virus. First, infected

individuals are isolated when they are either symptomatic and self-reporting or if they are identified

through randomized testing. Second, individuals who have had a potentially contagious contact

with identified infected individuals can be preventively quarantined, following an exposure notifica-

tion via an app on their smartphone. Schematically, if a detected infected individual has the app,

the anonymous keys that her/his device has been broadcasting through Bluetooth in the past few

days are exposed. The app of the individuals with whom s/he has been in contact in the past

days recognizes these keys as stored on their own device and calculates a risk score. If the risk

score obtained by an individual is above a certain threshold (determined by the considered policy),

the contact is “at risk” and the individual is assumed to go into quarantine. We refer to Troncoso

et al.6 for more details on the implementation on privacy preserving proximity tracing. Our re-

search question is whether or not it is possible to contain a COVID-19 outbreak by means of such

measures.

We introduce the concept of potentially contagious contact into a mathematical framework where

the epidemic evolution is governed by a model based on recursive equations, inspired by the work

of Fraser et al.,3 and recently adapted to the Covid-19 case.1 This model quantifies the number

of newly infected people at each time interval, given a characterization of the disease in terms
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of infectiousness and manifestation of symptoms. The model is specifically designed to consider

the two interventions described above, whose effectiveness are quantified by two parameters εI , εT
varying from 0 to 1 (where εI = 0 means “no isolation” and εI = 1 represents a perfectly successful

isolation of all individuals who are found to be infected, either via self-reporting or testing; εT
quantifies instead the efficacy of contact tracing).

Here, particular attention is devoted to the study of the dependence of εT on εI , and to assess

which policies are achievable given the present technology and resources. To this aim, we couple

this model with a realistic quantification of the effect of these two measures based on real-world

contact and interaction data. The following results are indeed obtained by simulations using the

Copenhagen Networks Study (CNS) dataset50 that describes real proximity relations of smart-

phone users measured via Bluetooth (see Section 4.1). Moreover, we present in the Supplemen-

tary Information simulations performed using two other datasets collected by the SocioPatterns

collaboration with a different type of wearable sensors.51,52

We emphasize that in each case, a realistic quantification of the tracing ability is obtained by

simulating the epidemics on a dataset, but the controllability of the disease is assessed by the

general mathematical framework and is therefore not bounded by specific datasets.

True positive (infected)

False positive (not infected)

False negative (infected)

True negative (not infected)

Quarantined

Contagious contact

Tracing

Figure 1: The contacts among users of the contact tracing app are registered through via the app.

As soon as an individual is identified as infected s/he is isolated, and the tracing and quarantine

policy is implemented. Depending on the policy design, the number of false positives and false

negatives may vary significantly.

We consider five different policies (Table 1) that correspond to different threshold levels on the

signal intensity, considered as a proxy of distance, and on the duration of the contact. Recall that

Bluetooth does not measure distances per se, therefore all real-world implementations are based

on thresholds on Received Signal Strength Indicator (RSSI) values. We additionally assume that

each individual app stores the anonymous IDs received from other apps, representing a history of
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the past contacts over the past n days. Here, we consider n = 7 days, as we found (Supplementary

Information C.1) that a longer memory does not produce any significant improvement. Overall,

this implies that we consider a simplified version of the app, which does not compute risk scores

but is simply able to remember the contacts corresponding to a sufficiently close and long-lasting

proximity during n days, while contacts below the thresholds are not stored. In addition, each policy

is tested with the isolation efficiency values εI = 0.2, 0.5, 0.8, 1, which encode isolation capacities

ranging from rather poor to perfect isolation of any symptomatic or tested positive person.

Signal strength Duration Contact

ID (dBm) (min) percentage

• Policy 1 −73 30 2.2%

• Policy 2 −80 20 7.3%

• Policy 3 −83 15 13.4%

• Policy 4 −87 10 25.9%

• Policy 5 −91 5 56.7%

-91 dBm
5 min

-87 dBm
10 min

-83 dBm
15 min

-80 dBm
20 min

-73 dBm
30 min

Table 1: Parameters defining the policies, and fraction of the total number of interactions of the

CNS dataset that they are able to detect. A larger value of the magnitude of the signal strength

tends to correspond to a larger distance, such that in the second column the thresholds go from

the least to the most restrictive policy.

A fundamental difference between the policies we consider is related to the fraction of contacts

that are stored by the app. Figure 3 shows the distributions of RSSI and contact durations of for

the interactions in the CNS dataset. Most contacts have short duration and low signal strength

(and are thus likely random contacts), but long lasting durations are also observed, with overall

a broad distribution of contact durations as typical from data on human interactions.55,59 The

thresholds defined by the tracing policies determine the fraction of these contacts that are traced

by the app: only the contacts within the specified regions are considered when determining who is

alerted by the app and hence quarantined. Even slight variations in the tracing policy thresholds

may strongly influence the capacity to identify the contacts corresponding to the highest risks of

infection, as shown in Figure 3 by comparing the RSSI and contact duration distributions with

the infectiousness curves (as functions of the signal strength and of the contact duration between

individuals, see Supplementary Information A).

Finally, we consider two additional policies (Table 7) in Supplementary Information C.5: those

policies use either close range but short exposure interactions or long range but long exposure

interactions.
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2.1 Isolation and tracing depend strongly on the fraction of asymptomatic

cases

We first obtain an overview of how the control parameters impact the spread of the disease in

an idealized model where εI , εT can take arbitrary values. In this way we can explore the full

range of εI and εT and understand their effect – as in Ferretti et al.1 Later we derive the sets of

feasible configurations that can occur in reality based on simulations in contact networks. Here

and in the following, we assume that the reproduction number is R0 = 1.5. In addition, we consider

values of R0 = 1.2 and R0 = 2 as more optimistic and more pessimistic scenarios, respectively

(Supplementary Material A).

For each value of εI , εT , we use the model to predict the evolution of the number of newly infected

people λ(t) at time t up to a time T = 50 days, and we report the average growth or decline in the

last 10 days. All numerical solutions of the continuous model reach a stationary growth or decline

regime (constant growth or decline rate of λ(t)). A negative number indicates that the epidemic is

declining, while a positive one corresponds to growth (uncontained epidemics).

An important ingredient of the model is given by the probability s(τ) for an infected individual to be

recognized as infected within a period of time τ , either via testing after the symptoms onset, or via

randomized testing.25 The ideal case in which all infected people can eventually be identified (s(τ)

approaching 1 for large times) is reported in Figure 2a: this represents the best case scenario. We

remark that this is the setting considered in the previous studies of this model.1,3 Next, we assume

instead that 40% of infected individuals are asymptomatic1,31,32,60,61 and that only symptomatic

individuals are identified: no randomized testing is performed. We represent asymptomatics by

considering that the probability of an infected individual to display symptoms is a growing function

of time that never reaches the value 1. In this case, the model predicts epidemic containment for

the upper half of the values of the parameters εI and εT (Figure 2c).

In the following, we assume an alternative scenario where instead the asymptomatics (whose

distribution of identification times follows the definition of s(τ) in Supplementary Information A)

account for the 20% of the infected population.62,63 Indeed, there is still no agreement in the sci-

entific community about the fraction of asymptomatic infections for Covid-19; therefore different

possible scenarios should be considered.25 We remark (see Supplementary Information A) that

this scenario is equivalent to assuming that the symptomatics instead represent 60% of the in-

fected population, and that 50% of asymptomatic infected are identified by a policy of randomized

testing,25 in addition to the symptomatic individuals. This is our baseline for the following investi-

gations and the resulting model predictions are plotted in Figure 2b. Note that we moreover take

into account in all settings a delay of 2 days between the detection of an infected individual and the
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time this information becomes available to the health authorities.
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Figure 2: Growth or decrease rate of the number of newly infected individuals, assuming either

that all the infected people can eventually be identified and isolated (Figure 2a); or that only symp-

tomatic people can be isolated with 20% of infected individuals asymptomatic (Figure 2b); or that

only symptomatic people can be isolated with 40% of infected individuals asymptomatic (Figure

2c). In all settings the cases are reported with a delay of 2 days.

2.2 Real data restrict the range of successful policies

We have run numerical simulations of the disease spread on the CNS dataset, implementing the

different policies to determine their impact in mitigating the epidemic.

Figure 3 (bottom right panel) provides an illustration of the insights obtained by these simulations

based on real contact data sets, by showing the distribution of the time elapsed between an infec-

tion event and the successive contacts of the infected individual for Policy 5 (see the table in Figure

4) and for εI = 0.8. Most contacts occur before infected individuals reach their maximum infec-

tiousness, but a non-negligible number of contacts occur while the individual is highly infectious.

By considering the five different policies of Table 1 in terms of which contacts are considered at

risk and thus kept by the app, and running corresponding simulations for εI = 0.2, 0.5, 0.8, 1, we

obtain in each case the actual value of εT which quantifies the quality of the tracing policy (see

Section 4.1). This value therefore ceases to be an arbitrary parameter: it is a direct consequence

of the policy, the value of εI and the contact data. We then plug the values (εI , εT ) into the

idealized model, observe in which region of the diagrams of Figure 2 they fall, and deduce whether

containment is achieved or not by this policy and this value of εI .

The results, reported in Figure 4 (center right), reveal that not all parameter configurations are

feasible. In particular, the largest value of the tracing efficacy εT can be reached only for Policies

4 and 5. Policies 1, 2 and 3 still manage to reach the epidemic containment phase if εI is large
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Figure 3: The top left panel shows a scatterplot of signal strength vs duration for all contact events

in the CNS dataset, and displays the thresholds defining the various policies: the contacts identi-

fied as "at risk" are those included in the areas identified by the colored lines. Top right and bottom

left panels separately depict the distributions of signal strength and duration, together with the in-

fectiousness functions ωdist and ωexposure respectively (black curves), see Table 3 in Supplementary

Information for their analytical form. The bottom right panel shows the distribution of time elapsed

between the infection of an individual and their successive contacts, obtained with εI = 0.8 and

for Policy 5 in the CNS dataset. The black curve shows the normalized infectiousness ω(τ) as

a function of time, and the purple dashed line is the cumulative probability to detect an infected

person s(τ).

enough, and only Policy 1 is too restrictive in its definition of risky contacts, and thus ineffective, for

εI = 0.5. Furthermore, in all cases an isolation efficacy of only εI = 0.2 is not sufficient, no matter

which policy is used. We also note that Policies 4 and 5 do not differ in their results, although

the number of contacts retained are quite different (as seen in Figure 3, top left): once a certain
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amount of contacts is kept, keeping even more contacts (of lower duration or signal strength) does

not improve the outcome.
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Figure 4: Tracing policy efficiency. Growth or decrease rate of the number of newly infected peo-

ple assuming that symptomatic people can be isolated and that an additional 50% of asymptomatic

can be identified via randomized testing. The points correspond to the parameter pairs such that

εI is an input and εT an output of the simulations on real contact data, for the five policies. The

different scenarios are defined by an app adoption level of 60%, 80%, or 100% (from left to right),

and by a value of R0 equal to 2, 1.5, or 1.2 (from top to bottom).
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2.3 Digital tracing enable containment in the face of larger reproduction

numbers

Until now, we have assumed that the only limit to reach a perfect contact tracing resides in the

technology specifications of each policy. This implies however that the totality of the population

adopts the app, something which is clearly unrealistic in practice. We thus repeated our simulations

assuming that only a fraction of the population uses the app, while the remaining individuals are

outside the reach of the tracing and quarantining policies, but they are still isolated whenever

detected because symptomatic or through random testing (see Section 4.1.5).

We found that reducing the app adoption implies an important reduction in the tracing policies

effectiveness. The first two columns of panels in Figure 4 report the results for an adoption of 60%

and 80% respectively. If R0 = 2, practically none of the policies is able to stop the spreading.

However, this pessimistic scenario changes under the current working hypothesis of R0 = 1.5

(second line of panels in Figure 4). An app adoption of 80% or even 60% is then sufficient to

obtain good results: all policies except for Policy 1 manage to contain the spread for εI = 0.8, and

all of them for εI = 1 (Figure 4, center row). The situation is even better with a smaller value of

R0 = 1.2. In this case, even in the case of an app adoption of only 60%, all policies are effective

as soon as the isolation efficacy is at least 0.5 (bottom left panel in Figure 4).

We observe that the tracing efficiency, which clearly varies considerably with different levels of

app adoption, practically does not depend on R0. Indeed, εT only accounts for the fraction of

secondary infections that are correctly traced, independently on the spread of the virus and the

amount of infected people in the population.

We also note that the effect of a limited app adoption on the tracing efficiency εT appears to be

quadratic: a 60% app adoption reduces the efficiency roughly to its 40%, while an 80% adoption

reduces it to the 70% (see Supplementary Information C.3). This effect is explained by the fact that

in order to trace a contact between two individuals it is necessary that both have the app installed.

These different scenarios highlight the efficacy of digital contact tracing and its fundamental role

as a component of a larger effort including additional containment measures. Indeed, while in the

absence of contact tracing a value of R0 larger than one may rapidly lead to a new exponential

outbreak that demands (possibly local) lockdown measures to be enforced, we clearly demon-

strated that a digital tracing app, if sufficiently adopted, may stop the spread of the virus even with

reproduction numbers up to R0 = 2, depending on the isolation efficiency.
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2.4 Any effective containment comes at a cost

Behind the scenes of the aggregated results of the previous section, there is a complex dynamic

that merits further investigation. Indeed, the different tracing efficiencies are the macroscopic result

of a different set of contacts considered as at risk. In some cases this produces the desirable

effect of containing the spread, but side effects emerge as well. Indeed, some of the “at risk”

contacts do not actually lead to a contagion event, while contacts classified as non risky might,

since the spreading process is inherently stochastic. It is thus important to quantify the ability

of each policy to discriminate between contacts on which the disease spreads and the others, in

terms of false positives (quarantined individuals who were not infected) and false negatives (non-

quarantined infected individuals). To visualize this behavior, we focus on the setting with R0 = 1.5

and εI = 0.8, with an app adoption of 80%, since it is representative of a situation in which some

policies are effective in containing the spread and others are ineffective (see Figure 4, center). The

corresponding time evolution of the average number of false negatives and of false positives for

each policy are shown in Figure 5.

What matters in terms of virus containment is to rapidly reduce the number of infected people that

have contacts and spread the virus. In the case of Policy 1, the level of false negatives remains

quite high for the entire time, and it is never reduced to zero. For all other policies instead the

curves of false negatives all reach similar levels. The curve drops to zero rapidly however only for

the stricter policies, while for Policy 2 it remains at a higher level, showing that the spread is not

contained early in the process.

The smaller number of false negatives for the effective policies comes however at the cost of an

increased number of false positives, as shown in Figure 5b. In other words, as a policy becomes

more effective in tracing actually infected people, it also leads to the quarantine of individuals that

have not been infected but that had a contact classified as risky by the tracing policy. This is also

made clear by the attack rate values reported in the table in Figure 5, corresponding to the fraction

of true positives: starting from Policy 2 to Policy 5, the number of quarantined people increases

and the fraction of quarantined who are actually infected decreases. In all cases, the maximal

number of false positives is very sensitive to the specific policy, contrarily to the number of false

negatives. In particular, it appears from the analysis of Section 2.3 that Policies 3, 4 and 5 have

a similar effectiveness to contain the epidemic and Figure 5 shows that they yield indeed similar

numbers of false negatives, but their undesired side costs are different, as the broader definition

of risky contacts of Policy 5 produces a larger number of false positives. This highlights once more

the importance of fine-tuning of the chosen policy.
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• 145± 102 0.16± 0.11

• 165± 111 0.097± 0.04

• 203± 145 0.088± 0.04

• 274± 110 0.061± 0.02

• 282± 159 0.036± 0.01

Figure 5: False positive and negative in quarantines with 80% app adoption. Temporal evolu-

tion of the numbers of false negatives (Figure 5a) and false positives (Figure 5b) for the five different

policies, assuming an isolation efficiency of εI = 0.8, an 80% app adoption level. The graphs depict

the mean and standard deviation over 20 independent runs. The table reports mean and standard

deviation of the total number of distinct individuals who have been quarantined over the whole

simulation timeline and the percentage of those among them who were effectively infected (true

positive), corresponding to the attack rate.

3 Conclusions

In this study, we have analyzed the ability of digital tracing policies to contain the spread of Covid-

19 outbreaks using real interaction datasets to estimate the key effective parameters and to shed

light on the practical consequences of the implementation of various app policies.

We found that the set of parameters that allow containment of the spread is strongly influenced

by the fraction of asymptomatic cases. By first assuming an ideal setting where any pair of pa-

rameters εI , εT is possible, we showed (Figure 2) that the area of the phase space representing

the setting where it is possible to control the epidemic is reduced when considering 20% or, worst

case scenario, 40% of asymptomatic individuals in the population, i.e. infected people that we

cannot isolate nor contact trace and who therefore continue spreading the virus to their contacts.

We remark that this is in contrast with the scenario considered in Fraser et al.3 and in Ferretti et

al.,1 where the entire infected population is assumed to become symptomatic eventually.

We tested five policies to define risky contacts that should be traced (Table 1), with different restric-

tion levels. When implemented on real contact data measured by Bluetooth, this approach allows

us to estimate, for each value of εI , the actual value of εT and thus to determine the efficacy of

each policy (colored points in Figure 4). Using these implementations on real data restricts the

available values of the control parameters. This added layer of realism reveals that only the most
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restrictive policies can lead to epidemic containment.

Moreover, even for these policies, tracing is effective only if the isolation is effective: Policy 2

requires a perfectly effective isolation (εI = 1), while an 80% isolation is sufficient for Policies 3,

4, and 5 (Figure 4). In particular, better tracing policies may work with a less effective isolation

strategy.

Our results highlight how isolation and tracing come at a price, and allow us to quantify this price

using real data: the policies that are able to contain the pandemic have the drawback that healthy

persons are unnecessarily quarantined (Figure 5). In other words, achieving a rapid containment

and a low number of false negatives requires accepting a high number of false positives. This

stresses the importance of a fine tuning of the tracing and isolation policies, in terms of the defini-

tion of what represents a risky contact, to contain the social cost of quarantines.

Finally, we have shown that an insufficient app adoption may render any digital tracing effort help-

less on its own, if the reproductive number is too high. In view of these results, bridging the gap

between a realistic app adoption and the larger tracing capability required to contain the disease

appears crucial. In particular, digital tracing in itself may not be enough if not complemented by

a traditional manual tracing policy and/or other measures. This goal can be reached only with a

joint effort of policy makers and health authorities in organizing an effective manual tracing, and of

individual citizens in adopting the app.

Our study comes with a number of limitations. First of all we are focusing on a single kind of

intervention in order to fight the spread of the epidemics, which is just based on isolation and

tracing. This is in order to isolate the effect of an app-based containment, avoiding additional

spurious effects. In order to see the effect of isolation and tracing when implemented with other

restrictive measures, we applied the same numerical machinery for a range of possible values of

R0, representing various levels of reduction of the spread. We did not consider in detail how this

reduction could be obtained through specific containment measures such as mask wearing, social

distancing, travel restrictions, school closures, and so on.

Moreover, we have considered data corresponding to a few limited social environments (a univer-

sity campus, a high school and a workplace) and we cannot provide an overall general study that

includes multiple and differentiated contexts and their mutual interplay. Our study is focused on

the state of the art interaction datasets, which are nevertheless designed to capture a very limited

social environment when compared e.g. with an entire city. This limitation is due to the current

lack of larger datasets involving people belonging to different environments, which would represent

the general interactions within the population of a city or a larger geographical area. In addition,

the implemented policies have been necessarily tailored to this specific DTU dataset, depending
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on the available values of RSSI supported by the used smartphones. Those might therefore dif-

fer in actual implementations currently under development, probably relying on a more advanced

technology than that of 2014.

Finally, our study is limited by the state of the current knowledge of the contagion modalities of

the SARS-CoV-2 virus, and in particular its dependence on physical distance among people and

the duration of their contacts. The curve of infectiousness has been designed based on previous

contagion studies and on reasonable assumptions (also considering a reduced transmissibility of

asymptomatic people). Should new insights emerge in the way the virus spreads, these could be

easily incorporated into our model.

4 Data and Methods

The mathematical model we use includes several parameters characterizing the epidemic, and we

define them following the most recent literature. Although this is a mere literature survey step,

it is nevertheless of fundamental importance. Indeed, as we will see in the following, different

assumptions at this level may lead to different predictions. The main parameters are:

• s(τ), which is the probability for an infected individual to be detected as infected (and thus

isolated) within a time τ after infection, either via self reporting after the symptoms onset, or

via randomized testing;

• β(τ), which is the infectiousness of an infected individual at time τ after infection: this is

defined as the probability that an individual who is infected since a period of time τ infects

a new susceptible individual upon contact, ω(τ), multiplied by the reproduction number, R0.

The curve ω(τ) takes into account a reduced infectiousness of asymptomatic people and the

environment effect too, as hypothesized by Ferretti et al.1 An alternative shape of the curve

is discussed in Section A.3 of Supplementary Information;

• ωdata(τ, s, e), which is the analogous of β when applied to a real dataset: it depends on the

duration e of a contact and on the strength s of the interaction, quantified by the strength of

the signal exchanged by the devices registering the interaction.

Details on these choices are discussed in Supplementary Information A.

The realistic values for the parameters εI , εT and the interplay between the containment poli-

cies and the virus spread are estimated from real-world interaction datasets. Namely, we consider

datasets describing networks of real contacts in a population, where interactions are determined by
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means of exchange of Bluetooth signals between smartphones. We develop a numerical simula-

tion of the virus spread on this network, and in particular we implement a realistic notion of infection

transmission upon contacts, which follows the parameters defined above. In this framework, we

simulate isolation and tracing policies, where the tracing policy is implemented by defining sensors

resolutions (e.g., a contact is detected if a minimal signal strength or a minimal contact duration

are registered). It is also possible to model the rate of adoptions of the app, or the memory length

of past traced contacts. The effect of these specifications on the actual effectiveness of the isola-

tion and tracing policies are then obtained as output of the simulation: we obtain hence real-world

estimations of the parameters εT , from the input value of εI (that encodes e.g. the testing capacity,

or the effectiveness of tests). The details of this simulation, the definition of the policies, and the

strategy used to estimate the control parameters are described in more detail in Section 4.1.

In order to incorporate these data-dependent and possibly time-varying control parameters into

the predictions, we develop a modified analysis of the continuous model and its discretization. In

particular, both Fraser et al.3 and Ferretti et al.1 analyze the model prediction only in the limit of

an infinite time horizon, and the first study3 furthermore assumes that the number of infected can

only have an exponential behavior, either growing or declining. We instead consider the model at

finite times and develop a new discretization of the continuous model that requires no assumptions

on the functional form of the growth or decline of the contagion. This allows us to simulate more

complex regimes and better quantify the effect of the control parameters, and in particular to align

the model timescales with the simulation time, and thus to use the realistic parameters estimated

from the simulations, including the implementation of time-dependent policies. This approach is

presented in Supplementary Information B.

The overall output of the model is the predicted number λ(t) of newly infected individuals at time

t, and we are interested to study policies that contain the epidemic, i.e., such that λ(t) → 0 as t

grows.

4.1 Policy evaluation from real datasets

We describe here the network simulation that leads to the estimation of the parameter εT .

4.1.1 Description of the datasets

For the simulations we use the interaction data from the Copenhagen Networks Study,50 which

describes the interactions of 706 students, as registered by the exchange of Bluetooth signals
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between smartphones, for a period of one month. From the complete dataset we extract the

proximity measures in the form of Bluetooth signal strength.

4.1.2 Definition of a contact and contagion probability

At each time instant, and for each node in the graph which is currently infected, a probability

distribution is used to decide whether or not the virus is spread to each of its contacts. This

probability is the product of three components, i.e.,

ωdata(τ, ss, e) := ω(τ) · ωexposure(e) · ωdist(ss)

and it quantifies what contacts are relevant for the disease transmission. The three components

are:

• ω(τ), the probability for an infected individual to transmit the disease at time τ , appearing in

Figure 3 (bottom right panel) in the case of the dataset of the previous Section;

• ωexposure(e), the probability for an infected individual to transmit the disease given the duration

e of a contact, appearing in Figure 3 (bottom left panel);

• ωdist(ss), the probability for an infected individual to transmit the disease given the signal

strength ss of a contact, appearing in Figure 3 (top right panel).

We refer to Table 3 in Supplementary Information for the definition of each of these distributions.

4.1.3 Description of the spreading algorithm

We develop an individual-based model for the virus spreading. Starting from the real contacts

dataset, we construct a weighted temporal network, in which nodes represent people and edges

stand for temporal and distance-weighted connections between them. The dynamics performed

on the network is described by the following algorithm.

We start at time t = 0 with an initial number Yi of infected people, each one infected from a time

t = −τi, sampled from a uniform distribution U([0; 10]). Thereafter, at each time step t of size

δ = 300s:

• Each τi value is incremented by δ.
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• If an individual i is neither isolated nor quarantined, s/he can infect each of her/his neighbors

j of with a probability ωdata(τi, si,j, ei,j) (see previous Section).

• Newly infected people are assigned τ = 0 and a time to onset symptoms t + to, where to is

extracted from the distribution onset time(·) defined in Table 3.

• If an individual is recognized as infected (either as symptomatic or by testing) but still not

isolated, we isolate him/her with probability εI and we quarantine all her/his contacts accord-

ing to a policy, that is, all her/his contacts above a spatio-temporal threshold (see the next

Section for a precise description of this policy).

• If a quarantined individual becomes symptomatic, we quarantine all her/his previous contacts

(i.e., before entering quarantine) according to the above-mentioned policy.

4.1.4 Policy implementation and evaluation

In a realistic scenario the isolation efficiency εI or, in other words, the ability to identify and con-

sequently isolate an infected individual, is set by the number of tests that are implemented and by

their accuracy, features whose identification is out of the scope of this work. We mention that the

adoption of an app might have a positive effect on this quantity if the possibility of self-reporting

when symptoms appear is implemented in the device.

Our main goal is to characterize the efficiency of contact tracing, quantified by εT . This is far more

than a simple parameter that freely varies between 0 and 1. Its definition is indeed affected by

multiple contributions, involving both the containment measures efficiency and the policy decisions.

In a general setting we can easily identify two main dependencies: (i) the fraction of primary

infected individuals who are actually identified, isolated and whose latest contacts are investigated

(in other words, εT should be directly proportional to εI , approximately corresponding to the fraction

of possibly secondary infections that a tracing policy can try to reconstruct); (ii) the real contact

tracing, because once an infected individual is isolated the contact tracing will reach only part of

her/his previous contacts, depending on the chosen policy. Indeed, if we choose a policy where all

the contacts, even the most long range distance and irrelevant, of an infected individual are traced

and quarantined, we would probably end up with a total lock-down of the entire population. There

is therefore a social cost of this action that should be considered and possibly minimized. On the

other side, when we decide to quarantine only people who had a large probability of having had

a contagious contact, we are probably underestimating the infected people, leaving some of them

outside of reach of the quarantine effort. The error that we introduce when we decide, for practical

reasons, not to trace all the contacts of an infected individual represents an important contribution
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to the limitation of the tracing efficiency. This is quantified by eT (t), which takes values between 0

and 1 and is in general time-dependent.

The value of eT is estimated from the numerical simulations on the real temporal networks of

contacts as follows. Once an individual is isolated we trace her/his contacts according to the

chosen policy, then we count the fraction of people that s/he has actually infected who remained

outside of the quarantine. By averaging on individuals and time we obtain 〈eT 〉. The obtained

value thus encodes the contribution of the chosen policy, adoption rate, duration of the memory of

contacts and potentially the warning of only the direct contacts or also of contacts of contacts.

The tracing efficiency can therefore be defined as the product of the two independent factors:

εT = εI(1− 〈eT 〉) (1)

such that we obtain the maximum efficiency only if isolation is perfect and the quarantine error 〈eT 〉
is zero.

4.1.5 Varying the app adoption levels

When modeling different levels of adoption of the app we implement the following procedure: we

extract at the beginning of each simulation a random list of users, that will act as non adopters.

During the simulation these agents will contribute to the spread of the virus and will be subject

to isolation whenever detected as infected, as any other individual, but in that case their contacts

cannot be traced. Moreover they do never appear in any contact list, and thus they are never

quarantined. In practice we simulate the fact that a contagious contact is recorded only if both the

infectious and the infected have the app.

We make the simplifying assumption that the app influences only the quarantining of individuals,

but not the isolation policy. Namely, we assume to be able to detect and thus isolate an infected

individual independently of the app, while we are able to trace the contacts only between pairs of

app adopters.
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Supplementary Information

Name Inputs Definition Description Source

ω(τ) time τ (days) Weibull distribution with shape =

2.826 and scale = 5.665.

Probability for an infected

individual to transmit the

disease at time τ .

1

R0 1.2, 1.5, 2 Reproduction number. The value 2 is

taken from the

literature.64 The

other values rep-

resent scenarios

of new onsets af-

ter a lockdown.

Infectiousness

β(τ)

time τ (days) R0 · ω(τ) Infectiousness scaled

with R0.

1

ωexposure(e) contact duration

e (sec)

1 − (1 − β0)e/∆t with ∆t = 60

sec and β0 = 0.002.

Probability for an infected

individual to transmit the

disease given the dura-

tion e of a contact.

5,65,66

ωdist(ss) signal strength

ss (dBm)

1−1/(1+exp(−s·d(ss)+b)) with

s = 1.5, b = 6.6 and d(ss) =

a/(ss + c)d with a = 8.851 · 105,

c = 113.4, d = 3.715

Probability for an infected

individual to transmit the

disease given the signal

strength ss of a contact.

This paper (Sec-

tion A.1).

ωdata(τ, ss, e) time, signal

strength, contact

duration

ω(τ) · ωexposure(e) · ωdist(ss). Probability for an infected

individual to transmit the

disease at time τ , given

the signal strength ss and

the duration e of a con-

tact.

This paper.

onset time(τ) time τ (days) Lognormal distribution with µ =

1.54, σ = 0.47, translated by

the delay of 2 days, and scaled in

[0, p] with p = 0.8.

Probability for an infected

individual to be detected

within time τ .

1

s(τ) time τ (days) Cumulative distribution of

onset time(τ).

Probability for an infected

individual to be detected

within time τ

1

Table 3: Characteristic parameters of the disease.
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A Characteristic parameters of the disease

The infectiousness β(τ) of an infected individual in the continuous model is assumed to be given

by the product of R0 and the curve ω(τ) described in Table 3. For this function we rely on the

shape proposed by Ferretti et al.,1 which takes into account four different contributions: asymp-

tomatic, pre-symptomatic and symptomatic infectiousness, plus environment transmission repre-

senting the indirect contagion occurring for instance via contaminated surfaces. The symptomatic

infectiousness has been obtained by Ferretti et al. by making use of generation time data. The

pre-symptomatic infectiousness is simply assumed to be equal to the symptomatic one, while the

asymptomatic individuals are considered to have only 10% of the infection potential, in according

to the recent literature67,68 presuming that individuals with no symptoms are generally less conta-

gious. An alternative shape of the curve is discussed in Section A.3.

In the simulation we do not make use of the general infectiousness β(τ) but we consider the con-

tagion probability ω(τ) in occasion of each contact. We introduce the dependency of proximity and

contact duration, ωdist and ωexposure respectively, in order to obtain the function ωdata defined be-

low. The function parameters are adjusted to simulate an epidemics with the correct reproduction

number, see Section A.2.

A.1 Definition of the infectiousness as a function of the distance

The probability ωdist for an infected individual to transmit the disease given the signal strength ss
of a contact is modelled as follows. We first derive a distribution that expresses the probability of

infection as a function of the distance of a contact. It is defined as a sigmoid curve that starts from

100% infectiousness at zero distance and reaches 0% infectiousness at 10 meters. The steepness

of the curve if determined by additionally requiring that a 50% infection probability is reached at

4 meters. To express this function in terms of signal strength, we fit a power law to a reference

measured distribution.55 The resulting expression of ωdist is in Table 3.

A.2 Parameter tuning to validate the infection probabilities

Since we couple a continuous model (see Section B in Supplementary Information) with a sim-

ulation on a dynamic network (see Section 4.1), we tune the epidemic parameters so that the

spreading patterns of the virus are consistent in the two settings. Namely, while the infectiousness

β(τ) of the continuous model has an explicit dependence on the reproduction number R0 (that

2
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can thus be set to the desired value), the relation between the infectiousness of a contact ωdata
and the reproduction number is more implicit. Indeed, ωdata depends on contagion probabilities as

functions of the distance and duration of a contact (see Table 3), and the reproduction number is

a consequence of the form of ωdata and the contact data. We thus tune the parameters defining

ωexposure so that the empirical reproduction number Rdata
0 coincides with the actual R0 used in the

continuous model.

Although it is known that R0 has a large variability42,49 and some recent works42,69 suggest that the

relationship between R0 and the real size of an outbreak is not trivial, the procedure to estimate

Rdata
0 is a standard one.49 Each spreading simulation (see Section 4.1 in Supplementary Informa-

tion) is started setting one random individual A as the only initially infected agent, and we count

the number Rdata
0 (A) of people that A infects over the simulation time. The simulation is repeated

multiple times starting with different initial spreaders, and the average of all the computed numbers

Rdata
0 (A) gives an estimate of Rdata

0 . This estimate is computed for a range of different choices of

ωexposure in order to find a value of Rdata
0 close to R0 = 2. To do so, we fix ∆t = 60 sec and vary

the value of β0, and report in Table 4 the results of the simulation.

Since the simulations are stochastic in nature, we report the mean and standard deviation of Rdata
0 .

As it is customary,49 we choose the set of parameters based on the mean of this distribution, and

thus we choose the value β0 = 0.001, giving Rdata
0 = 1.47 for the simulation of the spread of the

virus in the network, when in the model the parameter is set to R0 = 2. For the additional values

of R0 = 1.2, 1.5 we use instead β0 = 0.0009 (Rdata
0 = 1.23) and β0 = 0.0015 (Rdata

0 = 2.095).

β0 mean(Rdata
0 ) std(Rdata

0 )

0.0007 0.925 1.578

0.0009 1.23 1.889

0.001 1.47 2.151

0.0015 2.095 2.826

0.002 2.26 2.857

0.003 3.035 4.150

0.004 3.115 4.026

0.005 4.32 4.808

Table 4: Values of the parameters defining ωexposure that have been tested to find a suitable value

of Rdata
0 , and the corresponding estimates of the mean and standard deviation of Rdata

0 .
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A.3 Robustness of the model with respect to the definition of the infec-

tiousness probability

We consider here another infectiousness curve that has been derived in the recent literature by He

et al.56 . We show that, although this curve is different from the curve ω that we use in this paper,

the predictions of the model do not change significantly. This means that the model predictions are

robust with respect to changes in the assumed infectiousness curve.

In the work by He et al. the infectiousness is defined by means of two probability density functions

(PDFs): The incubation time g(t) (probability of symptom onset as a function of the time t since

infection) and the infectiousness probability f(t) which is a function of the time t elapsed since the

symptom onset (and which may be negative, i.e., pre-symptomatic infectiousness). In more details,

the function g is in turn taken from Li et al.,70 and it is a lognormal distribution with mean 1.434065

and std 0.6612. The function f is instead estimated by He et al.:56 it is assumed to be a gamma

distribution, and via a max-likelihood approach it is estimated to have shape 2.1157790 and scale

0.6898583, and to be shifted by an offset 2.3066912. A numerical PDF of the two distributions,

computed over 105 samples, and the analytical expression of the two PDFs are shown in Figure

6a.

From these g, f , we can reconstruct a PDF ωHe(τ) to be used in our model. This can be done

simply by sampling two values from g and f and adding them (the total time from infection to

secondary infection is simply split into two intervals separated by the time of symptoms onset). A

numerical PDF of this distribution ωHe, computed over the same 105 samples, is in Figure 6b. This

function ωHe may also be obtained analytically by convolution as

ωHe(τ) =

∫ ∞
−∞

f(τ − t)g(t)dt,

using the analytically known f and g. The discretized convolution is also shown in Figure 6b, and

it coincides indeed with the numerical values of ωHe.

Observe that this distribution assigns a small but positive probability (1.42%, see below) also to in-

fectiousness at negative time (i.e., an individual may infect another one before being itself infected).

We ignore this small probability, and we assume that this is due to the fact that the two distributions

f and g are estimated from two different populations (according to56), and thus statistical errors

may be present.

Figure 6b shows also the PDF ω that we used in the paper. Both distributions ω and ωHe peak at

around 5 days, and they have similar support. The main difference is that the right tail of ωHe is

larger, meaning that it models a non negligible probability of secondary infection also several days

after the infection of the spreader.
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Figure 6: Visualization and estimation of the infectiousness probability density function (PDF) ωHe.

PDFs f and g (Figure 6a); estimated PDF ωHe, and PDF ωHe (Figure 6b); fir of ωHe with a lognormal

distribution.

To have an analytical expression of ωHe we try to fit shifted lognormal, gamma, and Weibull distri-

bution to ωHe (by least-squares minimization over the numerically computed PDF). The best results

are obtained with a lognormal distribution with µ = 2.087, σ = 0.457, and shifted by 2.961, which

is plotted in Figure 6c. This allows also to derive an explicit cumulative density function CDFHe of

ωHe, which gives an estimate of CDFHe(0) = 0.0142 (the fraction of negative-time infections).

We can now use this modified infectiousness ωHe in our model and compare the results with the

ones of Figure 4. First, we estimate the parameters defining ωexposure as in Section A.2 (see Table

5. The chosen values is also in this case β0 = 0.001, corresponding to a value Rdata
0 = 1.5.

β0 mean(Rdata
0 ) std(Rdata

0 )

0.001 1.68 1.85

0.002 2.48 2.37

0.003 2.80 2.88

0.004 3.13 3.13

Table 5: Values of the parameters defining ωexposure that have been tested to find a correct value of

Rdata
0 for the modified infectiousness probability ωHe, and the corresponding estimates of the mean

and standard deviation of Rdata
0 .

Using this functional form of ωHe in the model, we obtain the results of Figure 7 (see Figure 4 for

the corresponding results with ω). It is clear that the difference is quite limited since only Policy 3

for εI = 0.5 moves from being effective (Figure 4) to being ineffective. Observe that this negligible

impact of the change from ω to ωHe may be explained by the fact that most contacts in the CNS

dataset happen shortly after the contagion (see bottom right panel in Figure 3), and thus the large

right tail of ωHe is not very relevant. We can thus conclude that no significant change in our
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Figure 7: Tracing policy efficiency for alternative infectiousness. Growth or decrease rate

of the number of newly infected people using the modified infectiousness curve ωHe. The points

correspond to the parameter pairs such that εI is an input and εT an output of the simulations on

real contact data, for the policies of Table 1

conclusions would be introduced by adopting this ωHe in place of the current one.

B The continuous model and its discretization

The epidemic model form1,3 (to which we refer for a precise derivation) provides a quantification of

the number Y (t, τ, τ ′) of people at time t that have been infected at time t− τ by people who have

in turn been infected at time t− τ ′.

The model characterizes Y as a function of s(τ) and β(τ) (see Section A in Supplementary Infor-

mation). Observe that both are quantities in [0, 1], and that s(τ) is a non decreasing. The model

then states that Y (t, 0, t) is a given initial value and that for 0 ≤ τ < t it holds

Y (t, 0, τ) = β(τ) (1− εIs(τ))

∫ t

τ

(
1− εT

s(τ ′)− s(τ ′ − τ)

1− s(τ ′ − τ)

)
Y (t, τ, τ ′)dτ ′. (2)

In the two cited papers the values of εI , εT ∈ [0, 1] are fixed, while we assume from now on that

they depend on τ .

Observe that in the absence of containment policies (i.e., εI = εT = 0) the model predicts a

behavior

Y (t, 0, τ) = β(τ)

∫ t

τ

Y (t, τ, τ ′)dτ ′,
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i.e., the new infected people are just given by the cumulative number of people who have been

infected at previous times, weighted by the infectiousness of the disease. In other words, every

previously infected person is a possible agent of new infection, and in this scenario an exponential

growth is observed. The isolation and tracing measures, on the other hand, act as discounts on

the number of available spreader of the epidemic.

B.1 A more convenient form of the equations

As mentioned before, the model was analyzed in1,3 by considering its asymptotic behavior as t

grows to infinity. We instead need a finite-time model that allows a flexible treatment of real data.

To this end, it is convenient to use the variable Λ(t, τ) := Y (t, 0, τ) (see3) which represents the

number of people which are infected at time t by people who have been infected for time τ ′ ≤ t.

With straightforward manipulations, equation (2) can be rewritten for 0 ≤ τ < t as follows

Y (t, 0, τ) = β(τ) (1− εI(τ)s(τ))

∫ t

τ

(
1− εT (τ)

s(τ ′)− s(τ ′ − τ)

1− s(τ ′ − τ)

)
Y (t, τ, τ ′)dτ ′

= β(τ) (1− εI(τ)s(τ))

∫ t−τ

0

(
1− εT (τ)

s(ρ+ τ)− s(ρ)

1− s(ρ)

)
Y (t, τ, ρ+ τ)dρ

= β(τ) (1− εI(τ)s(τ))

∫ t−τ

0

(
1− εT (τ)

s(ρ+ τ)− s(ρ)

1− s(ρ)

)
Y (t− τ, 0, ρ)dρ,

where we changed the integration variable to ρ := τ ′− τ , and we used the translational invariance

of Y . In the variable Λ, this reads as

Λ(t, τ) = β(τ) (1− εI(τ)s(τ))

∫ t−τ

0

(
1− εT (τ)

s(ρ+ τ)− s(ρ)

1− s(ρ)

)
Λ(t− τ, ρ)dρ. (3)

Observe that this is an evolution equation that requires to define an initial number of infected

people, i.e., we assume that the quantity Λ(0, 0) := Λ0 is a given number.

The quantity of interest is then the total number λ(t) :=
∫ t

0
Λ(t, τ)dτ of newly infected people at

time t.

B.2 Discretization

We fix a value T > 0 as the maximal simulation time and take n+ 1 points in [0, T ] i.e., τi := i
(
T
n

)
,

0 ≤ i ≤ n.

We will approximate the values of Λ(τk, τi) for k = 1, . . . , n and i = 0, . . . , k − 1, while, according

to,3 we set Λ(τk, τi) = 0 for all i ≥ k. Moreover, we assume that the value Λ(τ1, τ0) is given.
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Observe that this discretization is equivalent to assume that the number of new cases is measured

only at equal discrete times (e.g., at the end of each day) rather than measured continuously.

We show in the next section that the continuous model (3) can be approximated by defining a

suitable value for Λ(τ1, τ0), and then iteratively computing the values of Λ(τk, τi) by applying the

simple formula

Λ(τk, τi) =
T

n

k−i−1∑
j=0

(AεI ,εT )ij Λ(τk−i, τj), 0 ≤ i < k ≤ n,

where the matrix AεI ,εT ∈ Rn×n is defined for 0 ≤ i, j ≤ n− 1 as

(AεI ,εT )ij :=

 β(τi) (1− εI(τi)s(τi))
(

1− εT (τj)
s(τj+i)−s(τj)

1−s(τj)

)
if j ≤ n− i− 1,

0 if j > n− i− 1,
,

We remark that this equation is a forward-in-time system, meaning that the computations of the

values of Λ(τ, t) is obtained using only values of Λ for previous time steps, which have thus already

been computed. This is in strong opposition with the case of1,3 where an eigenvalue equation has

to be solved, and only the asymptotic state can be estimated.

Moreover, we can use Λ to compute

λ(τk) =
k−1∑
i=0

Λ(τk, τi), 1 ≤ k ≤ n. (4)

B.3 Derivation of the discretization

We fix a value T > 0 as the maximal simulation time and take n+ 1 points in [0, T ] i.e., τi := i
(
T
n

)
,

0 ≤ i ≤ n.

The points will be used also to approximate integrals via a right-rectangle quadrature rule, i.e.,∫ τi

0

f(τ)dτ ≈ T

n

i−1∑
j=0

f(τj), 1 ≤ i ≤ n. (5)

The goal is to approximate the values of Λ(τk, τi) for k = 1, . . . , n and i = 0, . . . , k − 1, while,

according to,3 we set Λ(τk, τi) = 0 for all i ≥ k. Moreover, we assume that the value Λ(τ1, τ0) is

given.

For 1 ≤ k ≤ n we first evaluate (3) at the points, first in the variable t for 1 ≤ k ≤ n, i.e.,

Λ(τk, τ) = β(τ) (1− εI(τ)s(τ))

∫ τk−τ

0

(
1− εT (ρ)

s(ρ+ τ)− s(ρ)

1− s(ρ)

)
Λ(τk − τ, ρ)dρ,
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and then in the variable τ for τ < t, that is for 0 ≤ i < k ≤ n, i.e.,

Λ(τk, τi) = β(τi) (1− εI(τi)s(τi))
∫ τk−τi

0

(
1− εT (ρ)

s(ρ+ τi)− s(ρ)

1− s(ρ)

)
Λ(τk − τi, ρ)dρ.

Now observe that for 0 ≤ i < k ≤ n we have

τk − τi = T

(
k

n

)
− T

(
i

n

)
= T

(
k − i
n

)
= τk−i,

which ranges between τk for i = 0 and τ1 for i = k−1. The last equation becomes for 0 ≤ i < k ≤ n

Λ(τk, τi) = β(τi) (1− εI(τi)s(τi))
∫ τk−i

0

(
1− εT (ρ)

s(ρ+ τi)− s(ρ)

1− s(ρ)

)
Λ(τk−i, ρ)dρ.

We can then use the quadrature rule (5) to discretize the integral and obtain

Λ(τk, τi) = β(τi) (1− εI(τi)s(τi))
T

n

k−i−1∑
j=0

(
1− εT (τj)

s(τj + τi)− s(τj)
1− s(τj)

)
Λ(τk−i, τj).

Observe that the upper limit in the sum has values 0 ≤ k − i− 1 ≤ k − 1 for 0 ≤ i < k. Moreover,

in this case we have for 0 ≤ j ≤ k − i− 1 that

τj + τi = T

(
j

n

)
+ T

(
i

n

)
= T

(
j + i

n

)
= τj+i,

which ranges between τi and τk−1. Inserting this into the last equation we get for 0 ≤ i < k ≤ n

Λ(τk, τi) = β(τi) (1− εI(τi)s(τi))
T

n

k−i−1∑
j=0

(
1− εT (τj)

s(τj+i)− s(τj)
1− s(τj)

)
Λ(τk−i, τj)

=
T

n

k−i−1∑
j=0

β(τi) (1− εI(τi)s(τi))
(

1− εT (τj)
s(τj+i)− s(τj)

1− s(τj)

)
Λ(τk−i, τj). (6)

We can define the matrix AεI ,εT ∈ Rn×n whose entries are defined for 0 ≤ i, j ≤ n− 1 as

(AεI ,εT )ij :=

 β(τi) (1− εI(τi)s(τi))
(

1− εT (τj)
s(τj+i)−s(τj)

1−s(τj)

)
if j ≤ n− i− 1,

0 if j > n− i− 1,
,

which has a triangular structure (the first row is nonzero, in the second row the last element is zero,

..., in the last row only the first element is nonzero).

With this matrix we can rewrite (6) as

Λ(τk, τi) =
T

n

k−i−1∑
j=0

(AεI ,εT )ij Λ(τk−i, τj), 0 ≤ i < k ≤ n, (7)

which is a recursive equation that determines the evolution of Λ(t, τ) once an initial condition is

given.
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Assuming for now that these initial conditions are given, we can compute Λ(τk, τi) forward in k and

backward in i. That is, after we computed Λ(τ`, τi) for all ` = 1, . . . , k−1, and for 0 ≤ i < `, we can

use (7) to compute Λ(τk, τi) for 1 ≤ i < k, since in this case the right hand side contains values

Λ(τk−i, τj) which have already been computed since 1 ≤ k − i ≤ k − 1 for 1 ≤ i < k.

The only remaining case is i = 0, and in this case the formula (7) gives instead

Λ(τk, τ0) =
T

n

k−1∑
j=0

(AεI ,εT )0j Λ(τk, τj)

=
T

n
(AεI ,εT )00 Λ(τk, τ0) +

T

n

k−1∑
j=1

(AεI ,εT )0j Λ(τk, τj)

thus

Λ(τk, τ0) =

(
1− T

n
(AεI ,εT )00

)−1
T

n

k−1∑
j=1

(AεI ,εT )0j Λ(τk, τj),

where

(AεI ,εT )00 = β(τ0) (1− εI(τ0)s(τ0))

(
1− εT (τ0)

s(τ0)− s(τ0)

1− s(τ0)

)
= β(τ0) (1− εI(τ0)s(τ0)) ,

and thus (
1− T

n
(AεI ,εT )00

)−1
T

n
=

T

n− T (AεI ,εT )00

=
T

n− Tβ(τ0) (1− εI(τ0)s(τ0))
.

This term is positive if and only if

0 < n− Tβ(τ0) (1− εI(τ0)s(τ0))⇒ β(τ0) (1− εI(τ0)s(τ0)) < n/T.

Since the left hand side is at most β(τ0), it is sufficient to require that n/T > β(τ0), or n > β(τ0) ·T .

In this way we defined Λ(τk, τi) for all values 1 ≤ k ≤ n and 0 ≤ i < k. It remains to assign the

value Λ(τ1, τ0), which can be fixed to the initial value Λ0.

C Evaluation of additional containment measures and refined

policies

Some extensions are possible to our current setting, and we report the most relevant ones in the

following. Each consists in additional steps to either enhance an existing policy or to replace it in

order to investigate the effect of other important aspects of the tracing procedure.
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C.1 Longer and shorter tracing memory

The robustness of the tracing policies is also of fundamental interest, and indeed we introduced

five different policies (Table 1) that cover a wide range of possible sensitivity levels, both in space

and in time.

It remains to explore how these policies depend on the memory length of the contact history, which

has been set to 7 days in all the previous simulations (see Section 2).

First, it is interesting to understand whether or not an increased memory would improve the effec-

tiveness of each policy. We thus repeat the experiments assuming that the contacts of each indi-

vidual are recorded for 10 days in the past, and report the results in Figure 8a. When compared

with the original setting (see Figure 4), it is clear that the increased memory brings a negligible

advantage (at the price of increased storage requirements). Indeed, the only visible improvement

is a slight increase of the tracing effectiveness of Policy 4, which is now essentially equivalent to

Policy 5.
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Figure 8: Tracing policy efficiency with longer or shorter contact memory. Growth or decrease

rate of the number of newly infected people and efficiency of the containment policies assuming

different time lengths of the contact tracing memory. Long memory in Figure 8a where, in addition

to the basic setting, the app keeps track of 10 days (instead of 7 days) of past contacts; short

memory in Figure 8b where the app keeps track of only 4 days of past contacts.

Second, it is worth investigating if a shorter tracing memory would give improvements in terms

of the numbers of false negatives. We thus repeat the simulations assuming that the memory

is reduced instead to 4 days, still including the 2 days delay in the case reporting as in all other

settings. The results are are in Figure 8b, and it is clear that the shorter memory reduces, even if

only slightly, the effectiveness of the policies. On the other hand, Figure 9 shows that the number
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of false positive is not significantly reduced with respect to the 7 days memory case (Figure 5), and

thus it appears to be of no benefit in this setting.
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Figure 9: False positive and negative in quarantines with reduced contact memory. Tempo-

ral evolution of the numbers of false negatives, i.e. infected individuals not quarantined, (Figure

9a) and false positives, i.e. not infected individuals quarantined, (Figure 9b) for the five different

policies, assuming an isolation efficiency of εI = 0.8 and a reduced tracing memory (4 days).

The graphs report the mean and standard deviation (shading) over 20 independent runs. The ta-

ble reports mean and standard deviation of the total number of distinct individuals who have been

quarantined over the whole simulation timeline and the percentage of those among them who were

effectively infected (true positive), corresponding to the attack rate.

C.2 Second order tracing

An additional possibility is to keep track of contacts in a recursive way. Namely, when an individual

is isolated, not only its contacts are quarantined, but also its contacts’ contacts. This obviously

means an enhanced risk in terms of preserving the privacy of individuals, and hence the major

open question regarding this kind of policies is whether or not the increased intrusiveness into an

individual’s social network provides a tangible improvement of the virus containment efforts.

A complete study of this scenario is beyond the scope of this paper for two reasons. First, the

continuous model (see Section B) does not take into consideration this kind of tracing, and there

is thus no way to use in a meaningful way any information provided by the study of the dataset.

Second, although the datasets we consider are the state of the art in interaction monitoring, they

are still rather small to study in a realistic way the effect of a policy that rapidly traces a very large

number of persons.

Nevertheless, we find meaningful to report here a preliminary study of this additional, more intru-
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sive tracing policy. We simulated the epidemic on the Copenhagen Study dataset with one random

initial infected individual (the same initial condition that we used for the other cases). We observe

that after some time steps (depending on εI) the patient zero is identified and isolated, while its con-

tacts are traced. However in most of the cases the patient zero was not able to transmit the virus to

other individuals, or in alternative very few people have been infected. In any case, a large part of

the population is immediately quarantined, largely decreasing the basin of susceptible people and

therefore stopping the spreading. The end of the epidemic is reached at the cost of quarantining

many not infected people, in average: 3% of the population with Policy 1, 6% with Policy 2, 7%

with Policy 3, 9% with Policy 4 and 11% with Policy 5. This results in an invasive procedure with

a large amount of false positives and a negligible number of true positives, in agreement with the

results obtained by Firth et al.47

We remark once more that the reliability of this result is limited, being linked to a specific dataset

and not to a general theory. Our insight is that the efficiency of the procedure is due to the finite

dimension of the agent sample, where such an immediate and preventive intervention is sufficient

to cut all the links between infected and susceptible, resulting in a situation which is more akin to a

lock-down than to actual contact tracing.

Moreover, we should mention the fact that we did not consider the effect of a lower app adoption

in this case, assuming that 100% of the population can be correctly traced. Such a high level of

tracing is even more unrealistic when considering second order tracing, as a large compliance is

obtainable only if privacy is perfectly preserved.45

For these reasons we remark that the concept of second-order tracing, a topic of recent discus-

sions, deserves further investigation and may possibly be expanded in a follow-up of this work.

C.3 Effect of a reduced app adoption

To complement the analysis of Section 2.3 on the effect of a limited app adoption, we provide here

a numerical quantification of the reduction in the values of εT . For the five policies of Table 1 and

for εI = 1, we report in Table 6 the ratio between the values of εT in the case of a limited app

adoption (60% or 80%) and in the case of full app adoption (100%), in all cases with R0 = 1.5.

Observe that the computed values are actually quite close to show a quadratic reduction effect.

C.4 Variations in the number of asymptomatic individuals

To additionally verify the robustness of our predictions with respect to the epidemiological mod-

elling, we assume here that the number of asymptomatic individuals is 20%, and additionally that a
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App adoption • Policy 1 • Policy 2 • Policy 3 • Policy 4 • Policy 5

60% 42.6% 53.6% 45.6% 30.8% 45.3%

80% 48.8% 85.1% 77.7% 69.3% 72.0%

Table 6: Ratio of the values of εT between a partial and a full app adoption, for the five policies of

Tabele 1 and εI = 0.8. The values are rounded to the first decimal digit.

randomized testing policy that covers 25% of the asymptomatic population is in place. In this case,

our results (see Figure 10) show that the policies of Table 1 would be more effective. Especially, in

this setting Policy 2 is successful in containing the spread of the virus even for εI = 0.8, differently

from the more pessimistic case of 40% asymptomatics.
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Figure 10: Tracing policy efficiency with 80% asymptomatic and 25% random testing. Growth

or decrease rate of the number of newly infected people assuming that symptomatic people ac-

count for the 80% of the infected individuals, that they can be isolated and that an additional 25%

of asymptomatic can be identified via randomized testing. The points correspond to the parameter

pairs such that εI is an input and εT an output of the simulations on real contact data, for the

policies of Table 1.

C.5 Close-range short-exposure vs long-range long-exposure interactions

We test here two additional policies obtained by mixing a low space resolution and a high time

resolution, and viceversa. The policies are defined in Table 7. Policy 6 has a signal strength of

-70dBm and a duration of 10 minutes, resulting in a policy that captures short exposure but close

range interactions. Policy 7 instead captures long exposure but long range interactions, having a

threshold signal strength of -91dBm and a duration of 30 minutes.
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Signal strength Duration Fraction

ID (dBm) (min)

• Policy 6 −70 10 17.9%

• Policy 7 −91 30 2.1%

Table 7: Parameters defining the two additional policies, and fraction of the total number of inter-

actions of the CNS dataset that they are able to detect.

Figure 11, in analogy with Figure 3, shows the new policies overlaid to the histograms of duration

and signal strength of the CNS dataset contacts.

(a)

(b)

(c)

Figure 11: Distribution of the duration (Figure 11c) and signal strength (taken as a proxy for proxim-

ity, Figure 11b) of the contacts in the CNS dataset. Figure 11a gives a scatterplot of signal strength

vs duration, and displays the thresholds defining the two policies of Table 7.

The values of the parameters (εI , εT ) characterizing the numerical simulations for the new policies

with R0 = 1.5 are shown in Figure 12 (see Figure 4, center-right panel, for a comparison with the

policies of Table 1), and it is clear that Policy 7 is as effective as the most restrictive policies (Policy

4 and Policy 5), while Policy 6 fails to contain the virus for an isolation efficiency smaller than 0.8.

The efficiency of quarantines is assessed by the number of false positives and false negatives,

reported in Figure 13.

We deduce that the ability to control the contagion seems to be more sensitive to duration of con-
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tacts than to their spatial distance. Indeed, policies which capture close range but short exposure

interactions happen to be less performative in quarantining people than those signaling long range

interactions with long exposure. In other words, quarantining individuals who have had a short in-

teraction with an infected one, even if at close-range, is unnecessary. On the other hand, it appears

to be important to track contacts with a high spatial resolution, including the ones that happens at

a rather long distance.

However, we remark once more that these results are depending on the infectiousness model that

we have defined here, and that they could possibly change in a different setting.
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Figure 12: Tracing policy efficiency (alternative policies) . Growth or decrease rate of the

number of newly infected people assuming that symptomatic people can be isolated and that an

additional 50% of asymptomatic cases can be identified via randomized testing. The points corre-

spond to the parameter pairs such that εI is an input and εT an output of the simulations on real

contact data, for the policies of Table 7.

Figures 14 and 15 refer to the more realistic case where the app adoption is reduced to 80%. We

also maintaing the assumption that 20% of the infected individuals are asymptomatics or, equiva-

lently, that they are instead the 40% and an additional 20% (that is 50% of the asymptomatics) is

identified through random testing.

D Extended results on SocioPatterns datasets

In this section we present the results of simulations performed on two different datasets: (i)

High_School13,52 collected in a French high school, and (ii) InVS15,51 collected in a French work-

place. Both datasets have been collected using the sensing platform developed by the SocioPat-
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• 241± 121 0.186± 0.03

• 184± 121 0.059± 0.02

Figure 13: False positive and negative in quarantines (alternative policies). Temporal evolu-

tion of the numbers of false negatives (Figure 13a) and false positives (Figure 13b) for the policies

of Table 7, assuming an isolation efficiency of εI = 0.8. The graphs report the mean and standard

deviation (shading) over 20 independent runs. The table reports mean and standard deviation

of the total number of distinct individuals who have been quarantined over the whole simulation

timeline and the percentage of those among them who were effectively infected (true positive),

corresponding to the attack rate.
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Figure 14: Tracing policy efficiency with 80% symptomatic (alternative policies). Growth or

decrease rate of the number of newly infected people assuming an 80% app adoption level, with

80% symptomatics. The points correspond to the parameter pairs such that εI is an input and εT
an output of the simulations on real contact data, for the policies of Table 7.

terns collaboration1, which is based on wearable active Radio Frequency Identification (RFID)

devices that exchange radio packets, detecting close proximity (≤ 1.5m) of individuals wearing the

devices.59 These data do not contain information on the signal strength, but simply give a list of

contacts between individuals with a resolution of 20 seconds. Both simulations and policies are

1http://www.sociopatterns.org/
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• 186± 81 0.23± 0.06

• 208± 132 0.066± 0.03

Figure 15: False positive and negative in quarantines with 80% app adoption (alternative

policies). Temporal evolution of the numbers of false negative (Figure 15a) and false positive

(Figure 15b) for the policies of Table 7, assuming an isolation efficiency of εI = 0.8, an 80% app

adoption level, and with 80% symptomatics. The graphs depict the mean and standard deviation

over 20 independent runs. The table reports mean and standard deviation of the total number of

distinct individuals who have been quarantined over the whole simulation timeline and the percent-

age of those among them who were effectively infected (true positive), corresponding to the attack

rate.

thus defined only as a function of contact durations.

In order to see the effectiveness of the policies and the spreading of the virus, it is needed that the

length of the collected data is larger than 15 days. As the SocioPatterns data have a high temporal

resolution (20 seconds) but were collected for shorter overall durations, we artificially extend the

length of each dataset by replicating it (coping and pasting the entire dataset at the end of the

dataset itself). Table 8 gives the number of nodes, the length of the dataset (in days) and the

duration of the replicated data.

InVS15 High_School13

# of nodes 211 320

Days 11.5 4.2

Extended Days 46 16.8

Table 8: Number of nodes, days and extended days for each SocioPatterns dataset.

For both these datasets, similarly to the CNS dataset, most contacts happen before the infec-

tiousness reaches its peak (Figure 16), even if contacts are present for all possible durations.

Nevertheless, these are sufficient to spread the infection.

We further run the simulations on the network for the five policies of Table 1 (recall that only
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(a) (b)

Figure 16: Distribution of the time since infection of the people having contacts, probability distri-

bution ω(τ) (black line) determining the infectiousness as a function of time, and distribution s(τ)

determining the cumulative probability to detect an infected person (purple line). The two plots are

obtained with εI = 0.8 and Policy 5 for the InVS15 (Figure 16a) and the High_School13 datasets

(Figure 16b).

distances are taken into account). Similarly to the case of the CNS dataset (Figure 4), all policies

realize containment if εI is at least 0.8 (Figure 17). Additionally, for the InVS15 dataset all policies

except Policy 1 are effective also for εI = 0.5 (Figure 17a).
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Figure 17: Tracing policy efficiency in an office building and in a school. Growth or decrease

rate of the number of newly infected people and efficiency of the policies for the InVS15 dataset

(Figure 17a) and the High_School13 dataset (Figure 17b).

The fact that all policies are effective for both dataset for εI = 0.8 is well reflected in the time

evolution of the false negatives (Figure 18a and Figure 19a). Indeed, in all cases the number of

false negatives peaks at around 5 days and then rapidly decays to zero, as it is expected since
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all policies are effective. The difference between the two datasets is limited also in the dynamics

of the false positives (Figure 18b and Figure 19b), where for both datasets the numbers of false

positive reach a maximum between 10 and 15 days and then start decaying. In the case of InVS15

this decay to zero is more evident since the simulation time is sufficiently long (Table 8), while in

High_School13 the time is not sufficient to observe the full decay.
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• 4± 2 0.16± 0.15

• 6± 3 0.088± 0.09

• 9± 5 0.048± 0.05

• 21± 4 0.050± 0.03

• 28± 15 0.044± 0.03

Figure 18: False positive and negative in quarantines of an office building. Temporal evolution

of the numbers of false negatives (Figure 18a) and false positives (Figure 18b) of the InVS15

dataset, for the five different policies and assuming an isolation efficiency of εI = 0.8. The graphs

report the mean and standard deviation over 20 independent runs. The table reports mean and

standard deviation of the total number of distinct individuals who have been quarantined over the

whole simulation timeline and the percentage of those among them who were effectively infected

(true positive), corresponding to the attack rate.
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• 8± 3 0.21± 0.14
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• 15± 7 0.14± 0.05

• 24± 9 0.08± 0.05

• 34± 13 0.062± 0.03

Figure 19: False positive and negative in quarantines of a school. Temporal evolution of the

numbers of false negatives (Figure 19a) and false positives (Figure 19b) of the High_School13

dataset, for the five different policies and assuming an isolation efficiency of εI = 0.8. The graphs

report the mean and standard deviation over 20 independent runs. The table reports mean and

standard deviation of the total number of distinct individuals who have been quarantined over the

whole simulation timeline and the percentage of those among them who were effectively infected

(true positive), corresponding to the attack rate.
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