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Abstract

Background: During the COVID-19 epidemic, governments around the world have imple-
mented unprecedented non-pharmaceutical measures to control its spread. As these measures
carry signi�cant economic and humanitarian cost, it is an important topic to investigate the
e�cacy of di�erent policies and accurately project the future spread under such said policies.
Methods: We developed a novel epidemiological model, DELPHI, based on the established SEIR
model, that explicitly captures government interventions, underdetection, and many other real-
istic e�ects. We estimate key biological parameters using a meta-analysis of over 190 COVID-19
research papers and �t DELPHI to over 167 geographical areas since early April. We extract
the inferred government intervention e�ect from DELPHI.
Findings: Our epidemiological model recorded 6% and 11% two-week out-of-sample Median
Absolute Percentage Error on cases and deaths, and successfully predicted the severity of epi-
demics in many areas (including US, UK and Russia) months before it happened. Using the
extracted government response, we �nd mass gathering restrictions and school closings on av-
erage reduced infection rates the most, at 29.9 ± 6.9% and 17.3 ± 6.7%, respectively. �e most
stringent policy, stay-at-home, on average reduced the infection rate by 74.4±3.7% from base-
line across countries that implemented it. We also further show that a reversal of stay-at-home
policies in some countries, such as Brazil, could have disastrous results by end of July.
Interpretation: Our �ndings highlight that among the widely implemented policies around the
world, mass gathering restrictions and school closings appear to be the most e�ective policies
in reducing the infection rate. Given the continued spread of the epidemic in many countries,
we recommend these policies to continue to the extent that they can be feasibly implemented.
Our results also show that under an assumption of R0 of 2.5-3 for COVID-19, stay-at-home
policies appear to be the only e�ective policy that was widely implemented in reducing the R0
below 1. �is implies that stay-at-home policies might be necessary, for at least the vulnerable
population, if an uncontrolled second wave reemerges.
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Research in Context
Evidence before this study
Previous research into COVID-19 has focused on reporting estimates of epidemiological
parameters of COVID-19. We conducted an extensive literature search on PubMed and
MedRXiv including keywords such as ”non-pharmaceutical interventions” and ”govern-
ment interventions”. We discovered some studies reporting on the theoretical e�ect of
non-pharmaceutical interventions in a theoretical modeling framework. �ere have also
been a few published studies reporting on the overall e�ect of government interventions
in the very early stages of the epidemics in various regions, such as the United States and
Europe. However, there were few studies that tried to quantify the e�ect of each policy
that was implemented, and none that the authors know of that are conducted on the global
scale of this paper.
Added value of this study
As governments continue to implement non-pharmaceutical interventions, we aim to un-
derstand the e�ect of di�erent policies that have been implemented in the past. We devel-
oped a novel epidemiological model that has been continuously providing high accuracy
forecasts since early April. It also provides global estimates for the e�ects of di�erent poli-
cies as they have been implemented across 167 areas. �e large number of areas we con-
sider enable us to derive inference for many popular policies that have been implemented,
including mass gathering restrictions, school closures, along with travel and work restric-
tions.
Implications of all the available evidence
�e evidence indicates that mass gathering restrictions were the most e�ective single pol-
icy in reducing the spread of COVID-19, followed by school closings. Stay-at-home poli-
cies greatly reduced the e�ective R0 and most likely enabled the e�ective control of the
epidemics in many regions. Policy simulations suggest that many countries around the
world are not yet suitable for a loosening of policy guidance, or there would be potentially
severe humanitarian costs.

1. Introduction1

Currently, the world is facing the deadliest pandemic in recent history - COVID-19. As2

of June 7th, there have been over 7.0 million con�rmed cases of COVID-19 and the disease3

has taken over 400,000 lives. To stop the further spread of COVID-19, governments around4

the world have enacted some of the most wide-ranging non-pharmaceutical interventions in5

history. �ese interventions, especially the more severe ones, carry signi�cant economic and6

humanitarian cost. �us, it is critical to understand the e�ectiveness of such interventions in7

limiting disease spread.8

However, there are many challenges in a�empting to understand the e�ect of government9

interventions in a speci�c region or country. Di�erent regions have implemented, o�en con-10

currently, a variety of di�erent policies, and worse, even the same interventions could produce11

largely di�erent e�ects in di�erent societies, due to di�erences in factors such as demographics,12

population density, and culture.13

�us, in order to provide a sensible analysis of the e�ect of policies across di�erent coun-14

tries, in early April we created a novel epidemiological model, DELPHI, to model the spread15
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of COVID-19. DELPHI (Di�erential Equations Lead to Predictions of Hospitalizations and In-16

fections) extends a classic SEIR model to include many realistic e�ects that are critical in this17

pandemic, including deaths and underdetection. Speci�cally, we included an explicit nonlinear18

multiplicative factor on the infection rate to model the spread as it happened in di�erent regions.19

Such explicit characterization of government intervention allows us to understand the e�ect of20

di�erent non-pharmaceutical interventions as they have been implemented in various regions21

while accounting for regional population characteristics including baseline infection rate and22

mortality rate. Furthermore, we formulated DELPHI with data scarcity as a key consideration.23

�e aforementioned innovations have allowed DELPHI to produce relatively accurate pro-24

jections even during the early stages of the epidemic. A major hospital system in the United25

States planned its intensive care unit (ICU) capacity based on our forecasts. Our epidemiolog-26

ical predictions are used by a major pharmaceutical company to design a worldwide vaccine27

distribution strategy that can contain future phases of the pandemic. �ey have also been in-28

corporated into the US Center for Disease Control’s core ensemble forecast. [1]29

DELPHI has been applied to 167 geographic areas (countries/provinces/states) worldwide,30

covering all 6 populated continents. Its results and insights have also been available since early31

April on www.covidanalytics.io. In this paper, we document the statistical innova-32

tions, quantitative results, and insights extracted from the DELPHI model.33

2. Methods34

2.1. �e DELPHI Model35

�e DELPHI model is a compartment epidemiological model that extends the classic SEIR36

model into 11 states under the following 8 groups:37

• Susceptible (S): People who have not been infected.38

• Exposed (E): People currently infected, but not contagious and within the incubation39

period.40

• Infected (I): People currently infected and contagious.41

• Undetected (UR) & (UD): People infected and self-quarantined due to the e�ects of the42

disease, but not con�rmed due to lack of testing. Some of these people recover (UR) and43

some die (UD).44

• Detected, Hospitalized (DHR) & (DHD): People who are infected, con�rmed, and hos-45

pitalized. Some of these people recover (DHR) and some die (DHD).46

• Detected,�arantine (DQR) & (DQD): People who are infected, con�rmed, and home-47

quarantined rather than hospitalized. Some of these people recover (DQR) and some die48

(DQD).49

• Recovered (R): People who have recovered from the disease (and assumed to be im-50

mune).51

• Deceased (D): People who have died from the disease.52

In addition to main functional states, we introduce auxiliary states to calculate a few useful53

quantities: Total Hospitalized (TH), Total Detected deaths (DD) and Total Detected Cases (DT).54

�e full mathematical formulation of the model with all the di�erential equations can be found55

in the a�ached Supplementary Materials.56

Figure 1a depicts a �ow representation of the model, where each arrow represents how57

individuals can �ow between di�erent states. �e underlying di�erential equations are gov-58

erned by 11 explicit parameters which are shown on the appropriate arrows in Figure 1a and59

3
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Figure 1: �e DELPHI Model

de�ned below. To limit the amount of data needed to train this model, only the parameters de-60

noted with a tilde are being ��ed against historical data for each area (country/state/province);61

the others are largely biological parameters that are �xed using available clinical data from a62

meta-analysis of over 190 papers on COVID-19 available at time of model creation. [2] A small63

selection of references for each parameter is given below.64

• α̃ is the baseline infection rate.65

• γ(t) measures the e�ect of government response and is de�ned as:66

γ(t) =
2
π

arctan
(
−(t − t̃0)

k̃

)
+ 1,

where the parameters t̃0 and k̃ capture, respectively, the timing and the strength of the67

response. �e e�ective infection rate in the model is α̃γ(t), which is time dependent.68

• rd is the rate of detection. �is equals to log 2
Td

, where Td is the median time to detection69

(�xed to be 2 days). [3]70

• β is the rate of infection leaving incubation phase. �is equals to log 2
Tβ

, where Tβ is the71

median time to leave incubation (�xed at 5 days). [4]72

4
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• σ is the rate of recovery of non-hospitalized patients. �is equals to log 2
Tσ

, where Tσ is the73

median time to recovery of non-hospitalized patients (�xed at 10 days). [5, 6]74

• κ is the rate of recovery under hospitalization. �is equals to log 2
Tκ

, where Tκ is the median75

time to recovery under hospitalization (�xed at 15 days). [7, 8]76

• τ̃ is the rate of death. �is captures the speed at which a dying patient dies, and thus77

inversely proportional to how long a dying patient stays alive.78

• µ̃ is the mortality percentage. �is is the percentage of people who die from the disease79

in a particular region. Note this quantity is independent from the rate of death.80

• pd is the (constant) percentage of infectious cases detected. �is is set to 20%. [3, 9, 10]81

• ph is the (constant) percentage of detected cases hospitalized. �is is set to 15%. [11, 12]82

�erefore, we �t on 5 parameters from the list above (α̃, µ̃, τ̃, t̃0, k̃). In addition, we introduce two83

additional parameters k̃1, k̃2 to account for the unknown initial population in the infected (I)84

and exposed (E) states (see Supplementary Materials for details). We thus �t seven parameters85

per area.86

�e parameters are ��ed by minimizing a weighted Mean Squared Error (MSE) metric with
respect to the parameters. De�ne DT (t) and DD(t) as the number of reported total detected
cases and detected deaths, respectively, on day t. �en, the loss function for a training period
of T days is de�ned as:

T∑
t=1

t ·
(
D̃T (t) − DT (t)

)2
+ λ2 ·

T∑
t=1

t ·
(
D̃D(t) − DD(t)

)2
,

where D̃T (t) and D̃D(t) are respectively the total detected cases and deaths predicted by DEL-87

PHI. �e factor t gives more prominence to more recent data, as recent errors are more likely88

to propagate into future errors. �e lambda factor λ = min
{

DT (T )
3·DD(T ) , 10

}
balances the ��ing89

between detected cases and deaths; this re-scaling coe�cient was obtained experimentally. We90

only include historical data starting when the area recorded more than 100 cases; this allows91

us to exclude sporadic outbreaks that are not epidemics. Non-convex optimization methods,92

including trust-region methods [13] and the Nelder-Mead method [14], are utilized to carry out93

the process of minimization.94

In the following subsections, we will detail the three key characteristics of the DELPHI95

model compared to the standard SEIR formulation.96

2.1.1. Accounting for Under-detection97

In the COVID-19 crisis, one of the key modeling di�culties is the chronic underdetection98

of con�rmed cases. �is is both due to the lack of detection abilities in the early stages of the99

pandemic and also the similarity between a mild case of COVID-19 and the common �u. �us,100

to account for such signi�cant e�ect, we explicitly included the UR/UD states to model people101

who actually contracted COVID-19 (and are infectious), but were not detected. In particular,102

we assume that only pd of the total number of the cases were detected, while 1− pd of the total103

cases �ow to the UR/UD states. �ere are two methods to gain information on the detection104

rate: treating pd as a parameter and �t to the historical data, or recover pd from serological105

evidence. However, both methods were impractical during the creation of this model. In an106

early to mid stage pandemic, a wide range of detection percentages are consistent with the107

data but leads to vastly di�erent predictions (see e.g. [15]), so historical data could not provide108

5
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strong evidence. Furthermore, at the time of redaction, the serological data were largely limited109

to speci�c sub-areas such as cities and counties (see [16, 17, 18, 19] for examples), while region-110

wide surveys were largely limited to a few European countries (see [20, 21] for examples and111

discussion) and only very sparsely available around the world.112

�us, we instead �x the detection percentage to be 20% based on various reports trying113

to understand the extent of underdetection in countries with earlier outbreaks [3, 9, 10]. More114

recently, an independent study [22] has corroborated our assumption in the United States.115

2.1.2. Separation of Recovery and Deaths116

A large focus in many governments’ response to the COVID-19 pandemic is to minimize117

the number of deaths, and thus in DELPHI, we included a death state. In most epidemiological118

models that extend to include the death state (see e.g. [3, 23] for COVID-19 modeling examples),119

the death state (D) is shown to �ow from the same active infectious state as the recovery state120

(R), with a schematic shown in Figure 1b. However, this modeling approach would cause the121

mortality percentage µ̃ to be dependent on the rates of recovery and death (details are available122

in the Supplementary Materials). �us, to resolve such mismatch, we explicitly separated out123

the µ̃ fraction of the population infected that would eventually die (ID) from the 1 − µ̃ fraction124

that would recover (IR), as illustrated in Figure 1c.125

�is allows the mortality rate µ̃ to be independent from the rates of death and recovery. �e126

�nal DELPHI model further di�erentiated the IR states into hospitalized (DHR), quarantined127

(DQR), and undetected (UR) states to account for the di�erent treatments people received, and128

similarly with the ID states.129

2.1.3. Modeling E�ect of Increasing Government Response130

One of the key assumptions in the standard SEIR model is that the rate of infection α is131

constant throughout the epidemic. However, in real epidemics such as the COVID-19 crisis, the132

rate of infection starts decreasing as governments respond to the spread of epidemic, and induce133

behavior changes in societies. To account for such e�ect, we model the e�ect of government134

measures with a sigmoid-like function γ(t) (speci�cally the inverse tangent).135

�e concave-convex nature of an arctan curve models three phases: �e early, concave part136

of the arctan models limited changes in behavior in response to early information, while most137

people continue business-as-usual activities. �e transition from the concave to the convex138

part of the curve quanti�es the sharp decline in infection rate as policies go into full force and139

the society experiences a shock event. �e la�er convex part of the curve models a �a�ening140

out of the response as the government measures reach saturation, representing the diminishing141

marginal returns in the decline of infection rate. An illustration of such three phases is included142

in the Supplementary Materials.143

Parameters t̃0 and k̃ control the timing of such measures and the rapidity of their penetra-144

tion. �is formulation allows us to model, under the same framework, a wide variety of policies145

that di�erent governments impose, including social distancing, stay-at-home policies, quaran-146

tines, etc. �is modeling captures the increasing force of intervention in the early-mid stages147

of the epidemic. In Section 3.3, we would show how this model can be extended to provide148

insights on the relaxation of measures.149
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3. Results and Discussion150

3.1. Forecasting Results151

DELPHI was created in early April and has been continuously updated to re�ect new ob-152

served data. Figures 2a and 2b show our projections of the number of cases in Russia and the153

United Kingdom made on three di�erent dates, and compare them against historical observa-154

tions. �ey suggest that DELPHI achieves strong predictive performance, as the model has been

(a) United Kingdom (b) Russia

Figure 2: Cumulative number of cases in the UK (a) and Russia (b) according to our projections made at di�erent points
in time, against actual observations. Note there predicted curves largely overlap with the actual curve.

155

consistently predicting, with high accuracy, the overall spread of the disease for several weeks.156

Notably, DELPHI was able to anticipate, as early as April 17th, the dynamics of the pandemic157

in the United Kingdom (resp. Russia) up to May 12th. At a time when 100-110K (resp. 30-35K)158

cases were reported, the model was predicting 220-230K (resp. 225-235K) cases by May 12th—a159

prediction that became accurate a month later.160

161

Furthermore, Table 1 reports the median Mean Absolute Percentage Error (MAPE) on the162

observed total cases and deaths in each area of the world using parameters obtained on April163

28th, and evaluated on the 15 days period up until May 12th. Overall, our model seems to predict164

the epidemic progression relatively well in most countries with< 10% MAPE on reported cases,165

and < 15% MAPE on reported deaths. Additionally, the areas with the highest errors are o�en166

those that have the fewest deaths. �is stems from the fact that DELPHI—like all SEIR-based167

models—is not designed to perform well on areas with small populations and interactions. �e168

e�ect is further exacerbated by the choice of the metric, as MAPE inherently heavily penalizes169

errors on small numbers. Further detailed results for each country/region that we predict, and170

examples of areas with high MAPE, can be found in the Supplementary Materials.171

3.2. E�ect of Government Interventions172

A natural application of the DELPHI model is policy evaluation. For that, we can extract173

the normalized ��ed government response curve γ(t) in each area, and utilize it to understand174

the impact of speci�c government policies that have been implemented. In particular, we aim175

to understand the average e�ect of each policy on γ(t) during the period of implementation. To176

this end, for all countries except US, we collect data from the Oxford Coronavirus Government177

Response Tracker for historical data on government policies [24], during the period between178

January 1st 2020, and May 19th 2020. For the US, we collect the policy data from the Institute179

for Health Metrics and Evaluation [25] during the same period.180
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Median MAPE Cases Median MAPE Deaths
Region # Areas (10th, 90th percentile) (10th, 90th percentile)

Africa 19 14.7% (3.1, 32.0) 23.4% (11.8, 60.3)
Asia 32 4.8% (2.1, 18.4) 14.4% (2.9, 65.2)
Europe 42 3.4% (0.8, 12.9) 9.0% (2.3, 24.3)
North America 10 7.9% (3.9, 28.3) 12.6% (2.8, 23.6)
Oceania 2 3.2% (2.4, 4.1) 12.0% (11.0, 13.0)
South America 11 14.9% (7.6, 26.7) 6.1% (3.3, 30.1)
United States 51 8.5% (1.9, 16.7) 7.8% (3.3, 25.1)
World 167 5.8% (1.5, 22.6) 10.6% (2.9, 36.6)

Table 1: Median country-level Mean Absolute Percentage Error (MAPE) of the predicted number of cases and deaths
in each continent (projections made using data up to 04/27 for the period from 04/28 to 05/12).

At each point in time, we categorize the government intervention data based on whether181

they restrict mass gatherings, schools, travel and work activities. We group travel restrictions182

and work restrictions together due to their tendency to be implemented simultaneously. From183

January 1st to May 19th, the 167 areas in total implemented 5 combinations of such interven-184

tions. Speci�cally, these are: (1) No measure; (2) Restrict travel and work only; (3) Restrict mass185

gatherings , travel and work; (4) Restrict mass gatherings, schools, travel and work; and (5) Stay-at-186

Home. �e detailed correspondence between raw policy data and our categories are contained187

in the Supplementary Materials. Other potentially feasible combinations were not implemented188

by the countries. �en for each policy category i = 1, · · · , 5, we extract the average value of189

γ(t), γ̄i, across all time periods and areas for which policy i was implemented. �en we calculate190

the residual fraction of infection rate under policy i, pi, compared to the baseline policy of no191

measure:192

pi =
γ̄i

γ̄1

Restrictions Area-Days Residual Infection Rate

None 2142 100%
Travel and Work 2049 88.9 ± 4.5%
Mass Gathering, Travel, and Work 340 59.0 ± 5.2%
Mass Gathering, School, Travel, and Work 1460 41.7 ± 4.3%
Stay-at-Home Order 6585 25.6 ± 3.7%

Table 2: Implementation Length and E�ect of each policy category as implemented across the world.

Table 2 shows the number of area-days that each policy was implemented around the world193

and its e�ect. We further report the standard deviation of such estimate treating each geograph-194

ical area as an independent sample. We see that each selected policy was enacted for at least195

hundreds of Area-Days worldwide, while the stringent stay-at-home policy was cumulatively196

implemented the most. In particular, we see that mass gathering restrictions generate a large197

reduction in infection rate, with the incremental reduction between travel and work restrictions198

compared to mass gathering, travel, and work restrictions is 29.9 ± 6.9%. �is is further sup-199

8
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ported by the large residual infection rate of 88.9± 4.5% when travel and work restrictions are200

implemented, but mass gatherings are allowed. Additionally, we observe that closing schools201

also generate a large reduction in the infection rate, with an incremental e�ect of 17.3 ± 6.6%202

on top of mass gathering and other restrictions. Stay-at-home orders produced the strongest203

reduction in infection rate across the di�erent countries, with a residual infection rate of just204

25.6 ± 3.7% compared to when no measure was implemented.205

If COVID-19 has an average basic reproductive number R0 of 2.5-3 ([26, 27]), then on av-206

erage, only the strongest measure (Stay-at-Home orders) are su�cient to control a COVID-19207

epidemic in reducing R0 to be less than 1.208

3.3. Extension: Evaluating Reopening Strategies209

�e DELPHI model provides insights into the e�ect of government policies through the210

residual infection rates pi under each policy.211

A natural extension is to utilize the pi in creating what-if scenarios on the e�ect of li�ing
restrictions in di�erent countries by reverting the e�ect of each policy on γ(t) at the time of
the hypothetical policy relaxation. Speci�cally, suppose that we are considering a policy easing
from policy i to j at time tc in some area. �en for all times t ≥ tc, we correct the government
response as follows:

γ′(t) =
2
π

arctan
(
−

t − t̃0
k̃

)
+ 1 + (p j − pi) ·min

[
2 − γ(tc)

1 − pi
,
γ(tc)

pi

]
︸                                    ︷︷                                    ︸

Di�erential in policy e�ect between policy i and j

, ∀t ≥ tc.

Essentially, we apply a correction term that is proportional to the fractional di�erence in policy212

e�ect between policy i and j (which is p j − pi > 0 as it is an easing). �e multiplicative213

factor min
[

2−γ(tc)
1−pi

, γ(tc)
pi

]
scales the fractional di�erence so that the resulting γ′(tc) is constrained214

within the initial range [0, 2]. �en, we would replace γ(t) with γ′(t) in the DELPHI model to215

forecast the epidemic under the updated policy. Using this correction factor, we predict what216

would happen in di�erent areas under various future policies. Figure 3 shows results for France217

and Brazil respectively, under policy change implemented on June 16th (four weeks a�er the218

last historical value on May 19th). Further results for other countries are contained in the219

Supplementary Material.220

We observe di�erent levels of risk for the same re-opening strategies across di�erent coun-221

tries. For example, Figure 3c predicts that loosening measures in Brazil on June 16th would222

result in a second wave of infections with up to 6.8 million additional cases by July 15th, while223

even a stay-at-home order would lead to almost 1.9 million additional cases. Such alarming224

numbers can be understood through Figure 3d where we compute a rolling average of the225

weekly incidence of cases per 100K people. We can see that Brazil is still on a steep ascending226

curve, and that any kind of loosening could be catastrophic. Such behaviour stands in sharp227

contrast with France’s situation. Figure 3b demonstrates that the peak has long passed in France228

and the epidemic has mostly died out. �us, as we can see in Figure 3a, loosening policies (like229

France has already started doing) is likely to only minimally a�ect the number of infections.230

To further understand the disparate impact of the policies across countries, we made predic-231

tions for the situation around the world assuming a policy that involves mass gathering, travel,232

and work restrictions was universally implemented on 06/16. Figure 4a shows three clusters of233

countries for July 15th:234
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(a) France Total Detected Cases (b) France Weekly Incidence per 100K

(c) Brazil Total Detected Cases (log scale) (d) Brazil Weekly Incidence per 100K (log scale)

Figure 3: Forecasts of total detected cases and weekly incidence per 100K for France and Brazil under various policies

• Countries with a small number of cumulative cases (relative to the population), and that235

are in a late stage of the pandemic with relatively few new cases, such as Greece, Japan,236

Morocco and Venezuela.237

• Countries with a large number of cumulative cases, but that are in a late stage of the238

pandemic, with relatively few new cases, mainly in Western and Northern Europe (e.g.239

the United Kingdom, Italy, France and Finland).240

• Countries where the pandemic has had a large impact with a large number of cumulative241

cases, and where the situation will still be worsening at an alarming rate. �ese include242

the United States, India and Brazil. A close-up of these countries is presented in Figure243

4b, where we see that DELPHI predicts Brazil would be severely hit by July, with up to244

8% of the entire population infected, if the hypothetical policy above is implemented.245

�is suggests that in these countries, such hypothetical policy could be inadequate for246

controlling the epidemic, and a stronger policy (such as Stay-at-Home orders) is needed.247

4. Limitations248

One fundamental limitation of this analysis is its observational nature. �us, despite the249

�exible parameters in DELPHI accounting for many state-dependent e�ects, there are many250

other potential confounders and second-order e�ects that could a�ect this analysis. For ex-251

ample, one e�ect that is not considered in DELPHI is a time-varying mortality rate caused by252

changing treatment procedures designed to best help COVID-19. Including such e�ect could253
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(a) Weekly Incidence of Cases (per 100K) in the �rst half of July against fraction of population infected for multiple countries

(b) Predictions for total cumulative cases (normalized by the population) vs new cases (per 100K) for countries which are predicted to
be highly impacted and still worsening at an alarming rate by July 15th

Figure 4: World Predictions for Early July under Mass Gathering, Travel and Work Restrictions
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sharpen the analysis further, though at the expense of increased ��ing di�culty and data re-254

quirements.255

�is analysis also assumes, in analyzing government interventions, that the same nominal256

policy (e.g. Mass gathering restrictions) could be compared across countries. In reality, di�erent257

countries have implemented variants (though largely similar) of restrictions under the same258

name, and this could further impact the validity of the analysis.259

In the reopening analysis, we have assumed that the e�ect of government interventions260

imposed at the start of the epidemic is indicative of the e�ect when it is removed. �is is261

potentially a�ected by a permanent change in social behavior during the epidemic. For example,262

if a signi�cant portion of the population adapts social distancing measure even a�er the o�cial263

restrictions are li�ed, this could lead to a smaller resurgence of infections than what is predicted264

in the analysis.265

5. Conclusions266

We introduced DELPHI, a novel epidemiological model that extended SEIR to include many267

realistic e�ects critical in this pandemic. DELPHI was able to accurately predict the spread of268

COVID-19 in many countries, and aid planning for many organizations worldwide. Further-269

more, the explicit modeling on government intervention allowed us to understand the e�ect of270

government interventions, and help inform how societies could reopen.271

Bibliography272

[1] Covid-19 forecasts: Cumulative deaths, 2020. URL: https://www.cdc.gov/coronavirus/273

2019-ncov/covid-data/forecasting-us.html.274

[2] D. Bertsimas, H. Bandi, L. Boussioux, R. Cory-Wright, A. Delarue, V. Digalakis, S. Gilmour, J. Graham, A. Kim,275

D. Lahlou Kitane, Z. Lin, G. Lukin, M. Li, L. Mingardi, L. Na, A. Orfanoudaki, T. Papalexopoulos, I. Paskov,276

J. Pauphilet, O. Skali Lami, M. Sobiesk, B. Stellato, K. Carballo, Y. Wang, H. Wiberg, C. Zeng, An aggregated dataset277

of clinical outcomes for covid-19 patients, 2020. URL: http://www.covidanalytics.io/dataset278

documentation.279

[3] C. Wang, L. Liu, X. Hao, H. Guo, Q. Wang, J. Huang, N. He, H. Yu, X. Lin, A. Pan, et al., Evolving epidemiology280

and impact of non-pharmaceutical interventions on the outbreak of coronavirus disease 2019 in wuhan, china,281

medRxiv (2020).282

[4] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, J. Lessler, �e283

incubation period of coronavirus disease 2019 (covid-19) from publicly reported con�rmed cases: estimation and284

application, Annals of internal medicine 172 (2020) 577–582.285

[5] Z. Hu, C. Song, C. Xu, G. Jin, Y. Chen, X. Xu, H. Ma, W. Chen, Y. Lin, Y. Zheng, et al., Clinical characteristics of286

24 asymptomatic infections with covid-19 screened among close contacts in nanjing, china, Science China Life287

Sciences (2020) 1–6.288

[6] M. Kluytmans, A. Buiting, S. Pas, R. Bentvelsen, W. van den Bijllaardt, A. van Oudheusden, M. van Rijen, J. Verweij,289

M. Koopmans, J. Kluytmans, Sars-cov-2 infection in 86 healthcare workers in two dutch hospitals in march 2020,290

medRxiv (2020).291

[7] Y. Liu, W. Sun, L. Chen, Y. Wang, L. Zhang, L. Yu, Clinical characteristics and progression of 2019 novel292

coronavirus-infected patients concurrent acute respiratory distress syndrome, medRxiv (2020).293

[8] J. Grein, N. Ohmagari, D. Shin, G. Diaz, E. Asperges, A. Castagna, T. Feldt, G. Green, M. L. Green, F.-X. Lescure,294

et al., Compassionate use of remdesivir for patients with severe covid-19, New England Journal of Medicine295

(2020).296

[9] S. G. Krantz, A. S. S. Rao, Level of under-reporting including under-diagnosis before the �rst peak of covid-19297

in various countries: Preliminary retrospective results based on wavelets and deterministic modeling, Infection298

Control & Hospital Epidemiology (2020) 1–8.299

[10] R. Niehus, P. Martinez de Salazar Munoz, A. Taylor, M. Lipsitch, �antifying bias of covid-19 prevalence and300

severity estimates in wuhan, china that depend on reported cases in international travelers, medRxiv (2020).301

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.23.20138693doi: medRxiv preprint 

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
http://www.covidanalytics.io/dataset_documentation
http://www.covidanalytics.io/dataset_documentation
http://www.covidanalytics.io/dataset_documentation
https://doi.org/10.1101/2020.06.23.20138693
http://creativecommons.org/licenses/by/4.0/


[11] M. M. Arons, K. M. Hat�eld, S. C. Reddy, A. Kimball, A. James, J. R. Jacobs, J. Taylor, K. Spicer, A. C. Bardossy, L. P.302

Oakley, et al., Presymptomatic sars-cov-2 infections and transmission in a skilled nursing facility, New England303

Journal of Medicine (2020).304

[12] H. Xu, S. Huang, S. Liu, J. Deng, B. Jiao, L. Ai, Y. Xiao, L. Yan, S. Li, Evaluation of the clinical characteristics of305

suspected or con�rmed cases of covid-19 during home care with isolation: A new retrospective analysis based on306

o2o, Available at SSRN 3548746 (2020).307

[13] R. H. Byrd, J. C. Gilbert, J. Nocedal, A trust region method based on interior point techniques for nonlinear308

programming, Mathematical programming 89 (2000) 149–185.309

[14] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, Convergence properties of the nelder–mead simplex method310

in low dimensions, SIAM Journal on optimization 9 (1998) 112–147.311

[15] J. Lourenço, R. Paton, M. Ghafari, M. Kraemer, C. �ompson, P. Simmonds, P. Klenerman, S. Gupta, Fundamental312

principles of epidemic spread highlight the immediate need for large-scale serological surveys to assess the stage313

of the sars-cov-2 epidemic, medRxiv (2020).314

[16] A. Doi, K. Iwata, H. Kuroda, T. Hasuike, S. Nasu, A. Kanda, T. Nagao, H. Nishioka, K. Tomii, T. Morimoto, et al.,315

Estimation of seroprevalence of novel coronavirus disease (covid-19) using preserved serum at an outpatient316

se�ing in kobe, japan: A cross-sectional study., medRxiv (2020).317

[17] H. Streeck, B. Schulte, B. Kuemmerer, E. Richter, T. Höller, C. Fuhrmann, E. Bartok, R. Dolscheid, M. Berger,318
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