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Abstract 

Background: The United States of America (USA) has been the country worst affected, in 
absolute terms, by the Covid-19 pandemic. The country comprises 50 states under a 
federal system. The impact of the pandemic has resulted in different responses at the state 
level, which are driven by differing intervention policies, demographics, connectedness 
and other factors. Understanding the dynamics of the Covid-19 pandemic at the state level 
is essential in predicting its future evolution.  
 
Objective: Our objective is to identify and characterize multiple waves of the pandemic by 

analyzing the reported infected population curve in each of the 50 US states. Based on the 

intensity of the waves, characterized by declining, stationary, or increasing strengths, each 
state’s response can be inferred and quantified.  

Methods: We apply a recently proposed multiple-wave model to fit the infected population 
data for each state in USA, and use the proposed Pandemic Response Index to quantify 
their response to the Covid-19 pandemic.  
 
Results: We have analyzed reported infected cases from each one of the 50 USA states and 
the District of Columbia, based on the multiple-wave model, and present the relevant 
parameters. Multiple waves have been identified and this model is found to describe the 
data better. Each of the states can be classified into one of three distinct classes 
characterized by declining, increasing, or stationary strength of the waves following the 
initial one. The effectiveness of intervention measures can be inferred by the peak 
intensities of the waves, and states with similar population characteristics can be directly 
compared. We estimate how much lower the number of infections might have been, if early 
and strict intervention measures had been imposed to stop the disease spread at the first 
wave, as was the case for certain states. Based on our model’s results, we compute the 
value of the Pandemic Response Index, a recently introduced metric for quantifying in an 
objective manner the response to the pandemic. 
 
Conclusions: Our results reveal a series of epidemic waves, characterizing USA’s pandemic 
response at the state level, and also infer to what extent the imposition of early 
intervention measures could have had on the spread and impact of the disease. As of June 
11, 2020, only 19 states and the District of Columbia (40% of the total) clearly exhibit 
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declining trends in the numbers of reported infected cases, while 13 states exhibit 
stationary and 18 states increasing trends in the numbers of reported cases.  
 

Keywords: Covid-19; multiple waves of transmission; sub-epidemics; intervention 

measures; prevention; pandemic response index 
 

Introduction 

The Covid-19 pandemic has generated a plethora of studies aspiring to understand 

the dynamics of the disease spread and predict its future evolution (see, for example, [1-

9]). Different types of models can be assumed to describe this dynamic evolution. In 

studying past epidemics, scientists have systematically applied “random mixing” models 

which assume that an infectious individual may spread the disease to any susceptible 

member of the population, as originally proposed by Kermack and McKendrick [10]. 

Recent approaches consider the effects of mobility and contacts in networks [11], epidemic 

waves attributable to community networks [12], sub-epidemic modeling [13], Bayesian 

modeling and inference [14], agent-based simulations of social distancing measures [15], 

and power-law models of infectious disease spread [16], to name but a few representative 

examples.  

Modeling the effect of the imposition of social distancing measures has been a very 

active area of study, as the imposition of these measures is considered to be the most 

effective policy for mitigating the disease [17, 18]. In the reported infections in many 

countries and states, there appear to exist regular features consisting of persistent, non-

random, wavy behavior in the epidemic trajectory; this behavior can be linked to the effect 

of intervention measures, which reveals useful information for predicting the temporal 

evolution of the pandemic. 

Agent-based simulations encompassing strong social-distancing measures show the 

emergence of epidemic trajectories with multiple wave structures [15], and recent 

research has focused on interpreting the wave features appearing on the reported 

incidence curves by “change points” resulting from change in the epidemiological 

parameters after the imposition of interventions [14] or by decomposing the epidemic 

trajectory in multiple waves [15]. 
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Recent results on the introduction and spread of the virus in Arizona [19], based on 

sequencing viral genomes from clinical samples, collected as part of community 

surveillance projects and particular phylogenetic analysis of genomes, reveal a minimum of 

9 distinct introductions throughout February and March 2020. Furthermore, it was shown 

that the first reported case of community transmission in Arizona descended from the 

Washington state outbreak discovered in late February 2020, but none of the observed 

transmission clusters were found to be epidemiologically linked to the original travel-

related cases in the state, suggesting early isolation and quarantine effects. These findings 

corroborate the epidemic evolution of Covid-19 in multiple waves (clusters, outbreaks, 

sub-epidemics) as presented in [15], with several clusters of infections appearing in waves 

due to different spatial introductions of the disease, starting subsequent local outbreaks of 

infections. 

As the Covid-19 pandemic appears to have been contained in Europe and in Asia, 

there is a serious concern about the possibility of the emergence of a “second wave” (or 

“surge”) of the Covid-19 pandemic, and what its impact will be (see, for example, [20, 21]).  

At present, there is a trove of data from different countries, states, counties, and cities that 

can serve to validate and put strict limits on plausible models. In this paper, based on our 

previous work on simulations from agent-based models and a multiple wave model, we fit 

reported cases data from each of the 50 USA states and the District of Columbia. The results 

provide a comprehensive picture of likely scenarios of how the disease evolved in the 

country up to June 11, 2020. These scenarios can be useful in predicting the future spread 

of the disease at the state level and provide insight on how the imposition of social-

distancing measures can be effective in containing or slowing its spread. 

Our work is based on two premises: First, that the apparent regular (wavy) features 

in the reported infections in many states are not random, but rather contain useful 

information, as their persistence and regularity across many regions and countries suggest. 

Second, that there is a general underlying dynamics of the spread of the disease, in spirit 

similar to the original Kermack-McKendrick model of three populations [10], the 

“susceptible population” S(t), the “infected/infectious population” I(t) and the 

“removed/recovered population” R(t), which are related by S(t) + I(t) + R(t) = N, where N is 
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the total population. The time evolution of the S − I − R (SIR) populations is described by 

the equations: 

𝑑𝐼

𝑑𝑡
 =  𝛽 𝐼 

𝑆

𝑁
− 𝛾 𝐼  

(1a) 

𝑑𝑆

𝑑𝑡
 =  −𝛽  𝐼 

𝑆

𝑁
 

(1b) 

𝑑𝑆

𝑑𝑡
 =  𝛾  𝐼   

(1c) 

The SIR model involves two positive parameters, β and γ, with the following meaning:  

- β describes the effective contact rate of the disease: an infected individual comes into 

contact with β other individuals per unit time (the fraction that is susceptible to 

contracting the disease is S/N); 

- γ is the mean removal (recovery) rate, that is, 1/γ is the mean time during which an 

infected individual can pass it on before being removed from the group of the infected 

individuals. 

However, the time evolution of the SIR populations as captured by the linear first-

order differential equations of the Kermack-McKendrick model, which implicitly assumes a 

single peak epidemic wave, produce behavior that is much simpler than actual reported 

data of infections. In this paper, we fit the data with a multiple wave FSIR model with few 

adjustable parameters, as explained below, and use the results of the fitting to draw 

insights on the actual evolution of the disease in the US states. 

Methods 

In order to understand the dynamics of the Covid-19 epidemic, the forced-SIR 

(FSIR) model was recently proposed by the authors [22] and was used to describe the 

evolution of Covid-19 pandemic in a representative set of countries [15]. The original FSIR 

model treated the evolution of the infected population as a single-peak wave, the simplest 

possible model, and relied on three adjustable parameters that were estimated for each 

country by fitting actual data. However, the single-wave assumption cannot explain the 

entire incidence curve (infected population curve). Wavy patterns with multiple local 
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peaks are evident in the actual data, which cannot be attributed to simply random 

fluctuations or lower reported case numbers on weekends, due to their regularity and 

similarity among several countries or states in which, at first glance, were affected by the 

disease at different levels of severity.  

In its original version FSIR applies to a single epidemic wave, in which the infected 

population is given by the expression 

I(t) = N − S(t) − R(t) 

with the approximate solution given by: 

(2) 

𝑆̃  =  𝑁 − 
𝑁′

1 +  𝑒−𝛼1(𝑡−𝑡1)
 

(3a) 

𝑅̃  =  
𝑁′

1 + 𝑒−𝛼2(𝑡−𝑡2)
 

(3b) 

𝐼  =  𝑁 − 𝑆̃(𝑡)  − 𝑅̃(𝑡)  =  
𝑁′

1 +  𝑒−𝛼1(𝑡−𝑡1)
 −  

𝑁′

1 +  𝑒−𝛼2(𝑡−𝑡2)
 

(3c) 

where N’, α1, α2, t1, t2 are treated as adjustable parameters, with t1 and t2 representing the 

times at which the 𝑆̃ and 𝑅̃ populations reach their sigmoid midpoint values, respectively. 

Here, we extend this model to allow for multiple waves that capture the sub-epidemics in 

the infected population of a country or state. For each wave i, the respective adjustable 

parameters are N’(i), α1(i) , α2(i) , t1(i), t2(i) , calculated by applying, appropriately, Eq.s (3).  We 

apply this extended model to fit the multiple wave behavior of infected populations in all 

50 USA states and the District of Columbia, as obtained from the New York Times Covid-19 

data source [23], for a period ending on June 11, 2020, which corresponds to almost 150 

(21.5 weeks) days from the onset of the exponential growth of reported cases in China. 

Population statistics for each state were obtained from the census.org data source [24]. To 

obtain a meaningful fit we had to consider data that show a monotonic increase at the 

beginning. This means that a few data points in each case were excluded, as they 

corresponded to sporadic reports of very few isolated cases, typically 1 to 10 in a given 

day, interspersed by several days of zero cases. In practice this means that the fitting 

begins at a certain cutoff day denoted as t0. 
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As in the case of the original FSIR model, in order to make the fit more robust and 

simpler we chose the α1 and α2 parameters to be: α1 = 0.25 (see relevant discussion in [15]) 

and α2 =  0.66 α1; this last relationship was established by obtaining the best fit between the 

approximate solution represented by Eq. (3) and the actual numerical solution of the SIR 

equations for parameter values relevant to the pandemic, namely =0.25, =1/14.  These 

values were not chosen merely on theoretical grounds but were estimated by fitting actual 

reported data. The State of Hawaii offers an ideal example because it imposed early travel 

restrictions and measures (individuals, both residents and visitors, arriving from out-of-

state to Hawaii were subject to enhanced passenger verification process and a mandatory 

14-day self-quarantine, which was also imposed to interisland travel). This imposition of 

early “distancing” measures resulted in a clear single-wave epidemic, which we fitted 

obtaining parameter values of α1 = 0.23 and α2 = 0.15: the first of these value is very close 

to the α1 = 0.25 value obtained in [22], whereas the second one satisfies the relation α2 = 

0.652×α1, in very good agreement with the result mentioned above.  

Finally, instead of using t1 and t2 for each wave as independent parameters, we 

elected to use as independent parameters t1 and ∆t = t2 − t1. To provide a numerical 

estimate of the value of ∆t we fitted actual data reported by the single-wave State of 

Hawaii, obtaining ∆t = 14 days; the same value is obtained by fitting reported data for 

Vermont and Montana, which also showed single-wave behavior. In order to make the 

multiple wave fits more robust, simpler, and systematic, we chose ∆t = 14 days for all four-

wave fits and for states exhibiting single-wave behavior. This choice is further supported 

by the common mean time of 14 days before the infected individual is removed, imposed as 

a quarantine measure for the majority of countries around the world imposing restrictive 

(non-pharmaceutical) measures, and is consistent with a reported estimated median time 

of approximately 2 weeks from onset to clinical recovery for mild cases [25]. With α1 = 

0.25, the choice ∆t = 14 days corresponds to the value of basic reproduction number for the 

Covid-19 disease R0=3.5 (see detailed discussion in [22]), which is very close to the 

average, R0=3.28, of values obtained by different methods [26].  For states exhibiting sub-

epidemics of large intensities (peaks), we used the value ∆t = 21 days because these large 

peaks are the result of superposition of several smaller outbreaks, an apparent 

characteristic in states with large populations and urban centers; this larger value 
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effectively averages the smaller waves into fewer features. By fixing the value of the 

parameter ∆t, based on plausible epidemiological characteristics, we are left with two 

adjustable parameters per sub-epidemic that can be varied to obtain the best fit to the data: 

the onset time t1 which corresponds to the midpoint of the sigmoid representing the 

decline of the susceptible population, and N’ which is a parameter representative of the 

number of daily cases near the peak of the infected population curve, in the given sub-

epidemic. NT, the total number of infected. and the NT(i), the total number of infected per 

wave i, can readily be obtained. The best fit here is defined in the Root-Mean-Square (RMS) 

sense. The model parameters have been determined by employing the Levenberg-

Marquardt algorithm. 

The various states responded to the pandemic in different ways. It is an interesting 

question to quantify their varied response and make comparisons, which may be useful for 

contributing to the evaluation of the policies followed and the factors underlying the 

pandemic dynamics. Based on the results of our model it is possible to construct an index 

[15], the Pandemic Response Index (PRI), and assign a value to each state depending on its 

response to the pandemic. To do this in an objective manner, we take three factors into 

consideration:  

(a) The total number of infections as given by the quantity NT of Table I, 

divided by the population of the state NP. The range of this quantity when 

multiplied by a factor of 25 is between 0 and 0.5. This is a measure of the 

overall impact of the pandemic on the population of the state.  

(b) ∆NT, the number of cases that correspond to all the waves except for the 

first major one (∆NT = NT – ∆NT(1)), which in some cases includes the 

earliest small wave (see Table II). Arguably, this number of cases could 

have been avoided, had the states imposed early and strict measures after 

the first wave of the epidemic was plainly evident, as was the case for the 

single-wave states. The larger this number is, the worse the performance. 

This number, divided by 2NT, lies in the range 0 to 0.5.  

(c) λ, a parameter introduced to quantify the trend in the number of cases 

after the first wave, defined as 𝜆 = 1 +  tan 𝜙 (103 𝑁𝑇⁄ ), where tan 𝜙 is 

the slope of the linear trend of the 7-day-averaged daily cases in the last 
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50 days, estimated by ordinary least squares regression (see also [27] for 

contrasting trends of daily new confirmed infections); the trend can be 

declining (tan 𝜙 < 0), increasing (tan 𝜙 > 0) or stationary (tan 𝜙 = 0), 

thus λ indicates better performance for those states where the number of 

cases has been steadily decreasing for this period.  The additional factor 

(103 𝑁𝑇⁄ ) in the definition of λ is required to produce values for this 

parameter in the range [0.5, 1.5], which can lead to meaningful 

comparisons.  

 

With these three quantities, we then define the “Pandemic Response Index” (PRI) for the 

USA as: 

PRIUSA = 10 [1 − 𝜆 (25
𝑁𝑇

𝑁𝑃
+

Δ𝑁𝑇

2𝑁𝑇
)] 

(4) 

  
PRIUSA values lie in the range from 0 to 10, the higher values corresponding to better 

performance. This provides a quantitative and objective way of ranking the states 

according to their performance. The results of this comparison and the relevant numbers 

that enter in the evaluation of the PRIUSA are given in Table II. 

 

Results 

We fit incidence curves corresponding to the infected population data, for each one 

of the 50 USA states and the District of Columbia. We fit seven-day moving averages of the 

reported daily data, with data up to June 11, 2020. For each US state we estimate the 

number of waves in which the infected population curve can be analyzed, the values of the 

model parameters of each wave, and the expected number of cases for the first major wave, 

NT(1), and for all waves, NT. Table I presents the model parameters for each state. 
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TABLE I: The values of the various parameters that enter in the multi-wave FSIR model of Eq. (3), 

for the 50 USA states and for the District of Columbia. The last column includes the values for the 

expected total number of cases, NT, when the number of infections has dropped to near zero, and is 

an extrapolated value. NT(1) is the total number of infected people in the first wave. The 

superscripts of the t1 and N’ parameters represent the sub-epidemic waves. The US states 

are ordered according to their population size. 

USA States t1(1) N'(1) t1(2) N'(2) t1(3) N'(3) t1(4) N'(4) NT(1) NT 

 California 29.0 1,999 50.8 2,385 69.8 2,434 89.2 4,148 27,984 153,068 

 Texas 23.8 1,193 53.2 1,513 81.7 2,000   25,036 97,962 

 Florida 23.8 1,813 44.5 903 66.4 1,074 89.2 1,848 26,098 80,625 

 New York 22.4 11,802 43.2 4,963 72.4 1,763   247,566 389,010 

 Pennsylvania 24.3 1,969 47.8 1,271 72.1 736   41,307 83,431 

 Illinois 22.0 1,580 46.7 2,894 67.7 1,872   33,142 133,166 

 Ohio 14.6 421 33.7 1,060 55.0 782 73.6 681 5,836 41,149 

 Georgia 18.4 1,333 40.6 1,046 62.6 910 82.6 907 18,611 58,441 

 North Carolina 19.4 432 42.1 601 62.9 875 81.7 1,507 6,036 47,449 

 Michigan 16.9 2,367 39.5 1,098 60.1 630 83.7 1,742 32,990 81,152 

 New Jersey 20.0 4,375 41.0 2,675 68.7 1,003   91,683 169,046 

 Virginia 25.5 514 48.7 969 72.6 1,185   10,798 55,908 

 Washington 23.3 583 56.8 374 88.3 406   12,234 28,499 

 Arizona 14.5 320 37.5 370 54.3 528 79.9 1,777 4,438 41,414 

 Massachusetts 25.2 1,841 44.4 2,193 72.5 1,049   38,636 106,680 

 Tennessee 17.4 332 46.1 552 77.0 630   6,944 31,666 

 Indiana 15.2 597 40.3 812 66.3 548   12,447 41,034 

 Missouri 12.6 317 41.2 254 71.8 273   6,563 17,627 

 Maryland 20.7 814 43.9 1,119 66.2 1,069   17,056 62,946 

 Wisconsin 16.3 209 46.3 387 71.2 521   4,359 23,381 

 Colorado 16.4 451 42.3 593 70.1 362   9,409 29,496 

 Minnesota 19.4 109 49.7 753 70.0 593   7,916 30,507 

 South Carolina 20.6 243 50.2 210 81.2 471   5,093 19,222 

 Alabama 17.6 295 45.9 308 68.1 510   6,173 23,310 

 Louisiana 17.2 1,424 61.3 637     13,504 43,273 

 Kentucky 19.6 182 45.6 239 76.0 260   3,817 14,179 

 Oregon 11.83 98 44.1 90 80.7 135   2,028 6,670 

 Oklahoma 16.6 195 40.1 134 59.7 143 82.3 145 2,710 8,588 

 Connecticut 20.1 965 35.8 621 59.2 532   20,227 44,475 

 Utah 13.4 196 37.3 234 57.1 200   2,715 16,210 

 Iowa 23.3 163 45.7 828 68.2 493 88.8 481 13,846 27,265 

 Nevada 16.6 249 39.4 187 63.0 187 86.5 309 6,071 12,894 

 Arkansas 21.9 151 55.5 173 76.5 402   3,170 14,869 

 Mississippi 12.1 200 30.7 326 49.1 355 69.9 488 7,310 19,104 
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 Kansas 15.1 86 42.7 350 72.2 113   8,095 11,490 

 New Mexico 21.7 119 46.6 201 75.9 187   2,490 10,588 

 Nebraska 21.2 57 45.3 487 72.2 290   11,262 17,319 

 West Virginia 8.7 71 30.4 27 54.8 63   941 2,244 

 Idaho 9.8 141 42.6 45 68.9 66   1,903 3,503 

 Hawaii 12.2 43       0 595 

 New 
Hampshire 12.8 70 40.0 110 65.6    1,436 

 
5,405 

 Maine 14.8 59 43.5 44 63.3 69 82.7 35 813 2,883 

 Montana 2.9 34       0 445 

 Rhode Island 16.3 351 31.6 224 53.0 177   7,321 15,776 

 Delaware 19.3 192 37.2 267 57.6 250   2,677 9,921 

 South Dakota 17.7 180 43.0 151 65.4 91   2,506 5,887 

 North Dakota 5.4 15 30.0 57 55.8 75   1,467 3,032 

 Alaska 8.29 17 75.8 26     337 863 

 Vermont 13.0 63       0 874 

 Wyoming 13.7 30 39.8 17 61.3 17   445 957 

 District of 
Columbia 17.7 161 42.7 203 66.1 101   3,376 

 
9,754 
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The response of each state can be classified in three distinct classes. The first class 

comprises those that exhibit a large initial wave followed by several smaller ones. This 

class can be divided in two subclasses: the first comprises states of smaller populations and 

population densities, and correspondingly small number of cases, containing the epidemic 

in a single wave (Hawaii, Vermont, Montana). Initially, the State of Alaska was also included 

in this subclass, as a single wave state. However, as will be shown in Fig. 6, after the decay 

of the first wave a second wave, non-overlapping with the first, of higher intensity, was 

generated. However the states of Hawaii, Vermont, and Montana have recently exhibited 

additional cases, which may become a second wave, as in the case of Alaska; as of June 11, 

2020, only the State of Hawaii can be qualified in this subclass as the increasing number of 

cases of the State of Vermont and of the State of Montana classify them to the second class 

and the third class, respectively. The second subclass comprises states with high numbers 

of cases, large population sizes and urban centers, mostly implementing rather strict 

measures, exhibiting multiple waves of the epidemic. States in this subclass include New 

York, Pennsylvania, Illinois, Ohio, Massachusetts, Michigan, Connecticut, New Jersey, Rhode 

Island, Colorado, Indiana, Kansas, Nebraska, New Hampshire, Delaware, Iowa, Wyoming, 

South Dakota, and the District of Columbia. In these states, an initial large wave is followed 

by a series of waves of declining strengths, trending toward the containment of the Covid-

19 disease (in some states there is an initial smaller wave followed by the larger one). This 

behavior signifies the imposition of social distancing measures obeyed by the citizens, an 

effect which is corroborated by recent Bayesian inference studies [14] and agent-based 

simulations [15]. 

The second class comprises states in which an initial large wave is followed by 

waves that do not systematically decline or increase, leading to an averaged plateau of 

reported cases. New sub-epidemics seem to appear and the reported cases in these states 

are not exhibiting a declining trend but they are not exhibiting an increasing trend either. 

States in this “stationary” (endemic-type wave) class include Georgia, Washington, 

Maryland, Missouri, Louisiana, Oklahoma, New Mexico, West Virginia, North Dakota, 

Kentucky, Oregon, Nevada, and Vermont. 

The third class comprises states exhibiting an increasing trend of reported cases 

and includes the states of California, Texas, Florida, North Carolina, Virginia, Arizona, 
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Tennessee, Wisconsin, Minnesota, South Carolina, Alabama, Utah, Arkansas, Mississippi, 

Maine, Montana, Idaho, and Alaska. 

Of the 50 states and the District of Columbia, 20 belong to the first class, exhibiting 

declining trends, 13 belong to the second class, exhibiting stationary behavior, and 18 

belong to the third class, exhibiting increasing trends. The states are classified to each class 

according to their λ values (detailed ranking is depicted in Fig. 8). Overall, as of June 11, 

2020, only 40% of the states show pandemic response leading to clearly declining trends in 

the number of cases. A color map of the USA depicting the states belonging to each one of 

these classes is presented below, with the 3 classes color-coded. 

 

Figure 1: A color-coded map classifying the epidemic trends in the 50 USA states and the District of 

Columbia, according to their λ values (see Fig. 8 and text for details).  
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In the following Figures (Fig.s 2-6), we present representative results obtained by 

the multiple-wave FSIR model for selected states that can be accurately fitted by 4 waves 

(California, Florida, Georgia, Arizona), 3 waves (Illinois, Texas, New York, Pennsylvania), 

and two waves (Alaska, Idaho). These states also represent the three distinct classes of 

epidemic response. 

Fig. 2 presents the multiple-wave fit for New York, which has been the most heavily 

impacted state by the Covid-19 pandemic, in absolute numbers. An initial wave was 

followed by two declining waves, manifesting New York’s imposition of strict intervention 

measures. There is an excellent agreement between the 3-wave fit and the actual data, in 

both daily (averaged over 7-day periods) and cumulative data. As can be seen, the single-

wave fit of the data, depicted by the green-dashed lines, significantly underfits the data. Fig. 

2 also presents the multiple-wave fit for Pennsylvania, fitted by 3 waves. Here again, an 

initial large wave was followed by two declining sub-epidemics, signifying the imposition 

of distancing measures. The agreement between the 3-wave fit and the actual data, in both 

daily and cumulative data, is equally good, and the single wave fit of the data significantly 

underfits the actual data. New York and Pennsylvania are representative examples of states 

where the initial major wave is followed by several waves of declining strength, suggesting 

that, despite the initial large impact, the states are well on the way to eventually contain 

the epidemic. 

Fig. 3 presents the multiple wave fits for Texas and Illinois. The incidence curves of 

both states were fitted by 3 waves. Texas, the 2nd most populous state, had a low total 

number of cases, the lowest among the 10 most populous states in USA; Illinois is the 6th 

most populous state. Both states have exhibited two waves of increasing intensity. 

However, Illinois exhibited a subsequent wave of declining strength whereas Texas 

exhibited one with increasing strength. It remains to be determined if this increasing trend 

will continue. Since there is no clear trend of the infected population in Texas to getting 

over its intensity peak, the single-wave fit (depicted by the dashed green line) predicts a 

linear increase of the total number of expected cases. For the State of Illinois, the 3-wave 

fit, for the cumulative cases, estimates a final plateau signifying the containment of the 

epidemic after the third wave, assuming of course that no more waves of increased 

strength materialize. 
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Fig. 4 presents the multiple wave fits for Florida and Georgia. These states 

implemented measures to stop the disease’s transmission and impact, which were deemed 

not aggressive and fast enough; furthermore, they were among the states that “re-opened” 

rather fast. The incidence curves were fitted by 4 waves. Florida exhibited an initial large 

wave followed by two sub-epidemics of declining strength. However, the declining trend 

did not continue but was intercepted by a sub-epidemic of increased strength. Georgia has 

exhibited a series of sub-epidemics generating a plateau of reported cases, which can be 

classified as a stationary (endemic) wave according to the classification scheme of [13]; it 

remains to be determined if this endemic-type wave will be stationary or temporary. 

Fig. 5 presents the multiple-wave fits for California and Arizona. The states’ 

incidence curves were fitted by 4 waves. Both states exhibited sub-epidemics with 

increasing strengths. The states had taken intervention measures rather fast. However, the 

disease was spreading in increasing intensity waves in both states. Recent results on the 

introduction and spread of the virus in Arizona [19], based on sequencing viral genomes 

from clinical samples, revealed a minimum of 9 distinct introductions throughout February 

and March 2020. Since there is no clear trend as of June 11, 2020, of each state getting over 

its intensity peak, the single-wave fit predicts a linear increase of the total number of 

expected cases. The 4-wave fit estimates a plateau of the total number of cases after the 

fourth wave, assuming that additional waves do not materialize. 

California, Texas, and Arizona are representative examples of states where the 

initial major wave is followed by several waves of increasing strength, suggesting that, 

despite the initial impact, the states were not able to contain the spread of the disease.  On 

the other hand, Georgia is representative example of states where the initial wave is 

followed by sub-epidemics of almost stationary intensities, producing essentially an 

endemic-type wave.  

Finally, Fig. 6 presents the multiple-wave fits for Idaho and Alaska. These responses 

can be considered as “outlier” cases. After an initial large wave, Idaho’s infected population 

exhibited a stationary (endemic) wave but with an increasing trend. The incidence curve of 

Idaho was fitted by 3 waves in total (the endemic component of Idaho’s infected curve was 

modeled by fitting two waves). Fig 6 also presents a 2-wave fit for Alaska, which shows a 

first, single, wave, followed at a later time, by a second wave of a higher peak, non-
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overlapping with the former wave, a feature that can categorize the latter wave as the 

“second Covid-19 wave”, in the meaning usually assigned to this term by the media [28, 

29]. 

 

We can quantify each state’s response with the help of the Pandemic Response 

Index, Eq. (4), and make comparisons, which may be useful for contributing to the 

evaluation of different underlying factors and different policies followed. Table II presents 

(a) the total number of infections as given by the quantity NT, the number of infections over 

the state’s population, NT/NP, as well as NT per million population; (b) the number of 

infections that correspond to all the waves except for the first major one, ∆NT = NT – NT(1); 

(c) the PRIUSA value, based on the values of the parameters NT, NT/NP, and ∆NT / 2NT.  

Hawaii, Montana, and Vermont show the highest PRIUSA values (9.90, 9.88, and 9.64, 

respectively) because of their small number of cases and the essentially single wave 

epidemic curve, for which ∆NT =0. For 16 US States, the PRI value is less than 5. The PRIUSA 

average of all US States and the District of Columbia is 5.602, whereas the population-

weighted PRIUSA average is 5.048.  We note that this average value should not be taken as 

the country’s Covid-19 RPI value, when compared to other countries, because a different 

scale applies to different sets depending on the range of NT values of the members of the 

comparison set. 
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TABLE II: Ranking of the various countries according to the Pandemic Response Index, defined in 

Eq. (4). NT is the asymptotic value after all waves have decayed, given in Table I, normalized by the 

state’s population. ∆NT is the difference between NT and the number of cases which were infected 

by the first major wave NT(1) (for the states of Minnesota, Iowa, Mississippi, Kansas, Nebraska, and 

North Dakota, both the small initial wave and the second wave had been taken into account). The 

last column contains the PRIUSA value (see text for details). 

USA States NT NT 
/million. 

ΔNT ΔNT 

/million 
λ PRIUSA 

 California 153,068 3,874 125,085 3,166 1.174 4.066 

 Texas 97,962 3,378 72,927 2,515 1.147 4.762 

 Florida 80,625 3,754 54,527 2,539 1.078 5.342 

 New York 389,010 19,997 141,444 7,271 0.693 5.276 

 Pennsylvania 83,431 6,517 42,124 3,290 0.746 6.901 

 Illinois 133,166 10,509 100,025 7,893 0.848 4.587 

 Ohio 41,149 3,520 35,310 3,021 0.884 5.431 

 Georgia 58,441 5,504 39,830 3,751 0.963 5.393 

 North Carolina 47,449 4,524 41,413 3,949 1.312 2.793 

 Michigan 81,152 8,126 48,162 4,823 0.948 5.262 

 New Jersey 169,046 19,032 77,363 8,710 0.629 5.568 

 Virginia 55,908 6,550 45,111 5,285 1.124 3.623 

 Washington 28,499 3,743 16,265 2,136 1.026 6.114 

 Arizona 41,414 5,690 36,976 5,080 1.314 2.267 

 Massachusetts 106,680 15,351 68,044 9,791 0.654 5.403 

 Tennessee 31,666 4,634 24,722 3,618 1.082 4.522 

 Indiana 41,034 6,095 28,587 4,246 0.878 5.603 

 Missouri 17,627 2,872 11,064 1,803 1.005 6.126 

 Maryland 62,946 10,412 45,890 7,591 0.998 3.764 

 Wisconsin 23,381 4,016 19,023 3,267 1.186 3.984 

 Colorado 29,496 5,122 20,087 3,488 0.813 6.189 

 Minnesota 30,507 5,409 12,591 2,233 1.207 5.878 

 South Carolina 19,222 3,733 14,129 2,744 1.219 4.382 

 Alabama 23,310 4,754 17,137 3,495 1.239 3.972 

 Louisiana 43,273 9,308 13,504 2,905 1.006 6.090 

 Kentucky 14,179 3,174 10,363 2,320 1.022 5.453 

 Oregon 6,670 1,581 4,643 1,101 1.012 6.079 

 Oklahoma 8,588 2,170 5,878 1,485 0.986 6.089 

 Connecticut 44,475 12,474 24,248 6,801 0.654 6.178 

 Utah 16,210 5,056 13,495 4,209 1.199 3.496 

 Iowa 27,265 8,642 13,414 4,252 0.916 5.767 

 Nevada 12,894 4,186 6,823 2,215 1.032 6.190 
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 Arkansas 14,869 4,927 11,699 3,877 1.273 3.426 

 Mississippi 19,104 6,419 11,794 3,963 1.084 4.913 

 Kansas 11,490 3,944 2,395 822 0.719 8.541 

 New Mexico 10,588 5,050 8,098 3,862 1.024 4.794 

 Nebraska 17,319 8,953 6,057 3,131 0.933 6.282 

 West Virginia 2,244 1,252 1,304 728 1.037 6.661 

 Idaho 3,503 1,960 1,601 896 1.078 7.008 

 Hawaii 595 480 0 0 0.925 9.903 

 New Hampshire 5,405 3,975 3,970 2,920 0.945 5.592 

 Maine 2,883 2,145 2,070 1,540 1.153 5.244 

 Montana 445 527 0 0 1.151 9.880 

 Rhode Island 15,776 14,892 8,456 7,982 0.615 6.062 

 Delaware 9,921 10,188 7,244 7,439 0.722 5.528 

 South Dakota 5,887 6,655 3,381 3,822 0.915 5.848 

 North Dakota 3,032 3,979 1,565 2,054 0.977 6.507 

 Alaska 863 1,180 527 720 1.290 5.680 

 Vermont 874 1,779 0 0 1.027 9.641 

 Wyoming 957 1,654 512 885 0.927 7.137 

 District of 
Columbia 9,754 13,821 6,379 9,039 

 
0.816 

 
4.511 
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In Fig. 7, we present rankings of USA sates according to NT (left panel) and to ΔNT 

(right panel) values. Both rankings contain useful information but do not capture the more 

complete picture needed to evaluate each state's response. In Fig. 8, we present the 

ranking of USA states according to the values of λ (left panel), which provides a measure of 

whether the number of cases has been rising (λ > 1), stationary (λ ≈ 1), or falling (λ < 1).  

We also present the ranking according to values of the PRIUSA index, defined in Eq. 4, which 

give a more complete picture of the overall performance, including the values of NT, ΔNT, 

and λ. 

 

 

Discussion 

Principal findings 

Reported cases of Covid-19 infections in the USA states show features that are both 

common and regular, which we interpret as successive waves of transmission (sub-

epidemics, outbreaks). We present evidence for this interpretation by analyzing the 

reported data from all 50 states and the District of Columbia. Based on this analysis, it is 

possible to infer to what extent the imposition of social-distancing measures had slowed 

the spread of the disease. This analysis provides an estimate of how much lower the 

number of infections could have been, if early and strict intervention measures had been 

taken to stop the spread at the first wave, and assigns a Pandemic Response Index value to 

each state’s overall response.  

 

Comparison with prior work 

Agent-based simulations encompassing strong social-distancing measures have 

shown the emergence of epidemic trajectories with multiple wave structures. Recent 

research works have focused on interpreting the wave features appearing on the reported 

incidence curves by “change points” [14] resulting from change in the epidemiological 

parameters after the imposition of interventions or by decomposing the epidemic 

trajectory in multiple waves. 
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A recently proposed model, the multiple-wave FSIR model can identify multiple 

waves, specifying each one by only three parameters, t1, ∆t and N’, all of which are obtained 

by directly fitting the reported data of daily populations of infected individuals. Each of 

these parameters can be assigned a physical meaning, which help quantify certain 

generally held views [22]. Moreover, the quantitative picture that emerges from the values 

of these parameters produces a rather accurate picture of the severity of the epidemic in 

the various countries (or states, or counties, or cities), and helps to determine the effect of 

the intervention measures if and when any were taken. 

The multiple-wave model addresses a limitation of models that assume a single 

wave epidemic. These single-wave models, such as the models employing logistic functions, 

provide the extrapolation to future cases of infection as only a lower limit; this point has 

been discussed in an elegant mathematical analysis of the data by Fokas et al. [30], 

highlighting the need for the inclusion of nonlinear terms in the underlying differential 

equations to capture the slow rate of the infected population decay. This is evident in the 

countries that have long passed the peak of the reported cases: the tail does not asymptote 

to a constant value, as the sigmoid (logistic) model predicts, but the number actually keeps 

growing at a slow rate. The multiple-wave FSIR mitigates this limitation of the original FSIR 

model: by modeling more accurately the wavy behavior of the infected population curve it 

can provide a better fit to the daily data and to the cumulative actual data, and a better 

estimate to the cumulative number of cases (NT), as can be seen in all the cases we 

examined, see Fig.s 2 - 6. 

 

Limitations 

The multiple-wave FSIR model we have used in the present study may suffer from a 

limitation relating to the fact that in many cases, when ∆t is estimated as an adjustable 

parameter, it tends to provide an aggregate fit, that is, an initial large sub-epidemic tends to 

be followed by a longer in time and smaller in peak intensity averaged wave, which is the 

sum of smaller sub-epidemics. This wave can be characterized as a temporary endemic 

wave according to the taxonomy of [13]. In order to improve the resolution of the model 

and enable it to specify the underlying smaller sub-epidemics, an epidemiologically 
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reasonable value for ∆t is necessary (see Section II for details in choosing the Covid-19 

epidemiologically consistent value of ∆t  used in our computations). Furthermore, caution 

must be exercised in interpreting the sub-epidemics, because they may constitute a 

superposition of even smaller ones, as in the case of states with significant urban centers in 

their jurisdiction comprising counties and cities with varied response to the epidemic; a 

study of multiple-wave decomposition of reported US cases per county and city is currently 

under way by the authors. In addition, extrapolated values such as the total number of 

cases, NT, depend on the number of waves, which can produce temporary or stationary 

“endemic” waves, leading to inaccurate extrapolated values of certain parameters. 

Considerable caution should be taken when comparing PRI values outside the set of 

states (or countries, or cities, or counties) for which the PRI index was calibrated. As 

mentioned above, RPI is not a “universal” index and it has to be appropriate calibrated for a 

specific set in order to make meaningful comparisons among the members of the set.  

 

Conclusions 

Multiple waves of transmission during infectious disease epidemics represent a 

major public health challenge. The analysis of reported data from all 50 states and the 

District of Columbia in USA support the hypothesis that the Covid-19 pandemic can be 

successfully modeled as a series of epidemic waves. Based on the model’s results, as of 

June 11, 2020, only 19 states and the District of Columbia show epidemic waves with 

declining strengths, leading to the disease’s containment. This is just 40% of the total 

number of the States. On the other hand, 18 states exhibit waves of increasing strengths, 

and 13 states exhibit stationary behavior, which can be interpreted as “endemic” wave. 

Based on the model’s results, we have computed Pandemic Response Index values for each 

state, thus providing a finer tool for evaluating each state’s Covid-19 response 

performance. 
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Figure 2: Results for New York and Pennsylvania, obtained by fitting the multiple-wave FSIR model 

with data up to June 11, 2020. Top row: Red dots are the daily data reported in Ref. [23]. The blue 

dots are seven-day running averages of the daily data. The green-dashed line is the fit by the single-

wave FSIR model. The black solid line is the 3-wave fit by the multiple-wave FSIR model. Middle 

row: Decomposition of the seven-day moving average data (blue dots) in 3 waves, for each state. 

The black line represents the superposition of the multiple waves. The fit is in excellent agreement 

with the actual data. Bottom row: Blue dots are cumulative daily data (moving averages). The 

black line is the fit by the multiple-wave FSIR model, and it is essentially indistinguishable from the 

actual data. The green-dashed line is the fit of the single-wave FSIR model, which clearly underfits 

the actual data. 
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Figure 3: Results for Illinois and Texas, obtained by fitting the multiple-wave FSIR model with data 

up to June 11, 2020. The meaning of symbols is the same as in Fig. 2. 
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Figure 4: Results for Georgia and Florida, obtained by fitting the multiple-wave FSIR model with 

data up to June 11, 2020. The meaning of symbols is the same as in Fig. 2. 
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Figure 5: Results for California and Arizona, obtained by fitting the multiple-wave FSIR model with 

data up to June 11, 2020. The meaning of symbols is the same as in Fig. 2. 
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Figure 6: Results for Alaska and Idaho, obtained by fitting the multiple-wave FSIR model with data 

up to June 11, 2020. The meaning of symbols is the same as in Fig. 2. 
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Figure 7: Ranking of USA States as of June 11, 2020. Left panel: Ranking according to the values of 

NT per million, the expected total number of cases per million population. Right panel: Ranking 

according to the ΔNT values (see text for details).  
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Figure 8: Ranking of USA States as of June 11, 2020. Left panel: Ranking according to the values of 

λ, which provides a measure of whether the number of cases has been rising (λ > 1), are stationary 

(λ ≈ 1), or falling (λ < 1); see text for details. The two vertical red lines delineate the λ ≈ 1 range 

(0.95 < λ < 1.05). States with clearly declining trends have λ < 0.95, whereas states with clearly 

increasing trends have λ > 1.05. Right panel: Ranking according to PRIUSA index. The greater the 

value of PRI, the better the pandemic response of the state is.
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