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Abstract

Malaria prevalence in sub-Saharan Africa remains high. Kenya for example, records about 3.5 million new cases

and 11 thousand deaths each year [1]. Most of these cases and deaths are among children under five. The main

control method in malaria endemic regions has been through the use of pyrethroid-treated bed nets. Although

this approach has been fairly successful, the gains are threatened by mosquito-resistance to pyrethroids, physical

and chemical degradation of ITNs that reduce their efficacy, inconsistent and improper use by humans, etc. We

present a model to investigate the effects of insecticide-treated bed-net use and mosquito-resistance and adaptation

to pyrethroids used to treat bed nets on malaria prevalence and control in malaria endemic regions. The model

captures the development and loss of resistance to insecticides, the effects of bed-net use on malaria control in a

setting where proper and consistent use is not guaranteed, as well as differentiated biting of human hosts by resistant

and sensitive mosquitoes. Important thresholds, including the basic reproduction number R0, and two parameter

groupings that are important for disease control and for establishing the existence of endemic equilibria to the

model are calculated. Furthermore, a global sensitivity analysis is carried out to identify important parameters such

as insecticide treated bed-net coverage, insecticide treated bed-net efficacy, the maximum biting rate of resistant

mosquitoes, etc., that drive the system and that can be targeted for disease control. Threshold levels of bed-net

coverage and bed-net efficacy required for containing the disease are identified and shown to depend on the type

of insecticide-resistance. For example, when mosquito-resistance to insecticides is not permanent and is acquired

only through recruitment and the efficacy of insecticide-treated nets is 90%, about 70% net coverage is required to

contain malaria. However, for the same insecticide-treated net efficacy, i.e., 90%, approximately 93% net coverage

is required to contain the disease when resistance to insecticides is permanent and is acquired through recruitment

and mutation in mosquitoes. The model exhibits a backward bifurcation, which implies that simply reducing

R0 slightly below unity might not be enough to contain the disease. We conclude that appropriate measures to

reduce or eliminate mosquito-resistance to insecticides, ensure that more people in endemic areas own and use

insecticide-treated nets properly, and that the efficacy of these nets remain high most of the times, as well as
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educating populations in malaria endemic areas on how to keep mosquito densities low and minimize mosquito

bites are important for containing malaria.

Keywords: Insecticide-treated net coverage and efficacy, Mosquito resistance, Malaria prevalence, Malaria control,

Mosquito behavior

1. Introduction

Malaria is a vector-borne disease caused by Plasmodium parasites and spread by infectious female mosquitoes

as they seek blood required for development of their eggs. There are four major types of human malaria para-

sites: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Plasmodium

falciparum and Plasmodium vivax are the most common forms with Plasmodium falciparum the most deadly type,

especially in sub-Saharan Africa, where it causes more than 400,000 deaths each year [2]. More than 90% of

malaria-imposed deaths occur in Africa and mostly amongst children under the age of five. The disease costs

economies in endemic areas thousands of dollars in treatment, control, management and elimination efforts each

year. For example, it is estimated that US $12 billion is spent annually to fight malaria [3]. In Sub-Saharan Africa,

there are two main malaria transmitting vector species–Anopheles gambiae and it Anopheles arebiansis. Anophe-

les gambiae is the world’s most effective vector of human malaria because of its susceptibility to Plasmodium

parasites, short development time, preference for human-blood, and preference for indoor-feeding and resting [4].

The fight against endemic malaria in Sub-Saharan Africa has been stepped up within the past 15 years. Most

efforts have been directed towards vector control measures, which include provision and use of Insecticide Treated

Nets (ITNs) (i.e., Long Lasting Insecticide Nets (LLINs) and treated regular nets) and Indoor Residual Spray-

ing (IRS) with insecticides, which target Anopheles malaria vectors. Insecticide treated nets and indoor residual

spraying use synthetic chemicals called pyrethroid insecticides that kill and repel mosquitoes. These two vector

intervention strategies account for 25% of the total world pyrethroids market [5]. They are widely used in Kenya,

especially in regions with increased malaria prevalence and vector resistance, e.g., the Western and Coastal regions

of Kenya, where malaria is endemic and is transmitted year-round with increased transmission. Malaria prevalence

in these areas remains high despite the control efforts made over the years [6]. The fight against the disease in

Kenya spans several decades with enhanced strategies and concerted donor country efforts yielding successful re-

sults, although only to a limited extent. Different regions report success of different control strategies ranging from

awareness campaigns on the role of mosquitoes in malaria transmission, reduction of mosquito breeding sites near

homes, personal and family protection through proper use of ITNs and mosquito repellents, through indoor residual

spraying [4, 7]. One common observation has been that sustained vector control is a key intervention measure for

any control progress to translate into the ambitious goal of malaria elimination [8–10].

Since malaria affects mostly the rural poor populations, ITNs have been very useful in reducing morbidity and
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mortality in these populations due to their low cost and ease in implementation [11]. Distribution of free ITNs to the

most vulnerable group of humans, i.e., pregnant women and children below five has seen malaria incidence decline

in Africa [1, 12–15]. In particular, ITNs have been responsible for averting approximately 68% of malaria-related

deaths in Africa [16]. Insecticide-treated nets are about 90% effective when new, however, due to several factors

including natural wear and misuse, the efficacy can drop to less than 70% over the lifespan (three years). Untreated

bed-nets that are in good condition or ITNs that have lost their efficacy provide about 50% protection to humans

[17]. Insecticide-treated net coverage in Kenya, for example, has increased drastically from 7% in 2004 through

67% in 2006 [18], to over 80% in 2015 [19]. To realize the expected reduction in malaria transmission through

the use of ITNs, ITN efficacy and coverage for at risk populations must be high enough [11]. Unfortunately, low

coverage and low efficacy coupled with differentiated adherence to the use of ITNs has a negative impact on malaria

control [15]. The aim of universal ITN coverage is to attain a 1:1.6 ratio in order to reduce malaria prevalence to

an acceptable level. But, achieving this goal is hampered by several challenges including ITN ownership, regular

wear, misuse, inconvenience (e.g., people tend to sleep out of ITNs when it is hot), human behavior, perception,

and literacy level, etc. [19–23]. These confounding factors make ITN coverage and efficacy variable in endemic

areas. Understanding the impact of these limitations can help us assess the effectiveness of ITNs, devise optimal

control strategies using these ITNs, and guide public health policy.

Another challenge to the gains from vector control measures against malaria such as ITNs is resistance exhibited

by mosquitoes to pyrethroid insecticides used in ITNs [24–26]. Insecticide-resistance is defined as the increased

ability of insects to withstand or overcome the toxic, killing, or repellent effects of insecticides through natural

selection and mutation. Thus, resistance is measured by the effectiveness of insecticides in killing mosquitoes,

as well as the ability of some vectors to tolerate the toxic effects. For example, when mosquitoes are exposed

to insecticides, the resistance is low if the mosquitoes have a 0-40% survival probability, medium if they have a

40-80% survival probability, and high if the mosquito survival probability is at least 80% [27]. Mosquitoes respond

to insecticide exposure behaviorally, numerically, or evolutionarily [28]. Behavioral response involves mosquitoes

backing off from toxic sprays or ITNs without biting to return for a blood meal only after active ingredients in the

insecticides have subsided [29–31]. Numeric response has resulted in a decline in the population of mosquitoes, as

well as a shortened lifespan of mosquitoes [32–34]. Evolutionary changes occur when there is reduced sensitivity

to insecticides in ITNs. In this case, there is target site blocking and increased frequency of metabolism [35–37].

Many types of mosquito resistance to insecticides have been identified. These include behavioral, metabolic,

and cuticular resistance. Behavioral resistance occurs when mosquitoes adapt to human protective behavior. For

example, mosquitoes might bite earlier before humans sleep under ITNs and rest outside sprayed human homes to

avoid the toxicity of pyrethroids. Metabolic resistance occurs when mosquitoes undergo several mutations (causing

changes to the chemical target site), which enable them to detoxify the chemical or withstand prolonged exposure
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to insecticides without being killed [38–41]. Cuticular resistance is a physical characteristic of mosquitoes, where

their cuticles are thickened and the composition of the cuticle is altered in order to absorb less insecticide [42, 43].

This can result in increased resistance to insecticides [44]. Although behavioral resistance can be acquired and lost

depending on survival from exposure, metabolic and cuticular resistance are permanent, i.e. a metabolic or cuticle

resistant mosquito maintains its resistance until it dies. Mosquito-resistance to insecticides is widely distributed

[45] and its intensity is increasing, thus reducing the effectiveness of ITNs and other pyrethroid-related malaria

control measures [28, 45]. To make matters worst, multiple resistance to insecticides have been detected in most

of the countries in which malaria is endemic [46]. For example, when multiple pyrethroid-related interventions,

e.g., ITN, IRS, and mosquito-repellents are used, about 3-5% of the infectious mosquitoes develop resistance [47].

The emerging increase in resistance levels coupled with normal wear, misuse of ITNs, and human behavior is a

major threat to the efficacy of protection from ITNs [26]. This calls for extensive studies to understand and monitor

the effects of long-term implementation of vector control measures, the emergence of insecticide-resistance and

the effects of resistance on the efficacy of these control measures [28, 29, 48]. This information is important for

identifying and implementing better and more effective control measures [48].

One approach that has been useful for gaining insights into the complex processes that surround the persistence

of malaria is mathematical modeling (see, for example, [49–63]). Some mathematical models have focused on

understanding the role of ITNs, e.g., [60, 64–69] on malaria control, while others have focused on investigating

the effects of mosquito-resistance to insecticides on malaria dynamics [70–74]. Here, we investigate the impact of

ITNs and the extent to which insecticide resistance affect malaria control efforts in endemic areas. We approach

this through a mathematical model that incorporates ITN-use and two types of mosquitoes–sensitive and resistant

mosquitoes. To our knowledge, this is the first mathematical model framework for malaria dynamics that combines

ITN-use and the impact of mosquito resistance on the efficacy of ITNs to understand malaria prevalence and control.

2. Model formulation

We develop the mathematical model in this section. Key features of the model include explicit incorporation

of resistance to insecticides by mosquitoes and personal protection through the use of insecticide-treated bed nets.

Schematics for the model system are presented in Fig. 1. We consider a Susceptible-Infectious-Partially immune-

Susceptible (SIRS) framework for the human population. That is the total human population denoted by Nh is

divided into three compartmental classes–susceptible (humans who do not have malaria) denoted by Sh, infectious

(humans who have malaria and can transmit it) denoted by Ih, and partially immune (humans who have temporary

immunity to malaria) denoted by Rh. The susceptible human population is increased by natural births that occur

at rate Λh (we are assuming that malaria is not vertically transmissible) and when partially immune humans lose

immunity at rate ρh. The population of this class is decreased through natural deaths that occur at per capita µh

and through new infections from infectious mosquitoes modeled through the force of infection λvh. The infectious
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Figure 1: Model flow-chart showing the flow of humans and mosquitoes between different classes that represent the
status of the disease (solid lines) and interactions between humans and mosquitoes (non solid lines). Interactions
resulting in sensitive and resistant susceptible mosquito infections by infectious humans are denoted by dash-doted
and dotted lines, respectively, and interactions resulting in susceptible human infections by sensitive and resistant
infectious mosquitoes are denoted by dark red and light magenta dashed lines, respectively. The human popula-
tion is broken down into susceptible Sh, infectious Ih, and partially immune Rh, while the mosquito population
comprises susceptible sensitive and resistant (Ss and Sr, respectively,) and infectious sensitive and resistant classes
(Is and Ir, respectively). Descriptions of the transition rates (parameters) are presented in the text and in Table 1,
while the forces of infection λvh, λhs and λhr are described in the text and presented in Eq. (2.6).

human population increases through new infections and decreases when humans die naturally at per capita rate

µh, acquire partial-immunity at per capita rate γh, or are killed by the disease at per capita rate δh. The partially

immune human population is increased by newly immune humans from the infectious class and reduced by natural

mortalities and through loss of immunity at per capita rate, ρh. Based on this description and the schematics

presented in Fig. 1, the human population and disease dynamics within the human population are described by the

system of equations:

Ṡh = Λh + ρhRh − (λvh + µh)Sh,

İh = λvhSh −A1Ih, (2.1)

Ṙh = γhIh −A2Rh,

where A1 = δh + µh + γh, A2 = µh + ρh, and the total human population is described by:

Ṅh = Λh − µhNh − δhIh. (2.2)

A Susceptible-infectious (SI) framework is used for the mosquito population. That is, the total mosquito population

is broken down into susceptible and infectious mosquitoes. Furthermore, each of these two groups of mosquitoes
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is broken down into sensitive and resistant mosquitoes leading to the following compartmental classes: sensitive

susceptible mosquitoes Ss, which are susceptible mosquitoes that are not resistant to insecticides, resistant sus-

ceptible mosquitoes Sr, which are mosquitoes that have developed resistance to insecticides, sensitive infectious

mosquitoes Is, and resistant infectious mosquitoes, Ir. It is assumed that mosquitoes can develop, as well as lose

resistance to insecticides over time depending on the efficacy and coverage level of the treated bed nets. The devel-

opment of resistance for sensitive mosquitoes occurs at per capita rate σs, while the loss of resistance by resistant

mosquitoes occurs at per capita rate σr. Natural mortalities in the mosquito compartments occur at per capita rates

µ0
j , j ∈ {r, s}, i.e., µ0

s is the per capita rate of natural mortality in the sensitive mosquito compartments (Ss and Is)

and µ0
r is the per capita rate of natural mortality in the resistant mosquito compartments (Sr and Ir). Since ITNs are

designed to prevent mosquitoes from biting humans who sleep under them and also to kill mosquitoes that land on

them, we follow the approach in Ngonghala et al. [60, 69] and model the total mosquito mortality (i.e., natural and

ITN-induced mortality) rate by the single term µj , j ∈ {r, s} using the functional form µj = µ0
j +µ1

jb0ε, where µ0
j

is the per capita natural mortality rate of mosquitoes in the sensitive classes (j = s) and resistant classes (j = r),

µ1
j is the death rate of mosquitoes in the sensitive and resistant classes that land on ITNs, 0 ≤ b0 ≤ 1 is ITN cover-

age, and 0 ≤ ε ≤ 1 is the efficacy of ITNs. This implies that when ITN coverage and efficacy are high, mosquito

mortalities resulting from ITN-use are also high and vice versa. In the context of this work, ITN-coverage refers

to the proportion of humans who are protected by ITNs and ITN-efficacy refers to the ability of ITNs to protect

humans who sleep under them from mosquito bites, as well as kill mosquitoes that land on them. The sensitive

susceptible mosquito class is increased by births occurring at rate (1 − θ)Λv, where 0 < θ < 1 is the proportion

of mosquito births that are resistant and when resistant mosquitoes lose their resistance at per capita rate σr. The

population of this class reduces when sensitive susceptible mosquitoes become infected by infectious humans with

force of infection λhs, become resistant at per capita rate σs, die naturally at per capita rate µ0
s, or die as a result

of insecticides on nets at rate µ1
sb0ε. The sensitive infectious mosquito population is increased by incoming newly

infectious sensitive mosquitoes λhsSs and is reduced by natural deaths occurring at rate µ0
s, insecticide-induced

deaths at rate µ1
sb0ε, and when sensitive infectious mosquitoes become resistant at rate σs. The populations of

the resistant susceptible and infectious mosquitoes are increased or reduced through similar processes, with the

subscript s in the parameters replaced by the subscript r. Using this description and the schematics in Fig. 1, the

population and disease dynamics for the mosquitoes are described by the system of nonlinear first order ordinary

differential equations:

Ṡs = (1− θ)Λv + σrSr − (λhs +B1)Ss,

İs = λhsSs + σrIr −B1Is, (2.3)

Ṡr = θΛv + σsSs − (λhr +B2)Sr,

İr = λhrSr + σsIs −B2Ir,
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whereB1 = σs+µs, B2 = σr+µr, and the dynamics of the total mosquito population is described by the equation

Ṅv = Λv − µs(Ss + Is)− µr(Sr + Ir). (2.4)

We differentiate the biting rate of mosquitoes such that sensitive and resistant mosquitoes bite humans at respective

rates βhs and βhr [75, 76]. As in Ngonghala et al. [60, 69], we model these biting rates with the functional forms:

βhs = βmaxhs − (βmaxhs − βminhs )b0ε and βhr = βmaxhr − (βmaxhr − βminhr )b0ε. Observe that for each type of mosquito,

the biting rate is maximum when b0 = 0 or ε = 0, i.e., when there is no ITN coverage or there is coverage with

non-effective ITNs and minimum when b0 = 1 and ε = 1, i.e., when the entire population uses highly effective

ITNs. The force of infection λvh = pvh

(
βhsIs
Nh

+ βhrIr
Nh

)
, where pvh is the probability that a bite from a sensitive

or resistant infectious mosquito will infect a susceptible human. On the other hand, the forces of infection λhs

and λhr are given by λhs = phsβhsIh
Nh

and λhs = phrβhrIh
Nh

, respectively. The full model that incorporates ITN-use,

mosquito-resistance to insecticides, and differentiated infectivity captured through different biting rates by sensitive

and resistant mosquitoes is described by the nonlinear system:

Ṡh = Λh + ρhRh − (λvh + µh)Sh,

İh = λvhSh −A1Ih,

Ṙh = γhIh −A2Rh,

Ṡs = (1− θ)Λv + σrSr − (λhs +B1)Ss (2.5)

İs = λhsSs + σr Ir −B1Is,

Ṡr = θΛv + σsSs − (λhr +B2)Sr,

İr = λhrSr + σsIs −B2Ir,

where the forces of infection λvh, λhs, and λhr are defined as:

λvh = pvh

(
βhs

Is
Nh

+ βhr
Ir
Nh

)
, λhs = βhsphv

Ih
Nh

, and λhr = βhrphv
Ih
Nh

. (2.6)

A summary of the description of model parameters together with baseline and ranges of numerical values for the

parameters and their sources are presented in Table 1.

As human and mosquito populations, each of the variables Sh, Ih, Rh, Ss, Is, Sr, and Ir, and the parameters

of the system (see Table 1) are non-negative. As in [60, 69], it is straight forward to verify that the system is

well-posed within the epidemiologically feasible region

Ω = {(Sh, Ih, Rh, Ss, Is, Sr, Ir) ∈ R7
+ : 0 ≤ Sh + Ih +Rh ≤ Λh/µh, 0 ≤ Ss + Is + Sr + Ir ≤ Λv/µv},

where µv = min(µs, µr). Considering the equation for total human population (2.2), we have: Ṅh = Λh −
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µhNh − δhIh ≤ Λh − µhNh. Therefore, Nh(t) ≤ Λh
µh

+
(
Nh(0)− Λh

µh

)
e−µht, where Nh(0) is the initial total

human population. Similarly, if µv = min(µs, µr), then from the equation for the total mosquito population

(Eq.(2.4)) becomes: Ṅv ≤ Λv − µvNv. Thus, Nv(t) ≤ Λv
µv

+
(
Nv(0)− Λv

µv

)
e−µvt, where Nv(0) is the initial total

human population. Observe thatNh(t) ≤ Λh/µh andNv(t) ≤ Λv/µv as t→∞. Therefore, the epidemiologically

feasible region Ω = {(Sh, Ih, Rh, Ss, Is, Sr, Ir) ∈ R7
+ : 0 ≤ Sh + Ih + Rh ≤ Λh/µh, 0 ≤ Ss + Is + Sr + Ir ≤

Λv/µv} is positively invariant and attracting with respect to the model system (2.5). That is, any solution of the

model with initial data within Ω is trapped within Ω for t > 0.

Table 1: Table of parameter values and ranges used for the simulations of System (2.5). The dimension H,D,
and M represent human, day, and mosquito, respectively. Dimensions are enclosed in parentheses at the end of
parameter descriptions and excluded for dimensionless parameters.

Parameter Description and dimension Value Range Reference
Λh Recruitment rate of humans (HD−1) 6.85× 10−2 [3.65, 9.13]× 10−2 [77, 78]
ρh Rate at which partially immune 8.3× 10−3 [5.5, 1100]× 10−5 [69, 79]

humans loss immunity (D−1)
µh Human natural mortality rate (D−1) 4.09× 10−5 [3.3, 5.5]× 10−5 [77, 78]
γh Rate at which infectious humans 1.25× 10−2 [1.4, 17]× 10−3 [79, 80]

recover from malaria (D−1)
δh Malaria-induced death rate 9.01× 10−5 [0, 4.1]× 10−4] [54]

for infectious humans (D−1)

θ Proportion reduction in sensitive mosquitoes 0.1 [0, 1]
recruitment due to resistance.

Λv Mosquito recruitment rate (MD−1) 104/14 [104/21, 104/7] [81]
σs Mutation rate of sensitive mosquitoes (D−1) 0.600 [0, 1] [82]
σr Mutation rate of resistant mosquitoes (D−1) 0.5 [0, 1] [53, 83]
µ0
r Natural death rate of resistant mosquitoes (D−1) 1/21 [1/30, 1/7] [84, 85]
µ0
s Natural death rate of sensitive mosquitoes (D−1) 1/14 [1/21, 1/7] [84, 85]
µ1
r ITN death rate of resistant mosquitoes (D−1) 1/21 [1/30, 1/7] [86]
µ1
s ITN death rate of sensitive mosquitoes (D−1) 1/14 [1/21, 1/7] [86]

phv Human to mosquito transmission probability 0.48 [0.072, 0.64] [54, 87–89]
pvh Mosquito to human transmission probability 0.022 [0.01, 0.27] [54, 84, 90]
βmaxhs Maximum sensitive mosquito biting rate (D−1) 0.5 [0, 1] [54, 91, 92]
βmaxhr Maximum resistant mosquito biting rate (D−1) 0.8 [0, 1] [54, 91, 92]
βminhs Minimum sensitive mosquito biting rate (D−1) 0.5 [0.001, 0.1] [93]
βminhr Minimum resistant mosquito biting rate (D−1) 0.03 [0.001, 0.1] [93]
b0 ITN coverage, i.e., the proportion of humans varies [0.01, 1] [3]

who are protected from mosquito-bites by ITNs varies [0.01, 1] [3]
ε ITN efficacy, i.e., the ability of ITNs to protect varies [0.01, 1]

humans and kill mosquitoes that land on them

3. Model analysis

In this section, we determine the basic reproduction number and explore the existence and stability properties of

equilibria to System (2.5). The basic reproduction number of the model system calculated using the next generation
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matrix approach [94] (see the online supplementary information for details) is

R0 =

√
phvpvhΛvµh(B6 +B7)

ΛhA1B2
3

(3.1)

where B3 = µrµs + µrσs + µsσr, B4 = B2(1− θ) + θσr, B5 = B1θ + σs(1− θ),

B6 = B1B5β
2
hr +B2B4β

2
hs, B7 = βhrβhs(B4σs + σrB5). (3.2)

Equilibria are obtained by setting the left-hand side to zero and solving for the variables Sh, Ih, Rh, Ss, Is, Sr, Ir:

S∗
h =

ΛhA1A2

A1A2µh +A3λ∗vh
, I∗h =

ΛhA2λ
∗
vh

A1A2µh +A3λ∗vh
, R∗

h =
γhΛhλ

∗
vh

A1A2µh +A3λ∗vh
, N∗

h =
Λh(A1A2 +A4λ

∗
vh)

A1A2µh +A3λ∗vh
,

S∗
s =

Λv(B4 + (1− θ)λ∗hr)
B3 +B1λ∗hr + (B2 + λ∗hr)λ

∗
hs

, I∗s =
Λv((B2 + λ∗hr)B4λ

∗
hs + σrB5λ

∗
hr)

B3(B3 +B1λ∗hr + (B2 + λ∗hr)λ
∗
hs)

, (3.3)

S∗
r =

Λv(B5 + θλ∗hs)

B3 +B1λ∗hr + (B2 + λ∗hr)λ
∗
hs

, I∗r =
Λv((B1 + λ∗hs)B5λ

∗
hr + σsB4λ

∗
hs)

B3(B3 +B1λ∗hr + (B2 + λ∗hr)λ
∗
hs)

,

where A3 = µhA1 + ρh(δh + µh) and A4 = A2 + γh. Substituting I∗h, I
∗
s , I

∗
r , and N∗

h into the forces of infection

λhs, λhr, and λvh from Eqs. (2.6) yields

λ∗hs =
βhsphvA2λ

∗
vh

A2A1 +A4λ∗vh
, λ∗hr =

βhrphvA2λ
∗
vh

A2A1 +A4λ∗vh
, and (3.4)

λ∗vh =

(
βhspvhΛv(B4(B2 + λ∗hr)λ

∗
hs +B5σrλ

∗
hr)(µhA1A2 +A3λ

∗
vh)

B3((B2 + λ∗hr)λ
∗
hs +B1λ∗hr +B3)(A1A2 +A4λ∗vh)Λh

)
+

(
βhrpvhΛv(B5(B1 + λ∗hs)λ

∗
hr + σsB4λ

∗
hs)(µhA1A2 +A3λ

∗
vh)

B3((B2 + λ∗hr)λ
∗
hs +B1λ∗hr +B3)(A1A2 +A4λ∗vh)Λh

)
. (3.5)

Substituting λ∗hs and λ∗hr from Eqs. (3.4) into Eq. (3.5) and collecting terms in powers of λ∗vh results in

(λ∗3
vh + C2λ

∗2
vh + C1λ

∗
vh + C0)λ∗vh = 0, (3.6)

where C2 =
ΛhA1A2B3(phvA2(phvβhrβhsA2 + 2A4B9) + 3A2

4B3)(1−R2)

ΛhA4B3(phvA2(phvβhrβhsA2 +A4B9) +A2
4B3)

,

C1 =
Λh(A1A2)2B3(phvA2B9 + 3A4B3)(1−R1)

ΛhA4B3(phvA2(phvβhrβhsA2 +A4B9) +A2
4B3)

,

C0 =
Λh(A1A2)3B2

3(1−R2
0)

ΛhA4B3(phvA2(phvβhrβhsA2 +A4B9) +A2
4B3)

,

R2 =
phvpvhΛvA3(phvA2B8 +A4(B6 +B7))

ΛhA1B3(phvA2(phvβhrβhsA2 + 2A4B9) + 3A2
4B3)

, R1 =
phvpvhΛv(phvµhA2 + (A3 +A4µh)(B6 +B7))

A1B3Λh(phvA2B9 + 3A4B3)
, (3.7)

B8 = βhrβhs(B4βhs + B5βhr), and B9 = βhrB1 + βhsB2. Note that C0 ≥ 0 if R0 ≤ 1, C0 < 0 if R0 > 1,

C1 ≥ 0 if R1 ≤ 1, C1 < 0 if R1 > 1, and that C2 ≥ 0 if R2 ≤ 1, C2 < 0 if R2 > 1. Using Descartes’ rule of

signs, we guess that Eqs. (2.5) can have zero, one, two, or three endemic equilibria, which leads to the Theorem:

Theorem 3.1. The model system (2.5) can have

(a) no endemic equilibrium point when C0 ≥ 0, C1 ≥ 0, and C2 ≥ 0;
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(b) one possible endemic equilibrium point if C0 < 0, C1 ≥ 0, and C2 ≥ 0, or C0 ≤ 0, C1 < 0, and C2 ≥ 0, or
C0 ≤ 0, C1 ≤ 0, and C2 ≤ 0;

(c) zero or two possible endemic equilibrium points if C0 ≥ 0, C1 > 0 and C2 < 0, or C0 > 0, C1 < 0 and
C2 ≥ 0, or C0 > 0, C1 ≤ 0 and C2 < 0.

Remark 3.2. The possibility of two endemic equilibrium points when C0 ≥ 0, which corresponds to R0 ≤ 1
postulated in Theorem 3.1 highlights the possibility of a backward (sub-critical bifurcation). We illustrate this using
numerical simulations in Fig. 4. To identify specific conditions under which the polynomial equation (3.6), has a
unique endemic equilibrium, or exactly two endemic equilibrium points, we can apply a combination of Sturm’s
Theorem and Descartes rule of signs applied to a canonical form the equation obtained through the substitution
λ̃∗vh = λ∗vh + C2/3 (see [72] for details). An illustration of the case in which the model (2) has one endemic
equilibrium is presented in Fig. 3.

3.1. The disease-free equilibrium

The case of Eq. (3.6) for which λ∗vh = 0 corresponds to the disease-free equilibrium (S0
h, I

0
h, R

0
h, S

0
s , I

0
s , S

0
r , I

0
r )

=
(

Λh
µh
, 0, 0, ΛvB4

B3
, 0, ΛvB5

B3
, 0
)

. The Jacobian of System (2.5) evaluated at this disease-free equilibrium is:

J =



−µh 0 ρh 0 −pvhβhs 0 −pvhβhr

0 −A1 0 0 pvhβhs 0 pvhβhr

0 γh −A2 0 0 0 0

0 −βhsphvΛvµhB4

ΛhB3
0 −B1 0 σr 0

0 βhsphvΛvµhB4

ΛhB3
0 0 −B1 0 σr

0 −βhrphvΛvµhB5

ΛhB3
0 σs 0 −B2 0

0 βhrphvΛvµhB5

ΛhB3
0 0 σs 0 −B2



.

If ξ is an eigenvalue of J , then ξ1 = −µh, ξ2 = −A2, and ξ3,4 =
−(B1+B2)±

√
(B1+B2)2+4σrσs
2 are four eigenvalues

of J . Observe that both ξ3 and ξ4 are real and negative since
√

(B1 +B2)2 + 4σrσs > (B1 + B2). Therefore,

four of the eigenvalues of J are real and negative. The other three eigenvalues are given by the cubic equation:

ξ3 + d2ξ
2 + d1ξ + d0 = 0, (3.8)

where d2 = A1+B1+B2, d1 = (A1(B1+B2)+B3)(1−R), d0 = A1B3(1−R2
0), andR =

phvpvhµhΛv(β2
hrB5+β2

hsB4)

ΛhB3(A1(B1+B2)+B3) .

It can be verified thatR ≤ R2
0. Hence, whenR0 < 1, d0 > 0 and d1 > 0. Since d1∗d2−d0 > 0, the Routh-Hurwitz

condition assures us that no solution of the Eq. (3.8) is positive when R0 < 1. Therefore, all eigenvalues of J are

negative or have negative real parts (if they are complex) when R0 < 1. This proves the following Theorem:

Theorem 3.3. The disease-free equilibrium (S∗
h, I

∗
h, R

∗
h, S

∗
s , I

∗
s , S

∗
r , I

∗
r ) =

(
Λh
µh
, 0, 0, ΛvB4

B3
, 0, ΛvB5

B3
, 0
)

of system
(2.5) is locally asymptotically stable when R0 < 1.
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4. Results

The long-term dynamics of Model (2) illustrating the existence of a stable disease free equilibrium (DFE)

when the basic reproduction number R0 is less than one and a stable endemic equilibrium when R0 > 1 are

presented in Figs. 2-3. Parameters used for the simulations are presented in Table 1. For this parameter regime and

with ITN coverage b0, chosen such that R0 < 1 (e.g., b0 = 90%), we obtain a disease free equilibrium depicted in

Fig. 2. The case in which resistant mosquitoes can lose their resistance and sensitive mosquitoes develop resistance

at recruitment and through mutation, i.e., σr 6= 0, σs 6= 0 is presented in Fig. 2 (a) and (c), while the case in which

sensitive mosquitoes only develop resistance at recruitment and resistance is permanent, i.e., σs = 0, σr = 0 is

presented in Fig. 2 (b) and (d).

0

1500

3000

0 500 1000
0

2500

5000

0 500 1000

(a) (b)

(c) (d)

Figure 2: Numerical simulation results illustrating the existence of a disease free equilibrium to System (2) when
R0 < 1. Graphs (a) and (c) show the dynamics for the case in which resistance is acquired at rate σs 6= 0 and
lost over time at rate σr 6= 0. Graphs (b) and (d) illustrate the dynamics when resistance is acquired only through
mosquito recruitment and is permanent. Parameter values used for the simulations are presented in Table 1.

For the parameter regime in Table 1, when resistant mosquitoes are able to lose resistance, i.e., σs 6= 0, σr 6= 0

or σs = 0, σr 6= 0, there are more resistant infectious mosquitoes than sensitive infectious mosquitoes at equilib-

rium (Fig. 3 (e) and (h)). The disease is concentrated mostly among the sensitive mosquitoes when resistance is

permanent, i.e., σs = 0, σr = 0 or σs 6= 0, σr = 0 (Fig. 3 (f) and (g)). Additionally, the highest (respectively,

lowest) disease prevalence is observed among the sensitive (respectively, resistant) mosquitoes when resistance ac-

quired through mosquito-recruitment or transition from adult sensitive to resistant mosquito at per capita rate σs is

permanent (Fig. 3 (g)). On the other hand if sensitive mosquitoes only become resistant through mosquito recruit-

ment, i.e., σs = 0 and resistance is not permanent, i.e., σr 6= 0, then the resistant mosquito population only exists

at very low levels, while disease prevalence is predominantly among the human and sensitive mosquito population.
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Figure 3: Numerical simulation results illustrating the existence of an endemic equilibrium to System (2) when
R0 > 1. Graphs (a) and (e) show the dynamics for the case in which resistance is acquired at rate σs 6= 0 and
lost over time at rate σr 6= 0. Graphs (b) and (f) illustrate the dynamics when resistance is acquired only through
mosquito recruitment and is permanent. Graphs (c) and (g) illustrate the dynamical behavior of the system when
resistance is permanent and can be acquired through mosquito recruitment or transition of sensitive mosquitoes
to resistant mosquitoes at rate σs 6= 0. Graphs (d) and (h) illustrate the dynamical behavior of the system when
resistance is not permanent and can only be acquired through mosquito recruitment, i.e., σr 6= 0 and σs = 0.
Parameter values used for the simulations are presented in Table 1.

Figure 4 shows that Model (2) exhibits a backward bifurcation when R0 < 1. In this case, a stable disease free

equilibrium (DFE) co-exists with a stable endemic equilibrium (EE) for Rbb0 ≤ R0 < 1, where the backward

bifurcation threshold, Rbb0 = 0.67. Observe that when R0 < Rbb0 , we have only a stable disease free equilibrium.

Thus, disease control measures must be applied continuously to reduce R0 below Rbb0 .

0

200

400

0 1 2
0

200

400

0 1 2

Figure 4: Bifurcation plot of the equlibrium infectious humans, I∗h ((a)), partially immune humans, R∗
h ((b)) sensi-

tive infectious mosquitoes, I∗s ((c)), and the resistant infectious mosquitoes, I∗r ((d)) against the basic reproduction
number, R0. Model (2) exhibits a backward bifurcation for Rbb0 ≤ R0 < 1 (Rbb0 = 0.67), where an unstable
endemic equilibrium (EE) is located between a stable endemic equilibrium (EE) and a stable disease free equi-
librium (DFE). The ITN coverage (b0) is varied, while the other parameter values are as given in Table 1.
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Next, we identify important model parameters that drive the system and that can be targeted for control purposes

through a global uncertainty and sensitivity analyses using the Latin-Hypercube Sampling (LHS) and Partial Rank

Correlation Coefficient (PRCC) methods (see the online supplementary information for details on the methodol-

ogy). We found out that uncertainty or variability in the efficacy of ITNs ε, and ITN coverage b0, contribute most to

uncertainty or variability in the basic reproduction number R0, and the threshold parameter groupings R1 and R2

from Eq. (3.7) (Fig. 5). Each of these thresholds is useful for determining the existence of endemic equilibria and

hence disease prevalence or disease elimination. There is a negative correlation between each of these thresholds

and ITN efficacy and coverage, i.e., raising ITN efficacy or coverage results in a reduction in the basic reproduction

number, R1, andR2. Thus, allowing these parameters to fall will trigger an increase in the basic reproduction num-

ber, R1, and R2, and hence an increase in disease prevalence. Other important parameters that can be targeted for

control include the maximum biting rate of resistant mosquitoes βmaxhr , the transmission probability from infectious

humans to sensitive and resistant susceptible mosquitoes phv, the transmission probability from sensitive and resis-

tant mosquitoes to susceptible humans pvh, and the mosquito recruitment rate Λv. Other important parameters that

do not impose as much variability and uncertainty as the above are the maximum biting rate of sensitive mosquitoes

βhsmax and the natural mortality rates of sensitive and resistant mosquitoes. Among the least influential parameters

are the minimum biting rates of sensitive and resistant mosquitoes βhsmin and βhrmin, respectively, confirming

the low malaria risk in areas with low mosquito densities, or where mosquitoes are not allowed to bite humans. It is

worth mentioning that although the human recruitment rate Λh, has a high PRCC, we have not highlighted it here

since we are interested only in parameters that can used for malaria control purposes.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 25, 2020. ; https://doi.org/10.1101/2020.05.18.20105916doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105916
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Global uncertainty and sensitivity analysis results showing the contributions of uncertainty or variability
in model parameters to uncertainty or variability to the (a) basic reproduction number R0, and (b)-(c) threshold
quantities R1 and R2 (Eq. (3.7)). Positive PRCCs represent positive correlation, i.e., an increase in a parameter
will trigger an increase in R0, R1, or R2, while negative PRCCs represent negative correlations. The magnitude of
the PRCC represents the level of significance. Parameters used for the simulations are presented in Table 1.

Also, our numerical results indicate that uncertainty or variability in the efficacy of ITNs ε, ITN coverage b0,

the human recovery rate from infection γh, the maximum biting rate of resistant mosquitoes βmaxhr , the transmis-

sion probability from infectious humans to infectious mosquitoes phv, and the mosquito recruitment rate Λv, are

more influential in imposing variability or uncertainty to the infectious human, resistant, and sensitive mosquito

populations (Fig. 6).
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Figure 6: Global uncertainty and sensitivity analysis results showing the contributions of uncertainty or variability
in model parameters to uncertainty or variability to the (a) infectious human population (Ih), (b) sensitive mosquito
population (Is), and (c) resistant mosquito population (Ir). Positive PRCCs represent positive correlations, i.e.,
an increase in a parameter will trigger an increase in Ih, Is, or Ir, while negative PRCCs represent negative cor-
relations. The magnitude of the PRCC represents the strength or level of significance. Parameters used for the
simulations are presented in Table 1.

Next, we investigate the impact of ITN coverage (b0), ITN efficacy (ε), and resistance to insecticide used in

ITNs by mosquitoes through the resistance acquisition and loss rates σs and σr, respectively, on a key measure of

disease intensity–the basic reproduction number. Figure 7 shows ITN coverage levels for different ITN efficacy and

acquisition and loss rates of resistance appropriate for containing the malaria disease. For very high ITN efficacy,

e.g., 100%, approximately 76% ITN coverage is necessary for containing the disease, while for ITN efficacy below

76%, even 100% ITN coverage is not enough for containing the disease (Fig. 7(a)). It is worth noting that the 76%

mentioned here is the horizontal (b0) axis coordinate of the point of intersection of the dotted green curve and the

line R0 = 1. Other ITN coverage levels required to contain the disease under different ITN efficacy are obtained

in a similar way using appropriate curves that correspond to the chosen level of efficacy.

Figures 7(a) and (d) correspond to behavioral resistance to insecticides, which is not permanent. Unlike be-
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havioral resistance where resistant mosquitoes lose their resistance over time, resistance to insecticides can be

permanent. That is once a mosquito becomes resistant, it maintains this status until death. This is the case with

metabolic and cuticle resistance [41–43]. Hence, we consider three slightly simplified versions of the model: 1)

The case in which there is no transition between the sensitive and resistant mosquito classes (σr = σs = 0). That

is, we are assuming that resistance is acquired only through mosquito-recruitment and is permanent (Fig. 7(b)).

2) The case in which resistance is permanent and acquired both through mosquito recruitment and adult sensitive

mosquitoes becoming resistant, i.e., σr = 0, σs 6= 0 (Fig. 7(c)). 3) The case in which resistance is not permanent

and acquired only through mosquito recruitment, i.e., σr 6= 0, σs = 0 (Fig. 7(d)). For the case in which resistance

is permanent and acquired only through mosquito recruitment (Fig. 7(b)), when ITN efficacy is 70%, 80%, 90%, or

100% approximately 98%, 86%, 76% or 69% ITN coverage, respectively, is required to contain the disease. How-

ever, for ITN efficacy below 68% even full ITN coverage might not be enough for containment. For the case in

which resistance is permanent and acquired both through mosquito recruitment and transition of mosquitoes from

the sensitive to the resistant compartmental class (Fig. 7(c)), when ITN efficacy is 90%, or 100% approximately

93% or 84% ITN coverage, respectively, is required to contain the disease. However, for ITN efficacies below

84% even full ITN coverage might not be enough for containment. For the case in which resistance is not per-

manent and only through mosquito recruitment (Fig. 7(d)), when ITN efficacy is 70%, 80%, 90%, or 100% about

90%, 79%, 70%, or 63% ITN coverage, respectively, is required to contain the disease. But for ITN efficacies

below 63% even full ITN coverage might not be enough for containment.

Figure 7: Numerical simulations of the basic reproduction number R0, against ITN coverage b0, illustrat-
ing insecticide-impregnated bed-net coverage levels required for bringing malaria under control for four val-
ues of insecticide-impregnated bed-net efficacy (ε) when mosquito resistant to insecticides is permanent or non-
permanent. (a) Mosquito resistance to insecticides is not permanent and acquired through mosquito resistant and
through transition of mosquitoes occurring at rate σs 6= 0. (b) Mosquito resistance is permanent and is only acquired
through mosquito recruitment. (c) Resistance is permanent and acquired through mosquito recruitment and adult
sensitive mosquito transition. (d) Resistance is not permanent and is acquired only through mosquito-recruitment.
Other parameters used for the simulations are presented in Table 1.

Furthermore, we investigate the ITN coverage levels required for disease containment for different maximum

mosquito biting rates, βmaxhr and βmaxhs (Fig. 8(a) and (b)), ITN-induced mosquito mortality rates, µ1
r and µ1

s,
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(Fig. 8(c) and (d)) and resistance acquisition and loss rates, σs and σr, respectively, (Fig. 8(e) and (f)). When either

the sensitive or resistant mosquitoes bite a lot, even 100% ITN coverage might not be enough to contain malaria.

However, when either sensitive or resistant mosquitoes do not bite a lot, there is a threshold level of ITN coverage

that might be enough to contain the disease. For example, if sensitive mosquitoes do not bite, while the biting rate

of resistant mosquitoes is 0.5 per day, about 75% ITN coverage with efficacy of 90% is required to contain the

disease (Fig. 8 (b)). Insecticide treated nets must be complemented with other control measures if their efficacy is

below 70%.

Figure 8: Numerical simulation results of the basic reproduction number R0, against ITN coverage b0, illustrating
various insecticide-impregnated bed-net coverage levels required for bringing malaria under control for four values
of (a)-(b) the maximaum biting rates of resistant and sensitive mosquitoes (βmaxhr and βmaxhs , respectively), (c)-
(d) insecticide-induced mortality rates of resistant and sensitive mosquitoes (µ1

r and µsr),and (e)-(f) the resistant
development and loss rates for mosquitoes (σr and σs, respectively). Other parameters used for the simulations are
presented in Table 1.

Our analysis also shows that if the sensitive mosquitoes do not bite humans or have a very low biting rate, a higher

ITN coverage level is required than when the biting rate of resistant mosquitoes is low. For example, when ITN

efficacy is 90% and the biting rate of sensitive mosquitoes is 0.0 or 0.5 per day, about 74% or 85% ITN coverage,

respectively, is required to contain malaria (Fig. 8 (b)), while if the biting rate of resistant mosquitoes is 0 or 0.5

per day, approximately 50% or 77% ITN coverage, respectively, is required to get rid of malaria (Fig. 8 (a)). On

the other hand, when ITNs do not kill sensitive or resistant mosquitoes that land on them, over 90% ITN coverage
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is required for containing malaria (Fig. 8 (c) and (d)). However, when ITNs kill mosquitoes that land on them,

over 82% ITN coverage is required for eradication if the respective ITN killing rates for sensitive and resistant

mosquitoes are µ1
r = µ1

s = 1/14 ≈ 0.071. If the killing ability of ITNs is stronger, e.g., µ1
r = µ1

s = 1/7 ≈ 0.143,

then less ITN coverage (approximately 75%) is required for malaria containment. When resistance to insecticides

is permanent, about 93% ITN coverage is required (Fig. 8 (e)). However, when resistant mosquitoes lose their

resistance over time at respective rates 0.5, 1.0, or 5.0 per day, approximately 85%, 81%, or 73% ITN coverage

is required for eliminating malaria (Fig. 8 (e)). When sensitive mosquitoes become resistant at respective rates

0.0, 0.5, 1.0, or 5.0 per day, about 70%, 84%, 87%, or 92% ITN coverage is required for eliminating malaria (Fig. 8

(f)).

In the next set of results (Figs. 9-11), we present heat maps to demonstrate the impact of ITN coverage and one

other parameter, e.g., ITN efficacy, maximum biting rate of mosquitoes, development and loss rates of resistance,

etc., on two measures of disease intensity–the basic reproduction number R0 and the equilibrium infectious human

populations, I∗h. Similar results for the sensitive and resistant infectious mosquito populations and for the threshold

parameters R1 and R2 are presented in the online supplementary information (SI).
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Figure 9: Heat maps from numerical simulations illustrating the impact on the basic reproduction number R0,
of ITN coverage b0 and (a) ITN efficacy ε, (b) the maximum biting rate of resistant mosquitoes βmaxhr , (c) the
maximum biting rate of sensitive mosquitoes βmaxhs , (d) the recovery rate from infection γh, (e) the probability of
an infectious human infecting a susceptible mosquito phv, (f) the probability of infectious mosquito infecting a
susceptible human pvh, (g) the rate at which resistant mosquitoes lose resistance σr, (h) the rate at which sensitive
mosquitoes develop resistance σs, (i) the natural mortality rate of resistant mosquitoes µ0

r , (j) the natural mortality
rate of sensitive mosquitoes µ0

s, (k) the ITN-induced mortality rate of resistant mosquitoes µ1
r , and (l) the ITN-

induced mortality rate of sensitive mosquitoes µ1
s. The values of the other parameters are presented in Table 1.

Disease prevalence is highest in areas in which fewer people are protected by ITNs when the efficacy of ITNs is

very low (Fig. 9(a) and Fig. 10(a)). As observed earlier, when ITN efficacy is low, it becomes difficult to contain the

disease even if everybody uses ITNs for protection and vice versa. There will also be more infectious individuals

in the population when fewer humans are protected by ITNs and the human recovery rate from infection, the rate

at which resistant mosquitoes lose resistance, or the rate at which mosquitoes die (naturally or as a result of ITN-

use) is low, (Fig. 9(d), (g), (i)-(l) and Fig. 10(d), (g), (i)-(l)). On the other hand, disease prevalence is highest for

combinations of low ITN coverage and high mosquito biting rate, high probability of humans infecting mosquitoes,

when more sensitive mosquitoes develop resistance (Fig. 9(b), (c), (e), (h) and Fig. 10(b), (c), (e), (h)).
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Figure 10: Numerical simulation results illustrating the impact on the Infectious human population Ih, of ITN
coverage b0 and (a) ITN efficacy ε, (b) the maximum biting rate of resistant mosquitoes βmaxhr , (c) the maximum
biting rate of sensitive mosquitoes βmaxhs , (d) the recovery rate from infection γh, (e) the probability of an infectious
human infecting a susceptible mosquito phv, (f) the probability of infectious mosquito infecting a susceptible human
pvh, (g) the rate at which resistant mosquitoes lose resistance σr, (h) the rate at which sensitive mosquitoes develop
resistance σs, (i) the natural mortality rate of resistant mosquitoes µ0

r , (j) the natural mortality rate of sensitive
mosquitoes µ0

s, (k) the ITN-induced mortality rate of resistant mosquitoes µ1
r , and (l) the ITN-induced mortality

rate of sensitive mosquitoes µ1
s. Other parameters used for the simulations are presented in Table 1.

Figure 11 shows heat maps of the impact on the basic reproduction number (Fig. 11 (a)-(c)), the infectious

human population (Fig. 11 (d)-(f)), and the resistant infectious mosquito population (Fig. 11 (g)-(i)) for combina-

tions of the maximum biting rate of resistant mosquitoes and the development rate of resistance, the loss rate of

resistance, and the human recovery rate from infection. Disease prevalence is reduced, i.e., disease control is more

feasible in areas of low resistant mosquito populations or when resistant mosquitoes do not bite a lot (Fig. 11 (a),

(d), and (g)). Disease control is also feasible when more resistant mosquitoes lose their resistance or more humans

recover fast from infection. On the other hand, disease prevalence is high in areas with high resistant mosquito

densities (or when resistant mosquitoes bite more) and when more sensitive mosquitoes develop resistance.
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Figure 11: Numerical simulation results illustrating the effects on the basic reproduction number ((a)-(c)), the
infectious human population ((d)-(f)), and the resistant infectious mosquito population ((g)-(i)) for combinations of
the maximum biting rate of resistant mosquitoes βmaxhr the rate at which resistance is lost, σr ((a), (d), (g)), and the
development rate of resistance, σr ((b), (e), (h)), and the human recovery rate, σr ((c), (f), (i)). The other parameter
values used for the simulations are presented in Table 1.

5. Conclusion

Malaria prevalence in sub-Saharan Africa remains high, despite the tremendous success in control efforts

recorded over the past decade. For example, although some counties in Kenya boast of up to 80% personal pro-

tection through ITNs [95], malaria is still a major problem to the country. The gains of malaria control programs,

especially those related to vector control such as ITNs and IRS continue to be dampened by human behavior, nat-

ural deterioration in ITN efficacy, misuse, and resistance to insecticides developed by mosquitoes. In this study,

we developed and used a compartmental model to explore the interplay between ITN coverage, ITN efficacy, and

resistance exhibited by mosquitoes to insecticides in relation to malaria prevalence and control.

Our results indicate that ITN efficacy and coverage are very important parameters to pay attention to in the fight

against malaria. We found out that low ITN efficacy, or differentiated adherence to the use of ITNs has a negative

impact on the outcomes of malaria risk and control. We also found out that as long as mosquitoes are resistant to

insecticides, a combination of low ITN efficacy and high coverage, or high ITN efficacy and low coverage is not

enough for reducing malaria to appreciable levels. The situation is worst when resistance to insecticides is perma-

nent, i.e., for the case of metabolic or cuticle resistance. Hence, disease containment and possible elimination might

be impossible when either ITN coverage or ITN efficacy is low and ITNs are not complemented with other control
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measures such as IRS, treatment, eliminating mosquito breeding sites near homes, etc. This is consistent with

empirical studies in Ref. [15] indicating that both ITN efficacy and coverage for at risk populations must be high

in order to achieve the target reduction in malaria prevalence. However, our results indicate that high ITN efficacy

and moderately high ITN coverage and vice versa can be enough for appreciable reduction in malaria prevalence

under certain circumstances, e.g., when resistance is only through mosquito recruitment (either permanent or not)

or when more resistant mosquitoes are killed by ITNs. Consistent with common practice and public health rec-

ommendations, our results indicate that reducing mosquito populations, e.g., through killing, or eliminating their

breeding sites near human homes and preventing mosquito bites, especially in areas of high mosquito density and

high malaria prevalence are important for disease control. The fact that the model (2) exhibits a backward bifurca-

tion implies that the disease can no longer be contained just by bringing the basic reproduction number R0, slightly

below one. Instead, more and sustained control measures to reduce R0 below the new threshold value Rbb0 , are

required.

Finally, our analysis and results indicate that reducing resistance to insecticides is an important step towards

malaria elimination. In fact, the 1:1.6 optimal target for containing malaria, which in itself is a challenge to

attain [20] underestimates the effort required to contain malaria, especially in the presence of resistance. With

this coverage level, elimination is impossible even when ITN efficacy is very high, e.g., 90-100%, unless when

resistant mosquitoes do not bite, which at the moment is an impossibility. Therefore, designing control measures

that prevent the development of resistance, or that target and eliminate resistant mosquitoes will improve disease

control. This might involve using chemicals that mosquitoes might not easily resist or switching to new chemicals

that mosquitoes are not resistant to for treating both long lasting and regular bed-nets.

Limitations of the current study involve the assumptions that ITN efficacy over the useful life of ITNs as pre-

scribed by the World Health Organization (three years) and mosquito resistance to insecticides are both constant.

However, these quantities might change over time, with ITN efficacy waning and resistance to insecticides strength-

ening. In fact, the development of resistance occurs over time with the frequency of new resistant vectors increasing

with each generation. These limitations and other aspects of the malaria disease are currently under investigation

and will be reported in a separate paper.
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