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Abstract 

Congenital heart disease (CHD) is the most common birth defect. Fetal survey ultrasound is 

recommended worldwide, including five views of the heart that together could detect 90% of 

complex CHD. In practice, however, sensitivity is as low as 30%. We hypothesized poor 

detection results from challenges in acquiring and interpreting diagnostic-quality cardiac views, 

and that deep learning could improve complex CHD detection. Using 107,823 images from 

1,326 retrospective echocardiograms and surveys from 18-24 week fetuses, we trained an 

ensemble of neural networks to (i) identify recommended cardiac views and (ii) distinguish 

between normal hearts and complex CHD. Finally, (iii) we used segmentation models to 

calculate standard fetal cardiothoracic measurements. In a test set of 4,108 fetal surveys (0.9% 

CHD, >4.4 million images, about 400 times the size of the training dataset) the model achieved 

an AUC of 0.99, 95% sensitivity (95%CI, 84-99), 96% specificity (95%CI, 95-97), and 100% 

NPV in distinguishing normal from abnormal hearts. Sensitivity was comparable to clinicians’ 

task-for-task and remained robust on external and lower-quality images. The model’s decisions 

were based on clinically relevant features. Cardiac measurements correlated with reported 

measures for normal and abnormal hearts. Applied to guidelines-recommended imaging, 

ensemble learning models could significantly improve detection of fetal CHD and expand 

telehealth options for prenatal care at a time when the COVID-19 pandemic has further limited 

patient access to trained providers. This is the first use of deep learning to ~double standard 

clinical performance on a critical and global diagnostic challenge. 

Key Words: deep learning; neural networks; ultrasound; congenital heart disease; artificial 

intelligence; machine learning, prenatal diagnosis  
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Introduction 

Congenital heart disease (CHD), the most common birth defect 1, can be asymptomatic in fetal 

life but cause significant morbidity and mortality after birth 1-3. Compared to postnatal diagnosis, 

fetal diagnosis can improve neonatal outcomes, surgical/interventional planning4-6, and could 

enable in utero therapies7,8. Distinguishing normal fetal hearts from complex CHD requiring 

referral to a fetal cardiologist is therefore a critical and universal need, especially at a time when 

the COVID-19 pandemic has further limited patient access to prenatal care9. Low sensitivity in 

this task can limit palliation options, worsen postnatal outcomes, and hamper research on in 

utero therapies, while low specificity can cause unnecessary additional testing and referrals. 

A fetal survey (fetal screening ultrasound) is recommended for every pregnancy worldwide 10,11 

in the second trimester and generally includes five clinically recommended cardiac views 

(Figure 1a) that together could allow clinicians to diagnose up to 90% of complex CHD12,13. In 

practice, however, detection is often as low as 30%1,14,15, even where ultrasound is 

universal10,11,15. Specificity is also sub-optimal, as low as 40-50%1. 

Two reasons for this gap between possible and commonplace CHD detection are (i) inadequate 

expertise in interpretation and/or (ii) inadequate acquisition of diagnostic-quality images16,17. 

Causes of inadequate imaging include poor acoustic windows, fetal motion, and the small size of 

the fetal heart. Furthermore, a fetal survey includes thousands of image frames spanning multiple 

structures per single video “sweep,” so the diagnostic frames of interest for CHD may be just a 

handful and thus easily missed. Finally, the prevalence of CHD (~0.8-1%) is low enough that 

non-experts see it only rarely and may discount or overlook abnormal images. Together, these 

make CHD detection one of the most difficult diagnostic challenges in ultrasound. Quality 

control studies aimed at addressing these challenges succeeded in increasing CHD detection 
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considerably18,19, showing that improving image acquisition and interpretation can bridge the 

diagnosis gap; however, these small, single-center programs are difficult to sustain and scale. 

Deep learning (DL) is a state-of-the-art type of machine learning useful in image analysis20-23. 

DL has been applied to adult cardiac ultrasound24,25, besting clinicians on view classification on 

small, downsampled datasets26. DL can be used to classify images or to segment structures 

within images; several DL models can be used together in an ensemble fashion. While hardly the 

only diagnostic challenge in ultrasound, fetal CHD detection is certainly one of the most 

challenging and is therefore a good use case for deep learning. We hypothesized that DL could 

improve ultrasound analysis for CHD.  
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Methods 

Data sets. 

All datasets were obtained and de-identified, with waived consent in compliance with the 

Institutional Review Board (IRB) at the University of California, San Francisco (UCSF) and the 

IRB at Boston Children’s Hospital. 

Inclusion, exclusion, and definitions of normal and CHD. Fetal echocardiograms and fetal 

surveys (second-trimester obstetric anatomy scans performed by sonographers, radiologists 

and/or maternal-fetal-medicine physicians) performed between 2000 and 2019 were utilized. 

Images came from GE (67%), Siemens (27%), Philips (5%), and Hitachi (<1%) ultrasound 

machines. Inclusion criteria were fetuses of 18-24 weeks of gestational age. Presence of 

significant non-cardiac malformations (e.g. congenital diaphragmatic hernia, congenital airway 

malformation, congenital cystic adenomatoid malformation, meningomyelocele) were excluded. 

Gold-standard definitions of normal vs. CHD were made as follows. CHD pathology was 

determined by review of the clinical report as well as visual verification of the CHD lesion for 

each ultrasound by clinician experts (Drs. Grady, Levine, and Zhao with over 60 years combined 

experience in fetal cardiology). Additionally, for studies performed in or after 2012, we were 

able to validate the presence, absence, and type of cardiac findings in the ultrasound studies with 

electronic health record codes for CHD in the resulting neonates (ICD-9 codes 745*, 746*, and 

747* and ICD-10 codes Q2*, and ICD procedure codes 02*, 35*, 36*, 37* 38*, 88*, and 89*). 

Studies where clinician experts did not agree on the lesion and no post-natal diagnosis was 

present, were not included. Normal fetal hearts were defined as negative for structural heart 

disease, fetal arrhythmia, maternal diabetes, maternal lupus, maternal Sjögren syndrome, or 

presence or history of abnormal nuchal translucency measurement, non-cardiac congenital 
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malformations, or CHD as defined above. Abnormal fetal studies had the presence of any of the 

following lesions: tetralogy of Fallot, pulmonary atresia with VSD, or double outlet right 

ventricle with VSD committed to aorta (TOF); critical aortic stenosis and hypoplastic left heart 

syndrome (HLHS); isolated aortic stenosis (AS); atrioventricular septal defect (AVSD); D-

transposition of the great arteries (DTGA); L-transposition of the great arteries (LTGA); single 

ventricle, including heterotaxy with left or right atrial isomerism (SV); double outlet right 

ventricle with uncommitted, doubly committed, or sub-pulmonary VSD (DORV); aortic 

coarctation (COARCT); total anomalous pulmonary venous return (TAPVR); truncus arteriosus 

(TRUNCUS); Ebstein’s anomaly / tricuspid dysplasia (EB); tricuspid atresia (TA); and 

pulmonary atresia with intact IVS (PAIVS). Isolated VSD was not included as they only rarely 

require perinatal intervention. 

Study design, training, and test sets. We analyzed images from a retrospective cohort. The total 

number of CHD echocardiograms, and the need to limit class imbalance between normal and 

CHD studies in training, were constraints guiding development of training and test datasets 

(Figure S1d). We first took all fetal echocardiograms with CHD fitting inclusion/exclusion 

criteria above (437 studies). To reduce class imbalance in training, we then took a sample of 

normal fetal echocardiograms (875 studies) such that CHD was ~30 percent of the dataset. From 

this overall UCSF dataset, we created UCSF training and test sets as follows. We found those 

fetal echocardiograms which had a corresponding fetal survey in the UCSF system; a random 

sample of ~10 percent from each lesion class made up FETAL-125 and OB-125, respectively 

(corresponding echocardiograms and surveys, respectively, from the same patients). FETAL-125 

comprised 11,445 normal images and 8,377 abnormal images; OB-125 comprised 220,990 

normal images and 108,415 abnormal images. The remaining ~90 percent of fetal 
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echocardiograms (1,187) were used for training, supplemented by 139 normal fetal surveys 

(1,326 studies total). For a population-based UCSF testing set, we started with OB-125 and 

added additional 3,983 normal fetal surveys such that the CHD lesions in OB-125 comprised 

0.9% of an overall dataset totaling 4,108 surveys. The result was OB-4000, which comprised 

4,473,852 images. As an external testing set, we received 423 fetal echocardiograms (4,389 

images from 32 normal studies and 40,123 images from 391 abnormal studies) from Boston 

Children’s Hospital. These training and test sets are summarized in Table 1 and Figure S1d. 

Separately, we obtained a test set of 10 twin ultrasounds between 18-24 weeks of gestational age 

(5,754 echocardiogram images, 36,355 fetal survey images). Eight sets of twins had normal 

hearts; one set of twins had one normal, one TOF heart; and one set of twins had one normal, one 

HLHS heart. 

The above training dataset was used to train (i) a view classifier, (ii) normal vs. abnormal 

diagnostic classifiers for each target view, and (iii) a segmentation model. For the view classifier, 

53,532 images from the 926 normal hearts were used. For the per-view diagnostic classifiers, 

46,498 of the above images from 916 normal hearts were combined with an additional 54,291 

images from 400 abnormal hearts (for a total of 1,316 studies, 100,789 images). (Ten of the 

studies used in training the view classifier only had non-target views and so were not used to 

train the diagnostic classifiers.) For segmentation of cardiac chambers, 1248 apical 4-chamber 

(A4C) images from 186 studies (122 normal, 25 HLHS, 39 TOF) were used. For segmentation of 

heart and thorax, 952 A4C images from 223 studies (157 normal, 25 HLHS, 41 TOF) were used. 

For all trainings, roughly equal proportions of data classes were used. Every image frame of the 

training set, FETAL-125, OB-125, and BCH-400 were view-labeled by clinician experts 

(approximately 20% of the dataset was independently scored by both labelers to ensure 
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agreement). Because OB-4000 was too large for this approach, experts instead verified only that 

the top five predictions from the view classifier did in fact contain views of interest before that 

study underwent diagnostic classification. To maintain sample independence, training and test 

sets did not overlap by image, patient, or study. 

Data processing.  

DICOM-formatted images were deidentified as previously described26. Axial sweeps of the 

thorax were split into constituent frames at 300 by 400-pixel resolution. For view classification 

tasks, images were labeled as 3-vessel trachea (3VT), 3-vessel view (3VV), apical 5-chamber 

(A5C), apical 4-chamber (A4C), and abdomen (ABDO). A sixth category, called non-target 

(NT), comprised any fetal image that was not one of the five cardiac views of interest. For 

disease classification tasks, studies were labeled by normal or CHD lesions mentioned above. 

For input into classification networks, each image was cropped to 240 x 240 pixels and 

downsampled to 80 x 80 pixels and scaled with respect to greyscale value (rescale intensity). For 

input into segmentation networks, images were cropped to 272 x 272 pixels and scaled with 

respect to greyscale value. All preprocessing steps made use of open-source Python libraries 

OpenCV (https://opencv.org/), Scikit-image (https://scikit-image.org/), SciPy 

(https://www.scipy.org/), and NumPy (https://numpy.org). For training fetal structural and 

functional measurements, OpenCV was used to label thorax, heart, right atrium, right ventricle, 

left atrium, left ventricle and spine from A4C images. 

Model Architecture and Training. 

Classification models. Classification models were based on the ResNet architecture27, with the 

following modifications. For view classification, batch size was 32 samples and training was 
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over 175 epochs using the Adam optimizer and an adaptive learning rate (0.0005 for epochs 1-

99; 0.0001 for epochs 100-149, and 0.00005 at 150+ epochs). Dropout of 50% was applied prior 

to the final fully-connected layer. Data were augmented at run-time by randomly applying 

rotations of up to 10 degrees, width and height shifts of up to 20 percent of total length, zooms of 

up to 50 percent, and vertical/horizontal flips. For diagnostic classification, transfer learning was 

applied to the previously described view classification model as follows: the first 18 layers were 

frozen. Additional training used the above settings except epochs ranged from 12 to 60, learning 

rate was constant for each model, no adaptive learning was used, and learning rate ranged from 

0.00001 to 0.0001. Loss function was categorical cross-entropy (view classifier) or binary cross-

entropy (diagnostic classifiers). Classification network architecture is shown in Figure S1a. 

Training and validation datasets in which view labels were randomized were used as a negative 

control, resulting in an F-score commensurate with random chance among classes.  

Segmentation model. A4C images with clinician-labeled cardiothoracic structures (thorax, heart, 

spine, and each of the four cardiac chambers) were used as training inputs to a U-Net28 neural 

network architecture with modifications as in Figure S1b. Two different models were trained to 

detect (i) heart, spine, and thorax, and (ii) the four cardiac chambers. Batch size was 2, models 

were trained for 300-500 epochs, and an Adam optimizer was used with adaptive learning rates 

of 0.0001 to 0.00001. For data augmentation, width/shift was set at 20 percent, zoom was 15 

percent, random rotations of up to 25 degrees, and horizontal/vertical flips were used. Loss 

function was categorical cross-entropy. 

Framework and training and prediction times. All models were implemented in Python using 

Keras29 (https://keras.io/) and a Tensorflow (https://www.tensorflow.org/) backend. Trainings 

were performed on Amazon’s EC2 platform with a GPU instance p2.xlarge and took about 1.95 
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– 5h for segmentation models and 6 minutes – 4.6h for classification models. Prediction times 

per image averaged 3 ms for classification and 50 ms for segmentation on a standard laptop (2.6 

GHz Intel core, 16GB RAM). 

Use of prediction probabilities in classification. For each classification decision on a given 

image, the model calculates a probability of the image belonging to each of the possible output 

classes; as a default, the image is automatically assigned to the class with the highest probability. 

In certain testing scenarios, a threshold of acceptable prediction probability was applied to view 

classifications: namely, for OB-4000 “high confidence” views, diagnostic classification was 

performed only on images with view prediction probabilities greater than the first quartile for 

each view, and for OB-125 “low-quality” views, views with a model-predicted probability ≥0.9, 

but that human labelers did not choose as diagnostic quality, were used (Results, Table S1). A 

probability threshold for diagnostic classifications was also used in the rules-based composite 

diagnostic classifier, described below. 

Quantification of cardiothoracic ratio, chamber fractional area change, and cardiac axis. 

Cardiothoracic ratio was measured as the ratio of the heart circumference to the thorax 

circumference. Fractional area change for each of the four cardiac chambers was calculated as 

[maximum pixel area – minimum pixel area]/[maximum pixel area]. Cardiac axis was calculated 

as the angle between a line centered on the spine and thorax, and a line centered on either the left 

chambers or the right chambers, whichever side had the greatest area. (The line centered on the 

cardiac chambers was chosen as a computational method of finding a line parallel to the 

intraventricular septum, used clinically and in ground-truth labeling.) Various checks were 

implemented to prevent calculation of clinical values from images with poor segmentation 

results. Concordance of predicted quantitative measurements were compared to ground truth 
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measures (labeled images, and clinical measurements where available) using the Mann-Whitney 

U test. Measurements among normal, TOF, and HLHS groups were compared using the Kruskal-

Wallis test. 

Composite diagnostic classification. A rules-based classifier (“Composite dx classifier,” Figure 

1b) was developed to unite per-view, per-image predictions into a single composite decision of 

normal vs. CHD. (We chose a rules-based approach because a machine learning-based classifier 

at this step would have required sacrificing some of our test data to train the composite 

classifier.) The rules-based composite diagnostic classifier operates as follows (Figure S1c). 

Only views with AUC > 0.85 (Figure 3a) were used. For each of the cardiac views of interest, a 

variable number of images each held a probability pCHD of CHD for each image; the probability 

of normal for that image was also recorded, where pNL = 1-pCHD. pCHD below a certain cutoff 

threshold determined by the ROC curve for each view (Figure 3a) were reset to 0 to avoid over-

scoring CHD. The resulting pNL’s and pCHD’s for each view were then summed separately, in 

order to maintain a distinction between a view being present-and-normal vs. being missing from 

a study, and each was normalized by the total sum of all predictions to account for different 

numbers of images in each view class to obtain the view-specific prediction values: 

PCHDview = [sum(pCHD1…n)] / [sum(pCHD1…n) + sum(pNL1…n)] 

PNLview = [sum(pNL1…n)] / [sum(pCHD1…n) + sum(pNL1…n)] 

(NOTE: “view” is either 3VT, 3VV, A5C, or A4C) 

These prediction values for each view were in turn summed for a composite classification. 

Evaluating true positive, false positive, true negative, and false negative with different values for 

the threshold number allowed construction of a ROC curve (Figure 3e). 
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Model Evaluation.  

Overall accuracy, per-class accuracy, average accuracy, confusion matrices, F-scores, receiver 

operator characteristics, C-statistics, and saliency maps (guided backpropagation) were 

calculated as previously described26,30. GradCAM was also used as previously described31. For 

performance analysis of segmentation models, Jaccard similarities were calculated in the 

standard fashion as the intersection of predicted and labeled structures divided by their union. 

Comparison to Human Experts. 

Clinicians with expertise in fetal cardiology (fetal cardiology and maternal-fetal medicine 

attendings, experienced fetal cardiology sonographers, fetal cardiology fellows, n=7), were 

shown up to one image per view for the studies in the OB-125 test set and asked whether that 

study was normal or not. For segmentation, clinical labelers segmented a subset of images 

multiple times, and intra-labeler Jaccard similarities were calculated as a benchmark. Use of 

clinicians for validation was deemed exempt research by the UCSF CHR. 

 

Data and Code Availability. 

Due to the sensitive nature of patient data (and especially fetuses as a vulnerable population), we 

are not able to make these data publicly available at this time. ResNet and UNet are publicly 

available (e.g. at https://keras.io/examples/cifar10_resnet/ and 

https://github.com/zizhaozhang/unet-tensorflow-keras/blob/master/model.py) and can be used 

with the settings described above and in Figure S1. Additional code will be available upon peer-

reviewed publication at https://github.com/ArnaoutLabUCSF/cardioML 
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Results 

To test whether DL can improve fetal CHD detection, utilizing multi-modal imaging and experts 

in fetal cardiology, we implemented an ensemble of neural networks (Figure 1b) to (i) identify 

five diagnostic-quality, guidelines-recommended cardiac views (Figure 1a) from among all 

images in a fetal ultrasound (survey or echocardiogram), (ii) use these views to provide 

classification of normal vs. any of 16 complex CHD lesions (Table 1), and (iii) calculate 

cardiothoracic ratio (CTR), cardiac axis (CA), and fractional area change (FAC) for each cardiac 

chamber. 

To train the various components in the ensemble, up to 107,823 images from 1,326 studies were 

used (Table 1). Several independent test datasets were used for evaluating model performance: 

125 UCSF fetal echocardiograms (FETAL-125, 19,822 images) and 125 corresponding fetal 

surveys from the same patients (OB-125, 329,405 images), each with 30% CHD; a population-

based sample of 4,108 fetal surveys with 0.9% CHD (4,473,852 images; includes OB-125), and 

an external set from Boston Children’s Hospital consisting of 423 fetal echocardiograms highly 

enriched for CHD (BCH-400 with 44,512 images, 92% CHD) (Table 1, Methods, Figure S1d). 

Prediction times per image averaged 3 milliseconds for classification and 50 milliseconds for 

segmentation on a standard laptop (Methods). 

View classification 

Identifying the five views of the heart recommended in fetal CHD screening12—3-vessel-trachea 

(3VT), 3-vessel view (3VV), apical-5-chamber (A5C), apical-4-chamber (A4C), and abdomen 

(ABDO)—was a prerequisite for diagnosis. We therefore trained a convolutional neural 

network27 (Figure S1a) view classifier (“DL view classifier”, Figure 1b) to pick the five 
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screening views from fetal ultrasound, where any image that was not one of the five guidelines-

recommended views was classified as “non-target” (NT; e.g. head, foot, placenta). Training data 

was multi-modal including both fetal echocardiograms, which naturally contain more and higher-

quality views of the heart, and fetal surveys, offering a full range of non-target images. Notably, 

only views of sufficient quality to be used for diagnosis (as deemed by expert labelers, see 

Methods) were used to train the view classifier. 

On normal studies in the FETAL-125 test set, the F-score (the harmonic mean of precision and 

recall) for view classification was 0.93, (AUC range 0.94-0.98, Figure 2a, 2b). The network’s 

classification decision on a particular image is determined by the probability of the image 

belonging to each of the possible classes; by default, the image is assigned to the class with the 

highest probability. For fetal view classification, as demonstrated for adults26, mean probability 

for correct predictions was significantly higher than for incorrect (p-value Mann-Whitney U test, 

<1e-300)(Figure 2c). 

We then tested the view classifier on OB-125 (Figure 2d, 2e). When diagnostic-quality target 

views were present, the view classifier found them with 90% sensitivity (95%CI, 90%) and 78% 

specificity (95%CI, 77-78%). Using only images with prediction probabilities at or above the 

first quartile, sensitivity and specificity increased to 96% and 92% (95%CI, 96% and 92-93%). 

Recommended views were not always present in each fetal survey and were more commonly 

present in normal studies (Figure 2f). The view classifier’s greatest confusion was between 3VT 

and 3VV (Figure 2d), adjacent views that often cause clinical uncertainty also12,17,32. 

To validate that the view classifier utilized clinically relevant features, we performed both 

saliency mapping and gradient-weighted class activation mapping (Grad-CAM) experiments26,31 

on test images to show the pixels (saliency mapping) or region (Grad-CAM) most important to 
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the classifier in making its decision. Both experiments show that the view classifier makes its 

decisions based on clinically relevant image features (Figure 2g). 

Classification of normal vs. complex CHD 

We trained the same convolutional neural network architecture used above to classify normal vs. 

CHD for each of the five view classes (“DL dx classifiers,” Figure 1b). On FETAL-125, AUC 

ranged from 0.72 (ABDO) to 0.88 (3VV and A4C; Figure 3a). Across all test datasets, AUCs for 

ABDO view reflected the clinical finding that abdomen is the least useful for CHD diagnosis. 

For each heart, we arrived at a composite diagnostic decision of normal vs. CHD by applying a 

rules-based classifier (“Composite dx classifier” Figure 1b) to the per-image, per-view 

predictions (Methods, Figure S1c). 

Using this approach, we achieved AUCs of 0.98, 0.93, 0.99, and 0.89 in distinguishing normal 

from abnormal hearts on FETAL-125, OB-125, OB-4000, and BCH-400, respectively (Figure 

3e). (To achieve this AUC for OB-4000, only images with view-prediction probabilities above 

the first quartile were used in the composite diagnostic classifier.) This allowed a sensitivity of 

95% (95%CI, 83-99%), specificity of 96% (95%CI, 95-97%), positive predictive value (PPV) of 

20% (95%CI, 17-23%), and negative predictive value (NPV) of 100% in OB-4000. Performance 

on these and additional tests discussed below are summarized in Table S1. Overall, model 

sensitivity on fetal echocardiograms rivaled that cited across several papers33-35 (p-value 0.3, 

assuming normal distribution of measures in the literature). More importantly, model sensitivity 

and specificity on fetal surveys was significantly better than reported performance1,14,15,34 (p-

values 0.002 and 0.04, respectively). 
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We also wished to compare model performance on fetal surveys (OB-125) directly against 

clinicians. Therefore, we gave each the following test: one, full-resolution image per view, only 

five images in total per heart (Figure 3f). This test was chosen both to make the task feasible for 

humans, and, given the potential regional variation in image acquisition protocols, to simulate a 

“lean protocol” in which only minimal recommended views are acquired. Thirty-eight of the 125 

fetal surveys (30%) in OB-125 contained all five views. On this test, the model achieved 88% 

sensitivity (95% CI, 47-100%) and 90% specificity (95% CI, 73-98%). Clinicians (n=7) achieved 

an average sensitivity of 86% (95% CI, 82-90%) and specificity of 68% (95% CI, 64-72%). The 

model was comparable to clinicians (p=0.3) in sensitivity and superior (p=0.04) in specificity. 

To validate that the model generalizes beyond the medical center where it was trained36, we 

tested it on fetal echocardiograms from an unaffiliated, geographically remote medical center 

(BCH-400; Table 1). AUCs for view detection ranged from 0.95-0.99 (not shown). AUC for 

composite classification of normal vs. abnormal hearts was 0.89, despite a high prevalence of 

abnormal hearts in this test set (Figure 3e, Table S1). 

Multifetal pregnancies have a higher risk of CHD than the general population1. Therefore, a 

CHD detection model applicable to ultrasounds of twins and other multiples would be useful. 

Based on saliency mapping and Grad-CAM experiments (Figures 2g, 3g), we hypothesized our 

model could perform adequately on surveys of twins. We used our model to predict views and 

diagnoses for 10 sets of twins (n=20 fetuses) including TOF and HLHS. Sensitivity and 

specificity were 100% and 72% (Table S1). 

Models should be robust to minor variation in image quality to be useful for a range of patients 

and medical centers. We therefore assessed model performance on images within OB-125 that 

expert clinicians did not label as high-quality views, but that the model did classify as target 
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views (Figure 2d, 2f). We inspected these “false-positive” images directly and analyzed their 

prediction probabilities. Of images with probability ≥ 0.9, two thirds (66%) were in fact target 

views, but of lower quality (e.g. slightly off-axis, heavily shadowed) than ones chosen by 

experts, and most (59%) of these low-quality target views had probabilities ≥ 0.9 (Figure S3). 

Therefore, the model can appropriately detect target views of lower quality. We submitted these 

lower-quality target images for diagnostic prediction and found sensitivity of 95% (95% CI, 83-

99%) and specificity of 39% (95% CI, 28-50%). Thus, the ensemble model can make use of sub-

optimal images in fetal surveys to detect complex CHD, albeit with lower specificity. 

As with view classification above, we performed several analyses to determine whether the 

diagnostic classifications were based on clinically relevant image features. We trained a set of 

per-view binary classifiers for each of the two most common lesions in our dataset—TOF and 

HLHS—and examined ROC curves, saliency maps, and Grad-CAMs. For TOF, AUCs were 

highest for the two views from which TOF is most easily clinically appreciable: 3VT and 3VV 

(Figure 3b). For HLHS, 3VT, 3VV, A5C, and A4C are all abnormal, consistent with higher 

AUCs in Figure 3c. Saliency mapping and Grad-CAM highlighted pixels and image regions 

relevant to distinguishing these lesions from normal (Figure 3g). In clinical practice, reported 

sensitivity in detecting TOF and HLHS is as low as 50 and 30%, respectively37. With our model, 

sensitivity is 71% for TOF and 89% for HLHS (specificity 89% and 92%; Table S1). 

Segmentation for fetal biometrics 

Biometric measurements aid in fetal CHD screening and diagnosis12. We therefore trained a 

modified U-Net28 (Figure S1b, Methods) to find cardiothoracic structures in A4C images and 

used these segmented structures to calculate CTR, CA, and FAC for each cardiac chamber 

(Table 2, Figure 4). Normal, TOF, and HLHS hearts were represented in training and testing. 
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Per-class Jaccard similarities measuring overlap of labeled and predicted segmentations are 

found in Table S2. Predictably, Jaccards were higher for more highly represented pixel classes 

(e.g., background) and were similar to intra-labeler Jaccards (range 0.53-0.98, mean 0.76). 

Example labels and predictions for segmented structures are shown in Figure 4. 

Normal cardiothoracic circumference ratios range from 0.5-0.61. Mann-Whitney U (MWU) 

testing showed no statistical differences among clinically measured and labeled CTR for normal 

hearts, nor between labeled and model-predicted CTR. CTR for TOF and HLHS hearts were 

normal, as previously reported1. 

A normal cardiac axis is 45 ±20 degrees12. Consistent with the literature38, mean cardiac axis was 

increased in TOF at 63±16 degrees (range 54-80; p-value 0.007). CA for HLHS was not found in 

the literature, but model-predicted CA was 49±2 degrees (range 33-72; p-value 0.04). 

In addition to the five still-image views, it is best practice to also obtain a video of the A4C view 

to assess cardiac function1. FAC quantifies this assessment. From a study measuring 70 normal 

18-24 week fetuses, 50th percentile for left and right ventricular FAC averaged 0.34±0.01 and 

0.33±0.02, respectively39. In our test dataset, labeled FAC for normal LV and RV were 

0.48±0.09, and model predictions were 0.47±0.10 (p-value 0.3), and 0.47±0.11 (p-value 0.2), 

respectively. Although there are no fetal atrial FAC values established in the literature, model-

predicted LA and RA FAC were statistically indistinguishable from labels at 0.52±0.12 and 

0.49±0.08, respectively (p-values 0.5 and 0.5). All measurements are summarized in Table 2 and 

Figure S2. 
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Taken together, the data show that fetal cardiothoracic biometrics can be derived from image 

segmentation, showing good agreement between previously reported values and the potential to 

provide additional metrics not yet benchmarked.  
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Discussion 

With clear benefit to early diagnosis and treatment of CHD, and growing research on in utero 

interventions, the need for accurate, scalable fetal screening for CHD has never been stronger40, 

while sensitivity and specificity for CHD detection remain low at centers and clinics worldwide1. 

To address this, we investigated the impact of combining real-world fetal ultrasound and trusted 

clinical guidelines with cutting-edge deep learning to achieve expert-level CHD detection from 

fetal surveys, one of the most difficult diagnostic challenges in ultrasound. In over 4000 fetal 

surveys (over 4M images), the ensemble model achieved an AUC of 0.99.  

Deep learning has been used on various medical tasks21,23,41, but to our knowledge, this is the 

first use of deep learning to approximately double community-level sensitivity and specificity on 

a global diagnostic challenge in a population-based test set.  

The model’s performance and speed allow its integration into clinical practice as software 

onboard ultrasound machines to improve real-time acquisition and to facilitate telehealth 

approaches to prenatal care which are so sorely needed9. As a key benefit, the view classifier 

could be used on its own to help ensure adequate view acquisition. For retrospectively collected 

images, the model could be used as standalone software where a user uploads a study and 

receives model-chosen views and diagnostic predictions. 

Strengths of this study 

Generalizability. To ensure our model could work robustly in real-world settings, we used two-

dimensional ultrasound and standard recommended fetal views rather than rather than 

specialized or vendor-specific image acquisitions42,43. Furthermore, we tested our model in a 

range of different scenarios and on different independent test datasets. Importantly, the model 
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maintained high sensitivity on external imaging, sub-optimal imaging, imaging from fetal 

surveys, from fetal echocardiograms, on datasets with community-level CHD prevalence, and 

with high CHD prevalence. Where a test dataset approximately 10% of the size of the training 

dataset has arisen as an informal rule of thumb for adequate testing in the data science 

community, we tested on over 350% of the number of studies in the training set, and over 4000% 

the number of images. 

Interpretability. Our approach to both model design and testing ensured interpretability at several 

levels, which can help with clinical adoption. Choosing to use an ensemble of classifiers—first a 

view detector, then per-view diagnostic classifiers, and finally a classifier for composite 

diagnosis—allowed us to incorporate clinical view recommendations into our model and to 

demonstrate that model performance per view and per CHD lesion were consistent with clinical 

knowledge about which views were most likely to aid in detection of specific lesions.  

Analysis of confusion matrices, ROC curves, and incorrectly classified images helped determine 

that model error mirrored uncertainties in clinical practice. Saliency mapping and Grad-CAM for 

both view and diagnostic classifications demonstrated that model predictions relied on cardiac 

structures. The prominence of the aorta, the right heart, and the stomach as distinguishing 

features among the five target views is both novel and sensible. A comparison of the different 

testing scenarios (Table S1) suggests that both the quality of images and the number of available 

images per study contribute to the best overall performance. 

Novel approaches to training. As mentioned above, we incorporated two similar study types—

fetal echocardiograms and fetal surveys—in a multi-modal approach to model training that 

harnessed more specialized imaging in service of improving performance on screening imaging. 

By feeding only target views into the diagnostic classifier step, we took a more data-efficient 
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approach to the diagnostic classifier compared to using the entire ultrasound. We also took a 

novel approach to addressing variation in image quality that relied on human experts to agree 

only on labeling diagnostic-quality images for training (in testing, the model analyzed all 

images). This approach economized on human capital, consolidating inter-expert agreement on 

diagnostic-quality images, while providing fewer constraints to the model training, since some 

aspects that make an image low-quality to a human eye may not matter as much to a computer 

“eye” (image contrast is a good example of this). We found that prediction probability was an 

indirect representation of the model’s quality assessment, and that using cutoffs for high-

prediction-probability images improved model performance. 

Diagnostic signals from small/lean datasets and rare diseases. While it is the most common 

birth defect, CHD is still relatively rare. Moreover, unlike modalities like photographs21,23, 

ECG41 or chest X-ray, each ultrasound study contains thousands of image frames. Therefore, 

designing a model that could work on a large number of non-independent images from a 

relatively small subject dataset was an important challenge to overcome. Taken together, the 

strengths above allowed us to find diagnostic signals for rare diseases and allowed computational 

efficiency both in training and in subsequent predictions on new data, which is key to translating 

this work toward real-world and resource-poor settings where it is needed44. 

 

Limitations of this study 

While 4,108 fetal surveys a significant test set especially when considering the size of each 

ultrasound, hundreds of millions of fetal surveys are performed annually at many thousands of 

medical centers and clinics worldwide. Therefore, expanded testing of the model prospectively 
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and in multiple centers, including community/non-expert centers, will be important going 

forward. It will also be important to test the model on imaging that includes a range of non-

cardiac malformations. Several small improvements in model algorithms, as well as more 

training data from more centers, may further boost performance and may allow for diagnosis of 

specific lesion types. Similarly, more training data for image segmentation, including segmenting 

additional CHD lesions, will improve segmentation model performance and allow those results 

to be integrated into the composite diagnostic classifier. Further clinical validation of 

segmentation-derived fetal biometrics will be needed, particularly where metrics on particular 

CHD lesions have not yet been described elsewhere. 

We look forward to testing and refining ensemble learning models in larger populations in an 

effort to democratize the expertise of fetal cardiology experts to providers and patients 

worldwide, and to applying similar techniques to other diagnostic challenges in medical imaging.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 24 

Acknowledgements 

We thank Drs. Atul Butte, Deepak Srivastava, and Ramy Arnaout for critical reading of the 

manuscript; Drs. Michael Brook, Marc Kohli, Wayne Tworetzky, and Kathy Jenkins for 

facilitating data access. We thank all clinicians who served as human subjects, including 

Christine Springston RDCS, and Drs. Katherine Kosiv, Christiana Tai and David Abel; others 

wished to remain anonymous. This project was also supported by the UCSF Academic Research 

Systems and the National Center for Advancing Translational Sciences, National Institutes of 

Health, through UCSF-CTSI Grant UL1 TR991872. 

 

Author Contributions 

R.A. and A.M. conceived of the study. R.A. and E.C. designed and implemented all 

computational aspects of image processing, data labeling, pipeline design, neural network 

design, tuning, and testing, and data visualizations. R.A., L.C., Y.Z., and A.M. labeled and 

validated images. J.C.L. curated and sent external data. R.A. wrote the manuscript with critical 

input from A.M., E.C., and all authors. 

 

Competing Interests 

Some methods used in this work have been filed in a provisional patent application. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 25 

References 

1 Donofrio, M. T. et al. Diagnosis and treatment of fetal cardiac disease: a scientific 

statement from the American Heart Association. Circulation 129, 2183-2242, 

doi:10.1161/01.cir.0000437597.44550.5d (2014). 

2 Holland, B. J., Myers, J. A. & Woods, C. R., Jr. Prenatal diagnosis of critical congenital 

heart disease reduces risk of death from cardiovascular compromise prior to planned 

neonatal cardiac surgery: a meta-analysis. Ultrasound Obstet Gynecol 45, 631-638, 

doi:10.1002/uog.14882 (2015). 

3 Wright, L. K. et al. Relation of prenatal diagnosis with one-year survival rate for infants 

with congenital heart disease. Am J Cardiol 113, 1041-1044, 

doi:10.1016/j.amjcard.2013.11.065 (2014). 

4 Bensemlali, M. et al. Neonatal management and outcomes of prenatally diagnosed 

CHDs. Cardiol Young 27, 344-353, doi:10.1017/S1047951116000639 (2017). 

5 Li, Y. F. et al. Efficacy of prenatal diagnosis of major congenital heart disease on 

perinatal management and perioperative mortality: a meta-analysis. World J Pediatr 12, 

298-307, doi:10.1007/s12519-016-0016-z (2016). 

6 Oster, M. E. et al. A population-based study of the association of prenatal diagnosis with 

survival rate for infants with congenital heart defects. Am J Cardiol 113, 1036-1040, 

doi:10.1016/j.amjcard.2013.11.066 (2014). 

7 Freud, L. R. et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: 

postnatal outcomes of the first 100 patients. Circulation 130, 638-645, 

doi:10.1161/CIRCULATIONAHA.114.009032 (2014). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 26 

8 Sizarov, A. & Boudjemline, Y. Valve Interventions in Utero: Understanding the Timing, 

Indications, and Approaches. Can J Cardiol 33, 1150-1158, 

doi:10.1016/j.cjca.2017.06.009 (2017). 

9 Peahl, A. F., Smith, R. D. & Moniz, M. H. Prenatal Care Redesign: Creating Flexible 

Maternity Care Models Through Virtual Care. Am J Obstet Gynecol, 

doi:10.1016/j.ajog.2020.05.029 (2020). 

10 Committee on Practice, B.-O. & the American Institute of Ultrasound in, M. Practice 

Bulletin No. 175: Ultrasound in Pregnancy. Obstet Gynecol 128, e241-e256, 

doi:10.1097/AOG.0000000000001815 (2016). 

11 Tuncalp et al. WHO recommendations on antenatal care for a positive pregnancy 

experience-going beyond survival. BJOG 124, 860-862, doi:10.1111/1471-0528.14599 

(2017). 

12 Carvalho, J. S. et al. ISUOG Practice Guidelines (updated): sonographic screening 

examination of the fetal heart. Ultrasound Obstet Gynecol 41, 348-359, 

doi:10.1002/uog.12403 (2013). 

13 Bak, G. S. et al. Detection of fetal cardiac anomalies: is increasing the number of cardiac 

views cost-effective? Ultrasound Obstet Gynecol, doi:10.1002/uog.21977 (2020). 

14 Friedberg, M. K. et al. Prenatal detection of congenital heart disease. J Pediatr 155, 26-

31, 31 e21, doi:10.1016/j.jpeds.2009.01.050 (2009). 

15 Sekar, P. et al. Diagnosis of congenital heart disease in an era of universal prenatal 

ultrasound screening in southwest Ohio. Cardiol Young 25, 35-41, 

doi:10.1017/S1047951113001467 (2015). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 27 

16 Sklansky, M. & DeVore, G. R. Fetal Cardiac Screening: What Are We (and Our 

Guidelines) Doing Wrong? J Ultrasound Med 35, 679-681, doi:10.7863/ultra.15.07021 

(2016). 

17 Sun, H. Y., Proudfoot, J. A. & McCandless, R. T. Prenatal detection of critical cardiac 

outflow tract anomalies remains suboptimal despite revised obstetrical imaging 

guidelines. Congenit Heart Dis 13, 748-756, doi:10.1111/chd.12648 (2018). 

18 Corcoran, S. et al. Prenatal detection of major congenital heart disease - optimising 

resources to improve outcomes. Eur J Obstet Gynecol Reprod Biol 203, 260-263, 

doi:10.1016/j.ejogrb.2016.06.008 (2016). 

19 Letourneau, K. M. et al. Advancing Prenatal Detection of Congenital Heart Disease: A 

Novel Screening Protocol Improves Early Diagnosis of Complex Congenital Heart 

Disease. J Ultrasound Med 37, 1073-1079, doi:10.1002/jum.14453 (2018). 

20 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, 

doi:10.1038/nature14539 (2015). 

21 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural 

networks. Nature 542, 115-118, doi:10.1038/nature21056 (2017). 

22 Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head 

CT scans: a retrospective study. Lancet 392, 2388-2396, doi:10.1016/S0140-

6736(18)31645-3 (2018). 

23 Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for 

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 316, 2402-

2410, doi:10.1001/jama.2016.17216 (2016). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 28 

24 Arnaout, R. Toward a clearer picture of health. Nat Med 25, 12, doi:10.1038/s41591-018-

0318-x (2019). 

25 Ouyang, D. et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature 

580, 252-256, doi:10.1038/s41586-020-2145-8 (2020). 

26 Madani, A., Arnaout, R., Mofrad, M. & Arnaout, R. Fast and accurate view classification 

of echocardiograms using deep learning. npj Digital Medicine 1, 6, doi:10.1038/s41746-

017-0013-1 (2018). 

27 He, K., Zhang, X., Ren, S. & Sun, J. Identity Mappings in Deep Residual Networks. 

arXiv e-prints, arXiv:1603.05027 (2016). 

<https://ui.adsabs.harvard.edu/abs/2016arXiv160305027H>. 

28 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical 

Image Segmentation. ArXiv e-prints 1505 (2015). 

<http://adsabs.harvard.edu/abs/2015arXiv150504597R>. 

29 Keras (GitHub, 2015). 

30 Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for Simplicity: 

The All Convolutional Net. arXiv e-prints, arXiv:1412.6806 (2014). 

<https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6806S>. 

31 Selvaraju, R. R. et al. Grad-CAM: Visual Explanations from Deep Networks via 

Gradient-based Localization. arXiv e-prints, arXiv:1610.02391 (2016). 

<https://ui.adsabs.harvard.edu/abs/2016arXiv161002391S>. 

32 Lee, W., et al. AIUM practice guideline for the performance of fetal echocardiography. J 

Ultrasound Med 32, 1067-1082, doi:10.7863/ultra.32.6.1067 (2013). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 29 

33 Liu, H. et al. Fetal echocardiography for congenital heart disease diagnosis: a meta-

analysis, power analysis and missing data analysis. Eur J Prev Cardiol 22, 1531-1547, 

doi:10.1177/2047487314551547 (2015). 

34 Pinheiro, D. O. et al. Accuracy of Prenatal Diagnosis of Congenital Cardiac 

MalformationsAcuracia do diagnostico pre-natal de cardiopatias congenitas. Rev Bras 

Ginecol Obstet 41, 11-16, doi:10.1055/s-0038-1676058 (2019). 

35 Chu, C. et al. Prenatal diagnosis of congenital heart diseases by fetal echocardiography in 

second trimester: a Chinese multicenter study. Acta Obstet Gynecol Scand 96, 454-463, 

doi:10.1111/aogs.13085 (2017). 

36 Zech, J. R. et al. Variable generalization performance of a deep learning model to detect 

pneumonia in chest radiographs: A cross-sectional study. PLoS Med 15, e1002683, 

doi:10.1371/journal.pmed.1002683 (2018). 

37 Miceli, F. A review of the diagnostic accuracy of fetal cardiac anomalies. Australas J 

Ultrasound Med 18, 3-9, doi:10.1002/j.2205-0140.2015.tb00024.x (2015). 

38 Zhao, Y. et al. Fetal cardiac axis in tetralogy of Fallot: associations with prenatal 

findings, genetic anomalies and postnatal outcome. Ultrasound Obstet Gynecol 50, 58-

62, doi:10.1002/uog.15998 (2017). 

39 Goldinfeld, M. et al. Evaluation of fetal cardiac contractility by two-dimensional 

ultrasonography. Prenat Diagn 24, 799-803, doi:10.1002/pd.880 (2004). 

40 Best, K. E. & Rankin, J. Long-Term Survival of Individuals Born With Congenital Heart 

Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 5, 

doi:10.1161/JAHA.115.002846 (2016). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 30 

41 Attia, Z. I. et al. An artificial intelligence-enabled ECG algorithm for the identification of 

patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome 

prediction. Lancet 394, 861-867, doi:10.1016/S0140-6736(19)31721-0 (2019). 

42 Yeo, L., Markush, D. & Romero, R. Prenatal diagnosis of tetralogy of Fallot with 

pulmonary atresia using: Fetal Intelligent Navigation Echocardiography (FINE). J 

Matern Fetal Neonatal Med 32, 3699-3702, doi:10.1080/14767058.2018.1484088 

(2019). 

43 Cohen, L. et al. Three-dimensional fast acquisition with sonographically based volume 

computer-aided analysis for imaging of the fetal heart at 18 to 22 weeks' gestation. J 

Ultrasound Med 29, 751-757, doi:10.7863/jum.2010.29.5.751 (2010). 

44 WHO guideline: recommendations on digital interventions for health system 

strengthening.  (World Health Organization, 2019). 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 31 

Tables 
Table 1. D

em
ographics of Training and Test Sets.In sm

all groups w
here there is a dash, inform

ation w
as w

ithheld to protect patient privacy.
Training set (U

CSF)
H

oldout test sets (U
CSF)

H
oldout test set (Boston Children’s H

ospital)
H

oldout test set (U
CSF)

m
ixed fetal echocardiogram

s
fetal echocardiogram

 test set (FETA
L-125)

fetal echocardiogram
s (BCH

-400)
fetal surveys from

 population,

and fetal surveys
and corresponding fetal surveys (O

B-125)
including O

B-125 (O
B-4000)

N
o. Studies

M
aternal A

ge 
avg±SD
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est. A

ge  
avg±SD
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aternal A
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G
est. A

ge  
avg±SD
(range)

N
o. Studies

M
aternal A

ge 
avg±SD
(range)

G
est. A

ge  
avg±SD
(range)

N
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21±1 (18-24)

32
33±4 (22-43)
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tetralogy of Fallot (TO
F)

83
32±7 (16-43)
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20
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)
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)
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1
—

—
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1
—

—

total anom
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4
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)
20±2 (—

)
1

—
—

2
31±0 (—

)
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)
1

—
—
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N
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28±8 (18-38)
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—
—
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—

tricuspid atresia (TA
)

9
31±6 (23-38)
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—
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Figure Legends 

Figure 1. Overview of the ensemble model. (a) Guidelines recommend that the following five 

axial views can detect CHD. Illustration adapted with permission from Yagel et. al., Ultrasound 

Obstet Gynecol 2001;17(5):367-9. (b) The overall model is an ensemble of the components 

shown. From a fetal ultrasound, a deep learning classifier detects the five screening views (“DL 

view classifier”). Subsequent DL classifiers for each view detect whether that view is normal or 

abnormal (“DL dx classifiers”). These per-image, per-view classifications are fed into a rules-

based classifier to create a composite diagnostic decision as to whether the fetal heart is normal 

or abnormal (“Composite dx classifier”). A4C views are also passed to a segmentation model to 

extract fetal cardiac biometrics. 3VT, 3-vessel trachea. 3VV, 3-vessel view. A5C, apical 5-

chamber. A4C, apical 4-chamber. ABDO, abdomen. NT, non-target. DL, deep learning. dx, 

diagnosis. 

 

Figure 2. View detection performance. Normalized confusion matrix (a) and ROC curve (b) 

showing classifier performance on normal hearts from FETAL-125 test set. (c) Violin plots 

showing prediction probabilities for this test data show that when predictions are correct, 

predicted classification probability is high, while probability ranged for incorrect predictions. In 

violin plots, white dots signify mean, thick black line signifies 1st to 3rd quartiles. Normalized 

confusion matrix (d) and ROC curve (e) showing classifier performance on the OB-125 test set. 

(f) Percent of fetal surveys from the OB-125 test set with model-detected views (compared to 

human-detected views in parentheses). Grey shading indicates views with AUC ≥ 75 for 

normal/abnormal prediction from Fig. 3a,3d. (g) One example test image shown per view (top 

row), with corresponding saliency map (unlabeled, second row; labeled, third row) showing that 
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the pixels most important to the model in predicting the view highlighted anatomic structures 

important to each view. Fourth row: gradient-weighted class activation map (Grad-CAM) 

provides a heatmap of regions of the image most important to the model in predicting the view. 

Grad-CAMs were also highly specific for structures distinguishing each view; the confluence of 

the aortic and ductal arches compared to the aortic cross-section distinguishing 3VT from 3VV, 

for example, and the left ventricular outflow tract vs. right heart distinguishing A5C from A4C. 

SM, saliency map, 3VT, 3-vessel trachea. 3VV, 3-vessel view. A5C, apical 5-chamber. A4C, 

apical 4-chamber. ABDO, abdomen. DA, ductal arch. AA, aortic arch. SVC, superior vena cava. 

PA, pulmonary artery. TV, tricuspid valve. AV, aortic valve. MV, mitral valve. IVS, 

interventricular septum. IAS, interatrial septum/foramen ovale. 

 

Figure 3. Performance of diagnostic classification. ROC curves showing model’s ability to 

distinguish (a) normal vs. any CHD lesion in Table 1, (b) normal vs. tetralogy of Fallot (TOF), 

and (c) normal vs. hypoplastic left heart syndrome (HLHS), for each of the five views in the 

FETAL-125 test dataset (OB-125 demonstrated similar findings, not shown). In (b) and (c), the 

views most clinically important for diagnosis of TOF and HLHS, respectively, are also those 

with the highest AUC. (d) ROC curve for prediction of per-view normal vs. abnormal from 

external data (BCH-400 test set). (e) ROC curve for composite (per-heart) prediction of normal 

vs. abnormal for each of the test datasets. “OB-4000§” indicates the high-confidence target 

images from OB-4000 test set (images with view-prediction probability at or above the first 

quartile). (f) Example of images given to both the model and clinicians for determination of 

normal vs. abnormal in a head-to-head comparison. (g) Top row: one example test image shown 

for normal, tetralogy of Fallot (TOF), and hypoplastic left heart syndrome (HLHS); three-vessel 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 35 

view (3VV) and apical four chamber view (A4C) shown. Second row: corresponding unlabeled 

saliency map. Third row: labeled saliency map, both showing the pixels most important to the 

model in classifying normal vs. abnormal. Fourth row: gradient-weighted class activation map 

(Grad-CAM) provides a heatmap of regions of the image most important to the model in 

prediction. In 3VV the relative sizes of aorta and pulmonary artery distinguishes these lesions 

from normal, and in A4C the angled intraventricular septum and enlarged right heart distinguish 

TOF and HLHS, respectively, from normal. SM, saliency map, 3VT, 3-vessel trachea. 3VV, 3-

vessel view. A5C, apical 5-chamber. A4C, apical 4-chamber. ABDO, abdomen. SVC, superior 

vena cava. PA, pulmonary artery. TV, tricuspid valve. RA, right atrium. TV, tricuspid valve. RV, 

right ventricle. LA, left atrium. MV, mitral valve. IVS, interventricular septum. 

 

Figure 4. Fetal cardiac structure and function from segmentation. Example input image, 

ground truth label of anatomic structures, prediction of anatomic structures, and calculations of 

cardiothoracic ratio and cardiac axis for a normal heart (a-d), tetralogy of Fallot (TOF; e-h), and 

hypoplastic left heart syndrome (HLHS; i-p). Segmentation of an image series (q) allows plots of 

chamber area over time (label, r; prediction, s) and identification of image frames in ventricular 

systole (S) and diastole (D) for fractional area change calculation. Teal, thorax; green, spine; 

purple, heart; red, left ventricle; pink, left atrium; blue, right ventricle; light blue, right atrium.  
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Figures 

Figure 1. 
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Figure 2. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20137786doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20137786


 

 38 

Figure 3. 
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Figure 4. 
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Supplemental Tables 
 

Table S1. Summary of diagnostic performance in different test cases. Test threshold chosen 
from OB-4000§ ROC curve (Figure 3e) to optimize sensitivity. CHD prevalence is again shown 
to aid in interpretation of predictive values. 

* All possible images present 
† Only 5 images present, one image per view 
‡ Low-quality images (target views not chosen by human labelers but with model prediction probabilities ≥0.9) 
§ high-confidence images (only used images with view prediction probabilities greater the first quartile for diagnosis) 
CHD = congenital heart disease, NPV= negative predictive value, PPV = positive predictive value, NL = normal, TOF = 
tetralogy of Fallot, HLHS = hypoplastic left heart syndrome 
 
 
 
 
Table S2. Average Jaccard similarities for labeled and predicted anatomic structures. 

TOF, tetralogy of Fallot; HLHS, hypoplastic left heart syndrome; RA, right atrium;  
RV, right ventricle; LA, left atrium; LV, left ventricle. 

  

Structure  thorax heart RA RV LA LV spine bkgrnd
Overall 0.79 0.86 0.77 0.70 0.63 0.60 0.67 0.99

Normal 0.80 0.87 0.82 0.77 0.72 0.78 0.69 0.99

TOF 0.73 0.86 0.81 0.63 0.64 0.65 0.47 0.98

HLHS 0.77 0.82 0.66 0.59 0.47 0.29 0.62 0.99

Method Model Model Clinicians Model Model Model Model Model Model Model

Test set OB-125* OB-125† OB-125† OB-125‡ OB-4000* OB-4000§ BCH-400* Twins§ OB-125 
NL vs. TOF*

OB-125
NL vs. HLHS*

CHD prevalence 30% 30% 30% 30% 0.9% 0.9% 92% 10% 6% 8%

Sensitivity 95%
(95% CI 84-99)

88%
(95% CI 47-100)

86%
(95% CI 82-90)

95%
(95% CI 83-99)

95%
(95% CI 84-99)

95%
(95% CI 84-99)

98%
(95% CI 96-99)

100%
(95% CI 15-100)

71%
(95% CI 29-96)

89%
(95% CI 52-100)

Specificity 68%
(95% CI 57-78)

90%
(95% CI 73-98)

68%
(95% CI 64-72)

39%
(95% CI 28-50)

56%
(95% CI 55-58)

96%
(95% CI 95-97)

41%
(95% CI 24-59)

72%
(95% CI 47-90)

89%
(95% CI 80-94)

92%
(95% CI 84-97)

PPV 59%
(95% CI 51-66)

70%
(95% CI 44-88)

44%
(95% CI 39-48)

41%
(95% CI 37-46)

2%
(95% CI 2)

20%
(95% CI 17-23)

95%
(95% CI 94-96)

29%
(95% CI 16-46)

33%
(95% CI 19-51)

53%
(95% CI 35-71)

NPV 97%
(95% CI 89-99)

96%
(95% CI 81-99)

95%
(95% CI 95-96)

94%
(95% CI 81-99)

100%
(95% CI 100)

100%
(95% CI 100)

59%
(95% CI 40-76)

100%
(95% CI 100)

98%
(95% CI 92-99)

99%
(95% CI 93-100)
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Supplemental Figures Legends and Figures 

Figure S1. Neural network architectures, schematic of rules-based classifier, and schematic 

of training and test data. (a) Neural network architecture used for classification, based on 

ResNet (He et. al. 2015). Numbers indicate the number of filters in each layer, while the legend 

indicates the type of layer. For convolutional layers (grey), the size and stride of the 

convolutional filters is indicated in the legend. (b) Neural network architecture used for 

segmentation, based on UNet (Ronneberger et. al. 2015). Numbers indicate the pixel dimensions 

at each layer. (c) A schematic for the rules-based classifier (“Composite dx classifier,” Figure 

1b) used to unite per-view, per-image predictions from neural network classifiers into a 

composite (per-heart) prediction of normal vs. CHD. Only views with AUC > 0.85 (Figure 3a) 

were used. For each view, there are various numbers of images k,l,m,n, each with a per-image 

prediction probability pCHD and pNL. For each view, per-image pCHD and pNL were summed and 

scaled (see Methods) into a pair of overall prediction values for each view (e.g. PCHD3VT and 

PNL3VT). These are in turn summed for a composite classification. Evaluating true positive, false 

positive, true negative, and false negative with different thresholds allowed construction of a 

ROC curve (Figure 3e). 3VT, 3-vessel trachea. 3VV, 3-vessel view. A5C, apical 5-chamber. 

A4C, apical 4-chamber. (d) A graphical depiction of the five UCSF and BCH training and test 

datasets. Dotted line between FETAL-125 and OB-125 indicates that these are corresponding 

imaging from the same fetuses. OB-4000 includes OB-125. Broken lines in OB-4000 indicate it 

is too large to be drawn to scale. Normal fetal echocardiograms, dark blue; normal fetal surveys, 

light blue; CHD fetal echocardiograms, dark orange; CHD fetal surveys, light orange. 
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Figure S2. Bland-Altman plots comparing cardiac measurements from labeled vs. 

predicted structures. CTR, cardiothoracic ratio; CA, cardiac axis; LV, left ventricle; RV, right 

ventricle; LA, left atrium, RA, right atrium. Legend indicates measures for normal hearts (NL), 

hypoplastic left heart syndrome (HLHS), and tetralogy of Fallot (TOF). 

 

Figure S3. Model confidence on sub-optimal images. Examples of sub-optimal quality images 

(target views found by the model but deemed low-quality by human experts) are shown for each 

view, along with violin plots showing prediction probabilities assigned to the sub-optimal target 

images (White dots signify mean, thick black line signifies 1st to 3rd quartiles).  
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Figure S2. 
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Figure S3. 
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