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ABSTRACT 

Rationale Pneumonia is a respiratory condition with complex aetiology. Host genetic variation is 

thought to contribute to individual differences in susceptibility and symptom manifestation. 

Methods We analysed pneumonia data from the UK Biobank (14,780 cases and 439,096 controls) 

and FinnGen (9,980 cases and 86,519 controls). We perform genome-wide association study 

(GWAS) meta-analysis, gene-based test, colocalisation, genetic correlation, latent causal variable 

and polygenic prediction in an independent Australian sample (N=5,595) to draw insights into the 

genetic aetiology of pneumonia risk. 

Results We identify two independent loci on chromosome 15 (lead SNPs rs2009746 and 

rs76474922) to be associated with pneumonia(p<5e-8). Gene-based tests revealed eighteen genes 

in chromosomes 15,16 and 9, including IL127, PBX3, APOBR and smoking related genes 

CHRNA3/5, associated with pneumonia. Evidence of HYKK and PBX3 involvement in pneumonia 

risk was supported by eQTL colocalisation analysis. We observed genetic correlations between 

pneumonia and cardiorespiratory, psychiatric and inflammatory related traits. Latent causal variable 

analysis suggests a strong genetic causal relationship cardiovascular health phenotypes and 

pneumonia risk. Polygenic risk scores (PRS) for pneumonia significantly predicted self-reported 

pneumonia history in an independent Australian sample, albeit with a small effect size (OR=1.11 

95%CI=[1.04-1.19], p<0.05). Sensitivity analyses suggested the associations in chromosome 15 are 

mediated by smoking history, but the association of genes in chromosome 16 and 9, and polygenic 

prediction were robust to adjustment for smoking. 

Conclusions Altogether, our results highlight common genetic variants, genes and potential 

pathways that contribute to individual differences in susceptibility to pneumonia, and advance our 

understanding of the genetic factors underlying heterogeneity in respiratory medical outcomes. 

 

Keywords: Pneumonia, genome-wide association study (GWAS), respiratory infection, host 

response genetics, polygenic risk scores (PRS), UK Biobank, FinnGen. 
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INTRODUCTION 

Pneumonia is an inflammatory condition of the lungs that usually stems from an infection. It is 

characterised by alveolar filling with fluid, microorganisms and immune response cells, preventing 

the lungs from working properly.1 Diagnosis is confirmed with chest radiography showing 

abnormalities, and other pieces of evidence such as laboratory tests identifying the causal pathogen 

and increases in antibody count2. Pneumonia is associated with increased morbidity and mortality;3 

in fact, mortality estimates range between five and 14% for hospitalised patients. Risk factors for 

pneumonia include smoking,4 alcoholism,5 heart disease, and advanced age6. Furthermore, 

mortality amongst pneumonia cases is associated with factors such as hypertension and smoking.7 

Nonetheless, individuals considered ‘at low risk’ of pneumonia can still develop the condition, which 

highlights its complexity and clinical heterogeneity. 

 

Since the emergence of the 2020 COVID-19 pandemic, there has been an increase in pneumonia 

incidence and mortality.8 Its relatively high infectivity and mortality even among low-risk groups calls 

for the investigation of genetic mechanisms underlying pathogenesis and prognosis. A recent study 

on 2633 British twins (728 complete pairs, 537 monozygotic and 191 dizygotic, 86.9% female) 

investigated the susceptibility to infection by SARS-CoV-2.9 The researchers used a symptom-

based algorithm to predict true infection in participants tested for SARS-CoV-2 and estimated 

heritability for symptoms including fever = 0.41 (95% CI 0.12-0.70); anosmia 0.47 (0.27-0.67) and 

delirium 0.49 (0.24-0.75). Overall predicted heritability of COVID-19 status was 0.50 (0.29-0.70), 

suggesting that symptomatic infection with SARS-CoV-2 is under host genetic influence to some 

extent, and reflecting inter-individual variation in the host immune response. Thus, host-specific 

genetic susceptibility is an emerging area of research interest10 as it could facilitate the systematic 

stratification of patients by genetic risk and aid in the design of more efficient treatments.11 

 

In fact, evidence from other infectious diseases points to an important role for host genetics in 

influencing the development of symptomatic infection.12  Twin studies have shown higher 

concordance rates of tuberculosis, leprosy, poliomyelitis and hepatitis B in identical versus non-

identical twins, suggesting a genetic component in susceptibility to these infectious diseases.12 

Moreover, clinical trials for drugs targeting genes with evidence of disease association are more 

likely to lead to useful therapies.13,14 Thus, identification of genes and pathways that confer increased 

susceptibility to pneumonia could reveal new therapeutic targets and inform the design of prevention 

and treatment  strategies. 

 

Here, we report a GWAS meta-analysis of pneumonia history in adults using data from two large 

datasets, the UK Biobank and FinnGen. We identify genetic variants and genes associated with 
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pneumonia risk, an essential step for understanding inter-individual differences in susceptibility. We 

characterise the genetic aetiology of pneumonia by assessing its genetic correlations and genetic 

evidence for causality against ~1,500 traits with publicly available GWAS data. Finally, we 

demonstrate the external validity of our findings by performing polygenic prediction of self-reported 

pneumonia in an independent Australian sample. 

 

METHODS  

Samples and phenotypic information 

For this study, we meta-analysed GWAS for pneumonia in two independent samples: the UK 

Biobank and FinnGen. For UK Biobank, we conducted a GWAS of pneumonia using individual-level 

genetic and phenotypic data from the UK Biobank. International Classification of Diseases (ICD10) 

codes are used to store information on participants' health conditions. Raw ICD10 data were 

extracted from the UK Biobank under Application Number 25331. In this study, we excluded 

participants of non-European ancestry to avoid potential genetic associations emerging from 

population stratification. Participants with a history of pneumonia were defined as those presenting 

any ICD10 code related to infectious pneumonia (N=14,780) (see Supplementary Table 1). For 

FinnGen, we leveraged publicly available summary statistics on the phenotype ICD10-J10 

pneumonia which comprised 9,980 cases and 86,519 controls. Information on sample phenotyping, 

genotyping and GWAS in the FinnGen sample is available elsewhere.15 

 

Pneumonia GWAS in the UK Biobank 

GWAS was performed using BOLT-LMM, which implements a linear mixed model association 

analysis and fits a genetic relationship matrix as a random effect to account for cryptic relatedness 

and population stratification. Age, sex, genotyping array and the first 20 genetic principal 

components were adjusted for in the analysis. We used a stringent quality control procedure 

corresponding to minor allele frequency (MAF ≥ 0.01) and imputation quality (INFO≥0.60). 

 

GWAS meta-analysis 

A z-score meta analysis of pneumonia summary statistics was conducted between the UK Biobank 

and Finngen samples using METAL v(2011-03-25). The final meta-analysis comprised 24,760 cases 

and 525,615 controls. Only variants passing quality control in both cohorts were included in the 

meta-analysis. Furthermore, variants with inconsistent allele frequencies in both cohorts (difference 

>0.15) were removed. The final number of variants meta-analysed and included in this study was 

7,831,927. Independent genetic signals were identified by clumping (r2<0.05, and 1Mb window) 

using CTG-VL (beta 0.1)16. A sensitivity analysis was performed by adjusting the GWAS results 

using multi-trait conditional and joint analysis (mtCOJO) to simultaneously adjust for two smoking 

phenotypes: smoking history and cigarettes per day. 
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Gene-based analysis 

Gene-based analysis was conducted on both the main and smoking adjusted GWAS using the "set-

based association analysis for human complex traits" fastBAT method17 available on CTG-VL 

(https://genoma.io). fastBAT performs a set-based enrichment analysis based on the GWAS 

summary statistics while accounting for linkage disequilibrium (LD) between SNPs. We tested the 

association between 24,443 genes and pneumonia using this method. Statistical significance was 

defined using Benjamini-Hochberg False Discovery Rate (FDR) < 5% for multiple testing correction. 

Genes identified as statistically significant were further assessed for eQTL colocalisation with 

pneumonia. 

 

Colocalisation and eQTL 

To assess the co-occurrence of signals in GWAS data and cis- expression quantitative trait loci 

(eQTL) data, we performed a summary-based colocalisation analysis. We integrated our GWAS 

data and cis-eQTL data from lung tissue and whole blood in GTEx V7. We used GWAS and eQTL 

summary statistics of SNPs within 1Mb window around each fastBAT-identified gene to estimate the 

posterior probability that GWAS signals co-occur with eQTL signals while accounting for LD 

structure. This method estimates the posterior probabilities for five different scenarios: no 

association with either trait (PP0), association with the disease only (PP1), association with gene 

expression only (PP2), associations with both traits but distinct SNPs (PP3) and associations with 

both traits in same SNPs (PP4). A threshold of PP4/(PP3+PP4) > 0.8 was considered as evidence 

for co-occurrence of GWAS signals and eQTL signals at the region of interest. Colocalisation 

analysis was performed using the COLOC package in R. 

 

Heritability and genetic correlations 

We used LD-score regression (LDSC) to estimate the SNP-based heritability (hSNP
2) for pneumonia 

on the liability scale assuming prevalence estimates of UK Biobank (3.3%) as both sample and 

population prevalence. Genetic correlations (rG) between pneumonia and 1,522 phenotypes were 

estimated using bivariate LDSC regression in CTG-VL based on a common set of HapMap3 

variants. Benjamini-Hochberg FDR at 5% was used to assess statistical significance. 

 

Genetic Causal Proportion 

To assess whether significant genetic correlations observed could be explained by an underlying 

causal relationship between traits, we used the Latent Causal Variable (LCV) method18 as 

implemented in CTG-VL. LCV uses GWAS summary statistics to estimate the genetic causal 

proportion (GCP) between two traits. The GCP’s absolute value ranges from 0 (no genetic causality) 

to 1 (full genetic causality). In our study, a high GCP value (GCP > 0.60) indicates that pneumonia 

is likely to affect the trait of interest. In contrast, a robust negative value (GCP < -0.60) provides 

evidence that the trait of interest is likely to affect pneumonia. For traits of interest (deep vein 
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thrombosis, LDL and cholesterol) with significant evidence of a causal effect on pneumonia, 

generalised summary data-based Mendelian Randomisation (GSMR) was used as a secondary 

assessment of the existence of a causal relationship. 

 

Target sample and polygenic risk scoring 

To assess the external validity of the GWAS, we performed polygenic based prediction on an 

independent target sample of 5,595 unrelated Australian Adults from the Australian Genetics of 

Depression Study (AGDS) with complete data.19 Pneumonia cases were identified through self-

reported medical history in AGDS. PRS analysis was further adjusted for smoking by: i) additionally 

including smoking history as a covariate and ii) performing PRS calculation using the summary 

statistics adjusted for smoking history and cigarettes per day. Smoking history was assessed with 

the item: “Have you smoked more than 100 cigarrettes in your lifetime?”. We employed a recently 

developed method, SBayesR, to obtain the conditional effects of the studied variants, thus avoiding 

inflation arising from using correlated SNPs due to LD. Pneumonia polygenic risk scores (PRS) were 

calculated using PLINK 1·9. in the AGDS sample. Briefly, a PRS is calculated by multiplying the 

effect size of a given risk allele (obtained from the discovery GWAS summary statistics) by the 

imputed number of risk alleles (using dosage probabilities) present in each individual. Then, 

obtaining a weighted average across all loci. To assess the association between pneumonia PRS 

and self-reported pneumonia history in AGDS, we used a logistic regression model (python 

statsmodels).  Pneumonia PRS was the predictive variable of interest, with age, sex and the first 20 

genetic ancestry principal components included as covariates. 

RESULTS 

Prevalence of pneumonia and sample demographics 

The prevalence of lifetime pneumonia in the UK Biobank was 3.3%. Sex was associated with 

pneumonia, where females were less likely to have experienced the condition (Female OR = 0.713 

95%C.I.=[0.69-0.737]). Furthermore,  participants with a history of pneumonia were on average 

older than controls (OR = 1.06 95%C.I.= [1.06-1.07]). Smoking history was also associated with an 

increased pneumonia risk (OR=1.74 95%C.I.=[1.68-1.68] see Table 1).  

 

Pneumonia GWAS 

Our GWAS meta-analysis identified two independent genome-wide significant variants on 15q15.1 

(index SNPs rs2009746 and rs76474922; p<5e-8; Figure 1a). The significant locus was located in 

a gene-rich region near IREB2, CHRNA3/5 and HYKK (Supplementary Figure 1). In addition, 

eighteen independent loci showed suggestive association with pneumonia (Table 2). The amount 

of variance on the liability of pneumonia explained by this GWAS in the UK Biobank, also called the 

SNP heritability of the trait, the whole meta-analysis was estimated at 0.03 (s.e.=0.006) using LDSC 

regression. A sensitivity analysis using mtCOJO to adjust for smoking history and cigarettes per day 

revealed the hits on chromosome 15, but not other signals, to be mediated by smoking. A near 
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genome-wide signal in chromosome 3, near the gene SUCNR1, became significant after 

conditioning on smoking phenotypes (Figure 1b) Notably, the genetic correlation between the 

unconditional and smoking conditional GWAS was high (rg=0.9371, S.E.= 0.015). 

       

Gene-based analysis and colocalisation 

We performed gene-based association testing followed by colocalisation analysis to identify genes 

likely associated with pneumonia. fastBAT analysis revealed eighteen genes, in chromosomes 9,15 

and 16, to be associated with pneumonia risk (Supplementary Table 2). Sensitivity gene-based 

tests suggested the association of genes in chromosome 15, but not those in chromosomes 9 and 

16, to be mediated by smoking (Figure 2a). Two genes, HYKK and PBX3, showed evidence of 

colocalisation in lung tissue (Table 3), but not whole blood. EIF3C showed suggestive evidence of 

colocalisation in the lung, and strong evidence of colocalisation in whole blood (Supplementary 

Table 3). While IL27, CHRNA3 and CHRNA5 have eQTL signals in the vicinity of pneumonia hits, 

our analysis suggests that the relationship between their expression and pneumonia is better 

explained by two neighboring independent causal variants (Figure 2b).  

 

LD-score genetic correlations 

Across 1,522 traits studied, 552 traits displayed a genetic overlap with pneumonia at FDR < 5%. 

Traits with the strongest evidence of a genetic correlation with pneumonia included chronic 

obstructive pulmonary disease (COPD), “Wheeze or whistling in the chest in last year”, blood clot in 

the leg and myocardial infarction (Figure 3). Lifestyle factors such as current smoking showed a 

positive genetic correlation with pneumonia, indicating that variants that increase smoking behaviour 

also increase pneumonia risk. Genetic correlation between alcohol intake and pneumonia was 

conflicting, as the variable “Alcohol usually taken with meals” and “Alcohol drinker status: Current” 

had a negative genetic correlation with pneumonia. In contrast, the variable “Alcohol drinker status: 

Previous” displayed a positive genetic correlation with pneumonia. Traits related to mood or 

psychiatric disorders (such as depression and irritability), lifestyle variables (such as cycling to work 

and educational attainment), and biomarkers (such as immune cell count and C Reactive Protein 

[CRP]), among others, also showed significant genetic correlations with pneumonia (Figure 3).   

 

Genetic Causal Proportions 

To assess whether the genetic correlations observed could be explained by a causal relationship, 

we performed a latent causal variable analysis. Forty four of the 552 traits with a significant (FDR < 

5%) genetic overlap with pneumonia showed evidence of a causal association (see methods). LCV 

provided genetic evidence on several traits causally associated with pneumonia, including deep vein 

thrombosis (DVT), LDL (decreased), cholesterol (decreased) among other traits closely related to 

cardiovascular health, such as heart failure, arrhythmias and fibrillation. Evidence for DVT, 

hypertension, LDL and the cholesterol causal associations were further assessed using GSMR. This 
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analysis showed a consistent result for DVT and hypertension, but no evidence of causality for LDL 

or cholesterol (Supplementary Figure 2). Traits highlighted as potential consequences of 

pneumonia included long-standing illness, lower forced vital capacity, anhedonia, pain, and taking 

omeprazole and co-codamol (Figure 4 and Supplementary Data 1).  

 

Polygenic prediction of pneumonia 

We performed polygenic prediction of pneumonia on the AGDS sample to assess the validity of our 

pneumonia GWAS. The prevalence of self-reported pneumonia history (~2000 cases, ~20%) in the 

AGDS sample was higher than pneumonia diagnosis in the UK Biobank (~15k cases ~3%) and 

FinnGen (~10k cases ~10%). Furthermore, the AGDS sample had a different age and sex 

composition from the UK Biobank (Table 4). We assessed whether PRS derived from the 

pneumonia GWAS were associated with pneumonia in the AGDS cohort using a multivariate logistic 

regression (see Methods) and identified a statistically significant, but small in effect, association 

between pneumonia PRS and self-reported pneumonia OR=1.06 (95%CI=[1.01,1.12]; p=0.02) per 

standard deviation increase of pneumonia PRS. 

 

Sensitivity analyses 

The genome-wide significant locus overlaps, and is in LD, with a set of well established smoking-

associated variants including rs16969968.20 To assess whether the genetic associations for 

pneumonia are mediated by smoking, we performed several sensitivity analyses. A conditional 

association test showed that our top hit (rs2009746) evidence of association was reduced after 

adjusting for three independent smoking associated variants (prs2009746=0.002; Supplementary 

Table 4). Nonetheless, an mtCOJO analysis suggested the associations between pneumonia and 

genes in chromosomes 16 and 9 to be independent from smoking (Figure1 and Figure2).  Finally, 

the association between pneumoniaPRS and self-reported pneumonia remained statistically 

significant after adjustment for smoking history both on the genetic and phenotypic level 

(Supplementary Table 5).   

 

DISCUSSION 

Our findings highlighted eighteen genes, across chromosomes 6, 15 and 16 to be associated with 

pneumonia risk. We identified genes involved in general gene regulation (PBX3, EIF3C), iron 

regulation (IREB2), nicotine signaling (CHRNA3/5) and inflammatory processes (IL27, APOBR). 

Here, we integrated eQTL data with our GWAS results and performed colocalisation analysis to 

identify which genes have more robust evidence of association with pneumonia. Our analyses 

suggested HYKK and PBX3 gene expression to colocalise with pneumonia. Notably, PBX3 encodes 

a transcription factor whose deficiency has been linked to respiratory failure in mice.22 HYKK is an 

enzyme involved in lysine catabolism and was recently linked to nicotine metabolism.23 While our 

colocalisation analysis would suggest HYKK, PBX3 and potentially EIF3C are associated with 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20103556doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20103556
http://creativecommons.org/licenses/by-nc/4.0/


8 

pneumonia through differential gene expression, other genes identified could be associated through 

mechanisms such as impairment or gain of function. 

 

Genetic variants in 15q25.1 have been extensively linked with smoking.24 This complex region has 

also been previously associated with COPD25 and lung cancer26, and contains several compelling 

genes associated with nicotine addiction (CHRNA3, CHRNB4, CHRNA5, HYKK) and iron regulation 

(IREB2). We performed a sensitivity analysis and showed that 15q25.1 was not associated with 

pneumonia after adjusting for smoking history and cigarettes per day. Nonetheless, genes in other 

regions remained associated with pneumonia after adjusting for smoking. This is consistent with the 

observed high genetic correlation between the smoking-adjusted and unadjusted summary 

statistics. Moreover, polygenic prediction was also robust to adjustment for smoking history. Future 

efforts could leverage analyses such as pairwise GWAS or genomicSEM to further deconvolute the 

effects of smoking and respiratory disease. We consider this beyond the scope of the present study. 

 

We discovered genetic correlations between pneumonia and biomarkers such as immune cell 

counts, cystatin C and sodium in urine. Consistently, Cystatin C and CRP levels have been linked 

to community-acquired pneumonia (CAP).27,28 Furthermore, lifestyle factors such as smoking, and 

lower socioeconomic status (as measured by the Townsend deprivation index) were genetically 

correlated with pneumonia. Finally, traits requiring healthy respiratory function such as cycling to 

work and maximum workload during a fitness test displayed a negative genetic correlation with 

pneumonia. 

 

A genetic correlation between two traits could reflect causality between traits, or horizontal pleiotropy 

(genes acting on both traits independently of each other). Here, we performed LCV analyses to 

identify traits causally associated with pneumonia. Our results suggest that deep vein thrombosis 

(DVT) may causally increase risk of pneumonia. This result was further confirmed using GSMR. 

Previous studies have noted an association between these two diseases.29 Most studies suggest or 

assume that pneumonia causes DVT due to immobilization, hypoxia and inflammation. Hypoxia is 

one of the strongest predictors of pneumonia29 and has been shown to increase the incidence of 

thrombosis through the downregulation of protein S, a natural anticoagulant.30  Furthermore, tissue 

factor, along with coagulation related pathways, are known to be upregulated upon inflammation.31 

Future studies should focus on further understanding of the intricate relationship between 

cardiovascular and respiratory diseases.  

 

LCV also highlighted the involvement of cholesterol levels and LDL in decreasing the risk for 

pneumonia. Nonetheless, these results did not replicate in our GSMR analyses. Cholesterol is 

essential for cellular integrity and metabolism, and its dysregulation has been linked to a variety of 

diseases, including cardiovascular and pulmonary disease.32 Previous studies show that LDL and 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 24, 2020. ; https://doi.org/10.1101/2020.06.22.20103556doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20103556
http://creativecommons.org/licenses/by-nc/4.0/


9 

HDL trafficking influences multiple cell types in the lung.33 Class A scavenger receptors on alveolar 

macrophages uptake HDL as a source of vitamin E,34 which is an antioxidant that plays an essential 

role in the clearance of oxidized lipids that would otherwise result in cytotoxic and pro-inflammatory 

responses.35 Furthermore, cholesterol plays an essential role in protecting and covering the alveoli 

which prevents several pathological conditions.36 Thus, total cholesterol might protect from 

developing pneumonia through the relationship between cholesterol and immune homeostasis in 

the lung. Nevertheless, low levels of LDL have been associated with better lung function,37 and low 

HDL levels have been proposed as a poor prognosis marker for CAP.38 Moreover, a recent 

proteomic study in patients with sepsis secondary to pneumonia were found to have an impairment 

in lipid metabolism (lower total cholesterol, LDL cholesterol, as well as major apolipoprotein of LDL, 

ApoB).39 This is consistent with our gene based tests identifying the ApoB receptor (APOBR) as a 

potential pneumonia risk mediating gene. Overall our findings and the literature suggest that a 

dyslipidemic state, rather than specific levels of LDL influence pneumonia risk.  

 

Some limitations of the present study must be acknowledged. We excluded participants of non-

European ancestry to avoid biases due to population stratification. This limits the generalisability of 

our findings to populations of non-European ancestry. Furthermore, our results suggest that the 

genetic risk for pneumonia is highly complex, and several variants remain to be identified by more 

powered studies. Further evidence of this is the low polygenic prediction in an independent sample, 

which is still far from other traits where clinical relevance is starting to be considered. We replicated 

LCV findings using GSMR. Nonetheless, we could not attempt to replicate any of the causal 

associations where pneumonia was the exposure because our pneumonia GWAS was 

underpowered to be accurately used as an exposure. Finally, experimental approaches along with 

powered analyses considering not only smoking history but also smoking exposure and quantitative 

smoking measures are needed to claim, beyond any doubt, 15q25.1 to be associated with 

pneumonia over and above smoking. 
 

In summary, pneumonia GWAS meta-analysis identified a region in 15q25.1 which has been 

previously linked to smoking, lung cancer and COPD. Gene-based tests association identified 

eighteen genes implicated in pneumonia risk in chromosomes 9, 15 and 16. Sensitivity analyses 

suggested the locus in chromosome 15 to be driven by smoking, but other associations were robust 

to adjustment for smoking related traits. eQTL colocalisation analysis in lung tissue suggested 

HYKK, PBX3 and potentially EIF3C expression to colocalise with pneumonia. We identified traits 

with a significant genetic correlation and highlighted potential causally associated traits, including 

DVT and lipid homeostasis. Finally, validation of our GWAS was obtained by polygenic prediction of 

self-reported history of pneumonia in an independent sample. Polygenic prediction was robust to 

adjustment for smoking history, suggesting some independence of our GWAS signals from smoking 
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history. Increasing statistical power could help identify additional genetic targets which will, in turn, 

enable the development of new therapeutics and patient risk stratification based on genetic risk. 
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FIGURES 

 

 
Figure 1. Pneumonia GWAS meta-analysis and gene based association tests 
a) Manhattan plot shows the results of the genome-wide association study meta-analysis. Each dot represents 
a genetic variant. The x-axis is the genomic location ordered by chromosome. The y-axis represents the 
statistical evidence of the association (-log10 transformed p-value). The solid red and dashed blue lines 
represent the genome-wide and suggestive association significance thresholds. b) Manhattan plot shows the 
results of a sensitivity analysis using mtCOJO to condition on smoking history and cigarettes per day. Note 
the hit on chromosome 15 is no longer significant after this adjustment, while other signals remain largely 
unchanged.  
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Figure 2. HYKK (CHR 15) and PBX3 (CHR9) eQTLs colocalise with pneumonia 
a) Gene based test association results. Each dot represents a gene and its position on the y-axis corresponds 
to the p-value for association with pneumonia adjusted for multiple testing. Genes in bold (black) were robust 
to adjustment for smoking phenotypes, whereas genes in non-bold (red) font were not. Genes above the red 
line are significantly associated with pneumonia, and were assessed for eQTL colocalisation. b and c show 
colocalisation plots assessing shared signals between lung eQTLs and the pneumonia meta-analysis. Each 
dot represents a genetic variant. The x axis represents the evidence for association (-log10pvalue) between 
that variant and pneumonia. The y-axis represents the evidence for association between that variant and 
expression of the gene of interest. Colocalisation happens when there is a high level of co-occurrence between 
GWAS signals and eQTL signals. Two independent signals driving each trait would show two signals along 
the x and y axis respectively. Results shown only for HYKK (a) and PBX3 (b) as these genes showed evidence 
of colocalisation.  
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Figure 3 Pneumonia is genetically correlated with respiratory, circulatory, metabolic and 
lifestyle traits 
Forest plot showing genetic correlations (rG) between pneumonia and traits of interest. Genetic 
correlations were estimated using bi-variate LD-score regression. All of the results shown are 
statistically significant. Due to space restrictions, the full results are available as Supplementary 
Data 1. Error bars represent standard errors of the genetic correlations.  
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Figure 4 Pneumonia causal association analysis 
Causal architecture plot showing the results of a phenome-wide latent causal variable analysis 
assessing the evidence for a causal association between pneumonia and other traits (see Methods). 
Each point represents a trait that showed a significant genetic correlation with pneumonia. The x-
axis represents the genetic causal proportion; high values indicate evidence for a causal association 
between pneumonia and the trait of interest. Positive values indicate that pneumonia is likely to act 
as a risk factor for the trait (i.e. it causes the other trait). In contrast, negative values would highlight 
risk factors for pneumonia. Traits are coloured based on their genetic correlation with pneumonia 
and indicate the direction of the causal association (i.e. increasing risk or decreasing risk). Trait or 
trait category labels with a colour indicating the direction of the causal association have been added. 
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TABLES 

Table 1. GWAS UK Biobank sample composition 

 Cases Controls OR (95% C.I.) 

Sample size 14780 (3.3%) 439096 (96.7%) NA 

Female N(%) 6490 (44%) 240059 (55%) 0.713 (0.69-0.737) 

Age mean(sd) 60.4 (7.2) 56.7 (8.0) 1.06 (1.06-1.07) 

Smoking history N(%) 9143 (62%) 198667 (45%) 1.74 (1.68-1.68) 

Data for participants of European ancestry included in the GWAS 
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Table 2. Pneumonia GWAS meta analysis and sensitivity results 

CHR SNP BP A1 A2 FREQ BETA SE P 
P adj ever 
smoked 

P adj ever smoked 
and cigs per day 

15 rs2009746 78754102 A G 0.67 -0.012 0.002 8.08E-10 
1.36E-10 4.42E-03 

15 rs76474922 78884553 A C 0.91 0.02 0.003 3.16E-09 
1.85E-09 4.53E-04 

3 rs11708673 151584294 A T 0.18 -0.014 0.002 6.06E-08 
5.59E-08 4.21E-08 

4 rs144242331 37127462 A G 0.02 0.036 0.007 2.21E-07 
2.23E-07 2.00E-07 

1 rs1894692 169467654 A G 0.98 -0.034 0.007 3.05E-07 
1.84E-07 4.69E-07 

20 rs3810478 62191475 T G 0.65 0.01 0.002 8.29E-07 
7.11E-07 3.20E-05 

16 rs4787458 28531287 A G 0.62 -0.01 0.002 8.95E-07 
 NA  NA 

11 rs470263 102649856 T C 0.64 -0.01 0.002 1.27E-06 
1.67E-06 1.96E-06 

2 rs9309718 3497661 A G 0.26 0.01 0.002 1.47E-06 
1.42E-06 4.35E-06 

1 rs34517439 78450517 A C 0.12 0.014 0.003 2.11E-06 
1.90E-06 3.84E-06 

17 rs62057446 32291020 T C 0.94 0.019 0.004 2.13E-06 
1.93E-06 6.49E-07 

11 rs1154905 134775317 A C 0.35 -0.009 0.002 2.44E-06 
3.23E-06 1.22E-06 

11 rs11606719 118782474 C G 0.97 0.028 0.006 2.69E-06 
3.11E-06 1.64E-05 

6 rs200243764 11484783 G GA 0.96 0.022 0.005 2.89E-06 
2.89E-06 2.40E-06 

2 rs62169465 148532638 T C 0.23 -0.01 0.002 3.19E-06 
3.31E-06 3.24E-05 

9 rs150438131 93170623 A G 0.01 0.043 0.009 3.27E-06 
3.31E-06 7.38E-07 

13 rs76713055 100226814 A G 0.98 -0.033 0.007 3.57E-06 
2.92E-06 1.48E-06 

10 rs138075843 15339390 T C 0.03 -0.026 0.006 3.89E-06 
6.20E-06 1.07E-05 

12 rs79345814 3507480 A T 0.02 0.029 0.006 4.71E-06 
6.52E-06 1.84E-05 

9 rs10819081 128629174 A C 0.38 -0.009 0.002 4.89E-06 
9.21E-06 1.01E-05 

Showing all SNPs with at least suggestive evidence of association with pneumonia (p<1e-5). *SNPs with 
genome-wide significant evidence of association (p<5e-8) are in bold. CHR- chromosome; BP- base pair position; 
SNP - variant identifier; A1 - effect allele; A2- non-effect allele; FREQ - effect allele frequency; BETA- Effect allele 
effect size; SE - effect size standard error; P - p value. 
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Table 3. Colocalization of lung eQTLs with pneumonia GWAS loci 
Gene COLOC Posterior Probability 

PP0 PP1 PP2 PP3 PP4 PP3+PP4 PP4/(PP3+PP4) 

EIF3C 0.023 0.028 0.151 0.183 0.614 0.797 0.771 
APOBR 0.433 0.525 0.015 0.018 0.009 0.027 0.341 
EIF3CL 0.411 0.499 0.038 0.046 0.005 0.052 0.102 
NPIPB6 0.419 0.508 0.031 0.038 0.004 0.042 0.099 
IL27 1.26E-07 1.53E-07 0.452 0.548 3.99E-04 0.548 0.001 
CLN3 0.428 0.519 0.023 0.027 0.002 0.030 0.073 
PSMA4 0.002 0.918 1.67E-04 0.067 0.012 0.079 0.156 
CHRNA5 1.63E-13 6.52E-11 0.002 0.998 1.26E-06 0.998 1.26E-06 
IREB2 0.002 0.900 2.12E-04 0.085 0.013 0.098 0.129 
HYKK 0.001 0.439 2.46E-04 0.098 0.461 0.560 0.824 
CHRNA3 3.53E-04 0.141 0.002 0.753 0.103 0.856 0.120 
PBX3 3.36E-04 4.12E-05 0.538 0.066 0.396 0.461 0.858 
ADAMTS7 0.002 0.788 0.001 0.206 0.004 0.209 0.017 
MAPKAP1 0.626 0.077 0.257 0.031 0.009 0.040 0.216 
PP0 - no association with gene expression and pneumonia risk; PP1- association with pneumonia 
GWAS only; PP2 - association with gene expression only; PP3 - association with gene expression and 
pneumonia GWAS, but two distinct SNP; PP4 - association with gene expression and pneumonia 
GWAS, shared SNP; Genes not shown could not be assessed due to lack of expression in the relevant 
tissue or lack of eQTL data. Genes that showed evidence of colocalization are in bold. 
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Table 4. Target sample (AGDS) composition and demographics 

 Cases Controls 

Sample size 1206 (21%) 4389 (78%) 

Female (%)* 919 (76%) 3179 (72%) 

Age (sd)* 48.6 (14.6) 42.5 (14.6) 

Light smokers* 955 (79%) 3058 (69%) 

Pneumonia PRS (sd)* 0.14 (1.02) 0.04 (0.98) 

Data for unrelated participants of European ancestry used for the replication and PRS. *P<0.05 two 
sample t-test.  
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