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Establishing how many people have already been infected by SARS-CoV-2 is an urgent priority
for controlling the COVID-19 pandemic. Patchy virological testing has hampered interpretation
of confirmed case counts, and unknown rates of asymptomatic and mild infections make it chal-
lenging to develop evidence-based public health policies. Serological tests that identify past in-
fection can be used to estimate cumulative incidence, but the relative accuracy and robustness of
various sampling strategies has been unclear. Here, we used a flexible framework that integrates
uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across
tested subpopulations to compare estimates from sampling schemes. Using the same framework
and making the assumption that serological positivity indicates immune protection, we prop-
agated these estimates and uncertainty through dynamical models to assess the uncertainty in
the epidemiological parameters needed to evaluate public health interventions. We examined
the relative accuracy of convenience samples versus structured surveys to estimate population
seroprevalence and found that sampling schemes informed by demographics and contact net-
works outperform uniform sampling. The framework can be adapted to optimize the design
of serological surveys given particular test characteristics and capacity, population demogra-
phy, sampling strategy, and modeling approach, and can be tailored to support decision-making
around introducing or removing interventions.
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Introduction

Serological testing is a critical component of the response to COVID-19 as well as to future epidemics. Assessment

of population seropositivity, a measure of the prevalence of individuals who have been infected in the past and

developed antibodies to the virus, can address gaps in knowledge of the cumulative disease incidence. This is

particularly important given inadequate viral diagnostic testing and incomplete understanding of the rates of mild

and asymptomatic infections (1). In this context, serological surveillance has the potential to provide information

about the true number of infections, allowing for robust estimates of case and infection fatality rates (2) and for

the parameterization of epidemiological models to evaluate the possible impacts of specific interventions and thus

guide public health decision-making.

The proportion of the population that has been infected by, and recovered from, the coronavirus causing

COVID-19 will be a critical measure to inform policies on a population level, including when and how social

distancing interventions can be relaxed. Individual serological testing may allow low-risk individuals to return to

work, school, or university, contingent on the immune protection afforded by a measurable antibody response (3,4).

At a population level, however, methods are urgently needed to design and interpret serological data based on test-

ing of subpopulations, including convenience samples such as blood donors (2, 5, 6) and neonatal heel sticks, to

reliably estimate population seroprevalence.

Three sources of uncertainty complicate efforts to learn population seroprevalence from subsampling. First,

tests may have imperfect sensitivity and specificity. Estimates for COVID-19 tests on the market as of May 2020

reported specificity between 95% and 100% and sensitivity between 62% and 97% (Supplementary Table S1).

Complicating this issue is the fact that sensitivity and specificity are, themselves, estimated from data (7,8), which

can lead to statistical confusion if uncertainty is not correctly propagated (9). Second, the population sampled will

likely not be a representative random sample (9), especially in the first rounds of testing, when there is urgency

to test using convenience samples and potentially limited serological testing capacity. Third, there is uncertainty

inherent to any model-based forecast which uses the empirical estimation of seroprevalence, regardless of the

quality of the test, in part because of the uncertain relationship between seropositivity and immunity (10).
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A clear evidence-based guide to aid the design of serological studies is critical to policy makers and public

health officials both for estimation of seroprevalence and for forward-looking modeling efforts, particularly if

serological positivity reflects immune protection. To address this need, we developed a framework that can be

used to design and interpret serological studies, with applicability to SARS-CoV-2. Starting with results from

a serological survey of a given size and age stratification, the framework incorporates the test’s sensitivity and

specificity and enables estimates of population seroprevalence that include uncertainty. These estimates can then

be used in models of disease spread to calculate the effective reproductive number Reff, the transmission potential

of SARS-CoV-2 under partial immunity, to forecast disease dynamics, and to assess the impact of candidate public

health and clinical interventions. Similarly, starting with a pre-specified tolerance for uncertainty in seroprevalence

estimates, the framework can be used to optimize the sample size and allocation needed. This framework can be

used in conjunction with any model, including ODE models (3, 11), agent-based simulations (12), or network

simulations (13), and can be used to estimate Reff or to simulate transmission dynamics.

Methods

Design and modeling framework

We developed a framework for the design and analysis of serosurveys in conjunction with epidemiological models

(Fig. 1), which can be used in two directions. In the forward direction, starting from serological data, one can

estimate seroprevalence. While valuable on its own, seroprevalence can also be used as the input to an appropriate

model to update forecasts or estimate the impacts of interventions. In the reverse direction, sample sizes can be cal-

culated to yield seroprevalence estimates with a desired level of uncertainty and efficient sampling strategies can be

developed based on prospective modeling tasks. The key methods include seroprevalence estimation, propagation

of uncertainty through models, and model-informed sample size calculations.

Bayesian inference of seroprevalence

To integrate uncertainty arising from test sensitivity and specificity, we used a Bayesian model to produce a poste-

rior distribution of seroprevalence that incorporates uncertainty associated with a finite sample size (Fig. 1; green
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Figure 1: Framework for estimating seroprevalence and epidemiological parameters and the associated un-
certainty, and for designing seroprevalence studies.

annotations). We denote the posterior probability that the true population seroprevalence is equal to θ, given test

outcome data X and test sensitivity and specificity characteristics, as Pr(θ | X). Because sample size and out-

comes are included in X , and because test sensitivity and specificity are included in the calculations, this posterior

distribution over θ appropriately handles uncertainty, and can be used to produce a point estimate of seroprevalence

or a posterior credible interval. The model and sampling algorithm are fully described in Supplementary Text S1.

Sampling frameworks for seropositivity estimates are likely to be non-random and constrained to subpopu-

lations. For example, convenience sampling (testing blood samples that were obtained for another purpose and

are readily available) will often be the easiest and quickest data collection method (14). Two examples of such

convenience samples are newborn heel stick dried blood spots, which contain maternal antibodies and thus reflect

maternal exposure, and serum from blood donors (2, 5, 6). As a result, another source of statistical uncertainty

comes from uneven sampling from a population.

To estimate seropositivity for all subpopulations based on a given sample (stratified, convenience, or otherwise),

we specified a Bayesian hierarchical model that included a common prior distribution on subpopulation-specific
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seropositivities θi (Supplementary Text S1). In effect, this allowed seropositivity estimates from individual sub-

populations to inform each other while still taking into account subpopulation specific testing outcomes. The joint

posterior distribution of all subpopulation prevalences was sampled using Markov chain Monte Carlo (MCMC)

methods (Supplementary Text S1). Those samples, representing posterior seroprevalence estimates for individ-

ual subpopulations, were then combined in a demographically weighted average to obtain estimates of overall

seroprevalence, a process commonly known as poststratification (8, 15).

Propagating serological uncertainty through models

In addition to estimating core epidemiological quantities (16–18) or mapping out patterns of outbreak risk (19), the

posterior distribution of seroprevalence can be used as an input to any epidemiological model. Such models include

the standard SEIR model, where the proportion seropositive may correspond to the recovered/immune compart-

ment, as well as more complex frameworks such as an age-structured SEIR model incorporating interventions like

school closures and social distancing (20,21) (Fig. 1; blue annotations). We integrated and propagated uncertainty

in the posterior estimates of seroprevalence and uncertainty in model dynamics or parameters using Monte Carlo

sampling to produce a posterior distribution of epidemic trajectories or key epidemiological parameter estimates

(Fig. 1; black annotations).

Single-population SEIR model with social distancing and serology

To integrate inferred seroprevalence with uncertainty into a single-population SEIR model, we created an ensemble

of SEIR model trajectories by repeatedly running simulations whose initial conditions were drawn from the sero-

prevalence posterior distribution. In particular, the seroprevalence posterior distribution was sampled, and each

sample θ was used to inform the fraction of the population initially placed into the “recovered” compartment of

the model. Thus, uncertainty in posterior seroprevalence was propagated through model outcomes, which were

measured as epidemic peak timing and peak height. Social distancing was modeled by decreasing the contact rate

between susceptible and infected model compartments. A full description of the model and its parameters can be

found in Supplementary Text S2 and Supplementary Table S1.
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Age-structured SEIR model with serology

To integrate inferred seroprevalence with uncertainty into an age-structured SEIR model, we considered a model

with 16-age-bins (0 − 4, 5 − 9, . . . 75 − 79). This model was parameterized using country-specific age-contact

patterns (22, 23) and COVID-19 parameter estimates (20). The model, due to (20), includes age-specific clinical

fractions and varying durations of preclinical, clinical, and subclinical infectiousness, as well as a decreased infec-

tiousness for subclinical cases. A full description of the model and its parameters can be found in Supplementary

Text S2 and Supplementary Table S1.

As in the single-population SEIR model, seroprevalence with uncertainty was integrated into the age-structured

model by drawing samples from seroprevalence posterior to specify the fraction of each subpopulation placed into

“recovered” compartments. Posterior samples were drawn from the age-stratified joint posterior distribution whose

subpopulations matched the model’s subpopulations. For each set of posterior samples, the effective reproduction

number Reff was computed from the model’s next-generation matrix. Thus, we quantified both the impact of

age-stratified seroprevalence (assumed to be protective) on Reff as well as uncertainty in Reff.

Serosurvey sample size and allocation for inference and modeling

The flexible framework described in Fig. 1 enables the calculation of sample sizes for different serological survey

designs. To calculate the number of tests required to achieve a seroprevalence estimate with a specified tolerance

for uncertainty, and to determine optimal test allocation across subpopulations in the context of studying a par-

ticular intervention, we treated the estimate uncertainty as a framework output and then sought to minimize it by

improving the allocation of samples (Fig. 1, dashed arrow).

Uniform allocation of samples to subpopulations is not always optimal. It can be improved by i) increasing

sampling in subpopulations with higher seroprevalence, and ii) increasing sampling in subpopulations with higher

relative influence on the quantity to be estimated. This approach, which we term model and demographics informed

(MDI), allocates samples to subpopulations in proportion to how much sampling them would decrease the posterior

variance of estimates, i.e, ni ∝ xi
√
θ∗i (1− θ∗i ), where θ∗i = 1−sp+θi(se+sp−1) is the probability of a positive
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test in subpopulation i given test sensitivity (se), test specificity (sp), and subpopulation seroprevalence θi, and xi

is the the relative importance of subpopulation i to the quantity to be estimated.

The sample allocation recommended by MDI varies depending on the information available and the quantity

of interest. When the key quantity is overall seroprevalence, xi is the fraction of the population in subpopulation

i. When the key quantity is total infections Reff, or another quantity derived from compartmental models with

subpopulations, xi is the ith entry of the principal eigenvector of the model’s next generation matrix, including

modeled interventions. If subpopulation prevalence estimates θi are unknown, sample allocation based solely on

xi is recommended. These methods are derived in Supplementary Text S3.

Data Sources

Age distribution of U.S. blood donors was drawn from a study of Atlanta donors (24). Age distribution of U.S.

mothers were drawn from the 2016 CDC Vital Statistics Report, using Massachusetts as a reference state (25).

Daily age-structured contact data were drawn from Prem. et al (23). All data were represented using 5-year age

bins, i.e. (0−4, 5−9,...,74−79). For datasets with bins wider than 5 years, counts were distributed evenly into the

five-year bins. Serological test characteristics were collected from the websites of manufacturers and summarized

in Supplementary Table S1. No attempt was made to test or validate manufacturer claims. Demographic data for

the U.S. and India (analyzed in the manuscript) as well as other countries (provided in open-source code (26)) were

downloaded from the 2019 United Nations World Populations Prospects report (27).

Results

Test sensitivity/specificity, sampling bias, and true seroprevalence influence the accuracy
and robustness of estimates.

We simulated serological data from a single population with seroprevalence rates ranging from 1% to 50% using

the reported sensitivity (93%) and specificity (97.5%) of a test approved for sale in the EU (Supplementary Ta-

ble S1), and with the number of samples ranging from 100 to 5000. We constructed Bayesian posterior estimates

of seroprevalence, finding that, when seroprevalence is 10% or lower, around 1000 samples are necessary to es-
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timate seroprevalence to within two percentage points (Fig. 2). Tests with other characteristics required around

1000 tests (93.8% sensitivity, 95.6% specificity; Supplementary Fig. S1A) and 750 tests (97.2% sensitivity and

100% specificity; Supplementary Fig. S1B) to achieve the same uncertainty levels, relative to the minimum of

around 650 tests for a theoretical test with perfect sensitivity and specificity (Supplementary Fig. S1C). In general

estimates were most uncertain when true seropositivity was near 50%, the number of samples was low, and/or test

sensitivity/specificity were low (Fig. 2 and Supplementary Fig. S1).
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Figure 2: Uncertainty of population seroprevalence estimates as a function of number of samples and true
population rate. Uncertainty, represented by the width of 90% credible intervals, is presented as± seroprevalence
percentage points in (A) a heatmap and (B) for selected seroprevalence values, based on a serological test with 93%
sensitivity and 97.5% specificity (Supplementary Fig. S1 depicts results for other sensitivity and specificity values).
5000 samples are sufficient to estimate any seroprevalence to within a worst-case tolerance of ±1.3 percentage
points, even with the imperfect test studied. Each point or pixel is averaged over 250 stochastic draws from the
specified seroprevalence with the indicated sensitivity and specificity.

Next, we tested the ability of the Bayesian hierarchical model to infer both population and subpopulation

seroprevalence. We simulated serological data from subpopulations for which samples were allocated and with

heterogeneous seroprevalence levels (Supplementary Table S2). Test outcomes were randomly generated condi-

tioning on the false positive and negative properties of the test being modeled (Supplementary Table S1). Test

allocations across subpopulations were specified in proportion to age demographics of blood donations, deliver-
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ing mothers, uniformly across subpopulations, or according to an MDI allocation focused on minimized posterior

uncertainty in Reff.

Credible intervals of the resulting overall seroprevalence estimates were influenced by the age demographics

sampled, with the most uncertainty in the newborn dried blood spots sample set, due to the narrow age range for

the mothers (Fig. 3). For such sampling strategies, which draw from only a subset of the population, our approach

assumes that seroprevalence in each subpopulation does not dramatically vary and thus infers that seroprevalence

in the unsampled bins is similar to that in the sampled bins but with increased uncertainty. Uncertainty was also

influenced by the overall seroprevalence, such that the width of the 90% credible interval increased with higher

seroprevalence for a given sample size. While test sensitivity and specificity also impacted uncertainty, central

estimates of overall seropositivity were robust for sampling strategies that spanned the entire population. Note that

the MDI sample allocation shown in Fig. 3 was optimized to estimate Reff, and thus, while it performs well, it is

slightly outperformed by uniform sampling when used to estimate overall seroprevalence.

Seroprevalence estimates inform uncertainty in epidemic peak, timing, and reproductive
number.

Figure 4 illustrates how estimates of the height and timing of peak infections varied under two serological sam-

pling scenarios and two hypothetical social distancing policies for a basic SEIR framework parameterized using

seroprevalence data. Uncertainty in seroprevalence estimates propagated through SEIR model outputs in stages:

larger sample sizes at a given seroprevalence resulted in a smaller credible interval for the seroprevalence estimate,

which improved the precision of estimates of both the height and timing of the epidemic peak. Test characteristics

also impacted model estimates, with more specific and sensitive tests leading to more precise estimates (Supple-

mentary Fig. S3). Even estimations from a perfect test carried uncertainty corresponding to the size of the sample

set (Supplementary Fig. S3).

Figure 5 illustrates how the Bayesian hierarchical model extrapolates seroprevalence in sampled subpopula-

tions, based on convenience samples from particular age groups or age-stratified serological surveys, to the overall

population, with uncertainty propagated from these estimates to model-inferred epidemiological parameters of in-
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Figure 3: Uncertainty of overall seroprevalence estimates from convenience and formal sampling strate-
gies. Uncertainty, represented by the width of 90% credible intervals, is presented as ± seroprevalence percentage
points, based on a serological test with 93% sensitivity and 97.5% specificity (Supplementary Fig. S2 depicts re-
sults for other sensitivity and specificity values). (A) Curves show the decrease in average CI widths for 15%
seroprevalence, illustrating the advantages of using uniform and MDI samples over convenience samples. (B)
Heatmaps show average CI widths for various total sample counts and overall seroprevalence. Convenience sam-
ples derived from newborn blood spots or U.S. blood donors improve with additional sampling but retain baseline
uncertainty due to demographics not covered by the convenience sample. For the estimation of overall seropreva-
lence, uniform sampling is marginally superior to this example of the model and demographic informed (MDI)
sampling strategy, which was designed to optimize estimation of Reff. Each point or pixel is averaged over 250
stochastic draws from the specified seroprevalence with the indicated sensitivity and specificity.

terest, such as Reff. Estimates from 1000 neonatal heel sticks or blood donations achieved more uncertain, but

still reasonable, estimates of overall seroprevalence and Reff as compared to uniform or demographically informed

sample sets (Fig. 5). Here, convenience samples produced higher confidence estimates in the heavily sampled

subpopulations, but high uncertainty estimates in unsampled populations through our Bayesian modeling frame-

work. In all scenarios, our framework propagated uncertainty appropriately from serological inputs to estimates

of overall seroprevalence (Fig 5I) or Reff (Fig 5J). Improved test sensitivity and specificity correspondingly im-

proved estimation and reduced the number of samples required (i) to achieve the same credible interval for a given

seroprevalence and (ii) for estimates of Reff (Supplementary Figs. S5 and S7).

If the subpopulations in the convenience sample have systematically different seroprevalence rates from the

general population, increasing the sample size may bias estimates (Supplementary Figs. S4 and S7). This can be

avoided using data from other sources or by updating the prior distributions in the Bayesian model with known or
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Figure 4: Uncertainty in serological data produces uncertainty in estimates of epidemic peak height and
timing. Serological test outcomes for n = 100 tests (A; red) and n = 1000 tests (B; blue) produce (C,D)
posterior seroprevalence estimates with quantified uncertainty. (E,F) Samples from the seroprevalence posterior
produce a distribution of epidemic curves for scenarios of 25% and 50% social distancing (see Methods), leading
to uncertainty in (G) epidemic peak and (H) timing which is mitigated in the n = 1000 sample scenario. Boxplot
whiskers span 1.5×IQR, boxes span central quartile, lines indicate medians, and outliers were suppressed.

hypothesized relationships between seroprevalence of the sampled and unsampled populations.

Strategic sample allocation improves estimates.

We used the MDI strategy to design a study that optimizes estimation of Reff and then tested the performance of

the sample allocations against those resulting from blood donation and neonatal heel stick convenience sampling,

as well as uniform sampling. As designed, MDI produced higher confidence posterior estimates (Fig. 5J, Sup-

plementary Fig. S7). Importantly, because the relative importance of subpopulations in a model vary based on

the hypothetical interventions being modeled (e.g., the re-opening of workplaces would place higher importance

on the serological status of working-age adults), MDI sample allocation recommendations should be derived for

multiple hypothetical interventions and then averaged to design a study from which the largest variety of high

confidence results can be derived. To illustrate how such recommendations would work in practice, we computed

MDI recommendations to optimize three scenarios for the contact patterns and demography of the U.S. and India,
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Figure 5: Convenience and formal samples provide serological and epidemiological parameter estimates. (A-
D) For four sampling strategies, n = 1000 tests were allocated to age groups with negative tests (grey) and positive
tests (colors) as shown, for a test with 93% sensitivity and 97.5% specificity. The MDI strategy shown was designed
to optimize estimation of Reff. (E-H) Age-group seroprevalence estimates θi are shown as boxplots (boxes 90%
CIs, whiskers 95% CIs); dots indicate the true values from which data were sampled. Note the decrease uncertainty
for boxes with higher sampling rates. (I) Age-group seroprevalences were weighted by population demographics
to produce overall seroprevalence estimates, shown as probability densities with 90% credible intervals shaded
and highlighted with dashed lines. (J) Age-group seroprevalences were used to estimate Reff under status quo ante
contact patterns, shown as probability densities with 90% credible intervals shaded and highlighted with dashed
lines. Dashed lines indicate true values from which the data were sampled. Each distribution depicts inference
outcomes from a single set of stochastically sampled data; no averaging is done. Note that although uniform
sample allocation produces a more confident estimate of overall seroprevalence, MDI produces a more confident
estimate of Reff since it allocates more samples to age groups most relevant to model dynamics.

deriving a balanced sampling recommendation (Fig. 6).

Discussion

There is a critical need for serological surveillance of SARS-CoV-2 to estimate cumulative incidence. Here, we

presented a formal framework for doing so to aid in the design and interpretation of serological studies. We

considered that sampling may be done in multiple ways, including efforts to approximate seroprevalence using
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Figure 6: MDI sample allocations vary by demographics and modeling needs. Bar charts depict recommended
sample allocation for three objectives, reducing posterior uncertainty for (A,E) estimates of overall seroprevalence,
(B,F) predictions from an age-structured model with status quo ante contact patterns, (C,G) predictions from an
age-structured model with modified contacts representing, relative to pre-crisis levels: a 20% increase in home
contact rates, closed schools, a 25% decrease in work contacts and a 50% decrease of other contacts (22, 23), and
(D,H) averaging the other three MDI recommendations to balance competing objectives. Data for both the U.S.
(blue; A-D) and India (orange; E-H) illustrate the impact of demography and contact structure on strategic sample
allocation. These sample allocation strategies assume no prior knowledge of subpopulation seroprevalences {θi}.

convenience samples, as well as more complex and resource-intensive structured sampling schemes, and that these

efforts may use one of any number of serological tests with distinct test characteristics. We incorporated into this

framework an approach to propagating the estimates and associated uncertainty through mathematical models of

disease transmission (focusing on scenarios where seroprevalence maps to immunity) to provide decision-makers

with tools to evaluate the potential impact of interventions and thus guide policy development and implementation.

Our results suggest approaches to serological surveillance that can be adapted as needed based on pre-existing

knowledge of disease prevalence and trajectory, availability of convenience samples, and the extent of resources

that can be put towards structured survey design and implementation.

In the absence of baseline estimates of cumulative incidence, an initial serosurvey can provide a preliminary

estimate (Fig. 2). Our framework updates the ‘rule of 3’ approach (28) by incorporating uncertainty in test char-

acteristics and can further address uncertainty from biased sampling schemes (see Supplementary Text S4). As a

result, convenience samples, such as newborn heel stick dried blood spots or samples from blood donors, can be

used to estimate population seroprevalence. However, it is important to note that in the absence of reliable assess-

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.15.20067066doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20067066
http://creativecommons.org/licenses/by-nc-nd/4.0/


ment of correlations in seroprevalence across age groups, extrapolations from these convenience samples may be

misleading as sample size increases (Supplementary Figs. S4 and S6). Uniform or model and demographic in-

formed samples, while more challenging logistically to implement, give the most reliable estimates. The results of

a one-time study could be used to update the priors of our Bayesian hierarchical model and improve the inferences

from convenience samples. In this context, we note that our framework naturally allows the integration of samples

from multiple test kits and protocols, provided that their sensitivities and specificities can be estimated (7,8), which

will become useful as serological assays improve in their specifications.

The results from serological surveys will be invaluable in projecting epidemic trajectories and understanding

the impact of interventions. We have shown how the estimates from these serological surveys can be propagated

into transmission models, incorporating model uncertainty as well. Conversely, to aid in rigorous assessment of

particular interventions that meet accuracy and precision specifications, this framework can be used to determine

the needed number and distribution of population samples via model and demographic informed sampling. Exten-

sions could conceivably address other study planning questions, including sampling frequency (29).

There are a number of limitations to this approach that reflect uncertainties in the underlying assumptions

of serological responses and the changes in mobility and interactions due to public health efforts (30). Serology

reflects past infection, and the delay between infection and detectable immune response means that serological tests

reflect a historical cumulative incidence (the date of sampling minus the delay between infection and detectable

response). The possibility of heterogeneous immune responses to infection and unknown dynamics and duration

of immune response mean that interpretation of serological survey results may not accurately capture cumulative

incidence. For COVID-19, we do not yet understand the serological correlates of protection from infection, and as

such projecting seroprevalence into models that assume seropositivity indicates immunity to reinfection may be an

overestimate; models would need to be updated to include partial protection or return to susceptibility.

Use of model and demographic-informed sampling schemes are valuable for projections that evaluate inter-

ventions but are dependent on accurate parameterization. While in our examples we used POLYMOD and other

contact matrices, these represent the status quo ante, and should be updated to the extent possible using other data,

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.15.20067066doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20067066
http://creativecommons.org/licenses/by-nc-nd/4.0/


such as those obtainable from surveys (22,23) and mobility data from online platforms and mobile phones (31–33).

Moreover, the framework could be extended to geographic heterogeneity as well as longitudinal sampling, if, for

example, one wanted to compare whether the estimated quantities of interest (e.g., seroprevalence, Reff) differ

across locations or time (11, 19, 34).

Overall, the framework here can be adapted to communities of varying size and resources seeking to monitor

and respond to the SARS-CoV-2 pandemic. Further, while the analyses and discussion focused on addressing

urgent needs, this is a generalizable framework that with appropriate modifications can be applicable to other

infectious disease epidemics.
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S1 Bayesian inference of seroprevalence

S1.1 Inference of seroprevalance in a sample using an imperfect test

If a serological test had perfect sensitivity and specificity, the probability of observing n+ seropositive results from

n tests, given a true population seroprevalence θ, is given by the binomial distribution:

Pr(n+ | θ) =

(
n

n+

)
θn+(1− θ)n−n+ , θ ∈ [0, 1]. (S1)

However, imperfect specificity and sensitivity require that we modify this formula. For convenience, in the

remainder of this Supplementary Text, we will use:

u ≡ Pr(test is positive | seronegative) = 1− specificity

v ≡ Pr(test is negative | seropositive) = 1− sensitivity

S1
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Using this notation, the probability that a single test returns a positive result, given u, v, and the true seroprevalence

θ, is

Pr(test is positive | θ, u, v) = θ(1− v) + (1− θ)u . (S2)

Substituting this per-sample probability into Eq. (S1) yields

Pr(n+ | θ, u, v) =

(
n

n+

)
[u+ θ(1− u− v)]n+ [1− u− θ(1− u− v)]n−n+ . (S3)

Finally, using Bayes’ Rule, we can write the posterior distribution over seropositivity θ, given the data, the test’s

parameters (35), and an uninformative (uniform) prior on θ, yielding

Pr(θ | n+, u, v) =
[u+ θ(1− u− v)]n+ [1− u− θ(1− u− v)]n−n+[

B(1−v,1+n+,1+n−n+)−B(u,1+n+,1+n−n+)
1−u−v

] , (S4)

where B is an incomplete beta function without normalization. In practice, to sample from this distribution,

one can use an accept-reject algorithm with, for example, a uniform proposal distribution and consider only the

numerator of Eq. (S4). Alternatively, one can generate samples from a truncated Beta distribution using accept-

reject sampling or an inverse cumulative distribution function method and these samples can be transformed to

represent draws from Eq. (S4).

S1.2 Bayesian estimation of seroprevalence across subpopulations.

For a test with sensitivity 1−v and specificity 1−u, and given ni+ seropositive results from ni tests in subpopula-

tion i—set equal to zero for unsampled subpopulations—the posterior distribution over the vector of subpopulation

seropositivities θ = {θi} given all results n+ = {ni+} is given by

Pr(θ | n+, u, v) =

∫∫
θ̄,γ

Pr
(
θ, θ̄, γ | n+, u, v

)
dθ̄ dγ (S5)

where we have included a hierarchy of priors. Specifically, the prior for each subpopulation seroprevalence was

θi ∼ Beta(θ̄γ, (1 − θ̄)γ), which has expectation θ̄ and variance θ̄(1 − θ̄)/(γ + 1). The hyperprior for the overall

mean θ̄ was uniform on the interval (0,1), allowing it to be dictated by the observed data. The hyperprior for the

variance parameter was γ ∼ Gamma(ν, scale = γ0/ν), which has expected value E[γ] = γ0 and V ar[γ] = γ2
0/ν.

S2
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S1.3 Sampling from the Bayesian hierarchical model for subpopulation seroprevalences
using MCMC

We sample from the joint posterior distribution inside the integral in Eq. (S5) using a Markov chain Monte Carlo

(MCMC) algorithm, with univariate Metropolis-Hastings updates. We initialize the age-specific seroprevelance

parameters at θi = (n+ + 1)/(ni + 2), set θ̄ equal to the sample mean of the {θi} and set γ = γ0. For each

simulation, the MCMC algorithm was run for a total of 50, 100 iterations. The first 100 iterations were discarded

and every 50th sample was saved to obtain 1, 000 samples from the joint posterior distribution. Code is open

source and freely available (26). Diagnostic plots were produced and suggested these settings returned sufficient

estimates of the posterior distribution.

S2 Including protective seropositivity into models

S2.1 Canonical SEIR model with social distancing and seropositivity

Let S, E, I , and R be the number of susceptible, exposed, infected, and recovered people in a population of size

N , S + E + I +R = N . We model dynamics by

Ṡ = −βρSI

Ė = βρSI − αE

İ = αE − γI

Ṙ = γI (S6)

where β, α, and γ represent the rates of infection, symptom onset, and recovery, respectively, as in a standard SEIR

model. To model social distancing we include the contact parameter ρ ∈ [0, 1] which modulates the fraction of

social contacts between S and I populations that remain. Thus, ρ = 1 represents no social distancing while while

ρ = 0.5 would represent a 50% reduction in contacts. In the simulations of this paper, only ρ = 0.5, 0.75 were

considered as examples of dynamics.

To parameterize this model using seroprevalence, we made the modeling assumption that seropositive individ-

uals are immune. Noting that this is only an assumption which at present requires in-depth research, we therefore
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placed seropositive individuals into the recovered group. In other words, for a seropositive fraction θ, with 10

individuals in the E and I compartments each, initial conditions would be,

(S0, E0, I0, R0) = (N − θN − 20, 10, 10, θN).

S2.2 Canonical SEIR parameters and simulation details

Parameter values used in this study can be found in Supplementary Table S2. In prose, the model used transmission

rate β = 1.75, exposure-to-infected rate α = 0.2, and recovery rate γ = 0.5, with no births or deaths, in a

finite population of size N = 10, 000. Social distancing was implemented as a coefficient ρ = {0.5, 0.75},

corresponding to 50% and 25% social distancing, multiplying the contact rate between infected and susceptible

populations. Integration was performed for 150 days with a timestep of 0.1 days. Initial conditions for (S,E, I,R)

were (N − 20 − θN, 10, 10, θN), to simulate a fraction θ of recovered individuals, assumed to be immune. For

each sampled value of θ, peak infection height and timing were extracted from forward-integrated timeseries.

S2.3 Age-structured (POLYMOD) model with seropositivity

A model with 16-age-bins (0 − 4, 5 − 9, . . . 75 − 79) was parameterized using country-specific age-contact pat-

terns (22, 23) and COVID-19 parameter estimates (20). The model includes age-specific clinical fractions and

varying durations of preclinical, clinical, and subclinical infectiousness, as well as a decreased infectiousness for

subclinical cases (20).

Davies et al. define a next-generation matrix,

Nij = uiCij [yj(µP + µC) + (1− yj)fµS ] , (S7)

where ui is the susceptibility of age group i; Cij is the number of age-j individuals contacted by an age-i indi-

vidual per day; yi is the probability that an infection is clinical for an age-i individual; µP , µC , and µS are mean

durations of preclinical, clinical, and subclinical infectiousness, respectively; and f is the relative infectiousness

of subclinical cases (20). Values for all parameters are reported in Supplementary Table S2.

Protective seropositivity can be included in the model by multiplying Nij as defined above by 1− θi, where θi
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is the seropositivity rate of age-group i. With this included term, we can modify Eq. (S7) as

Ñ(θ) = (I −Dθ)N = (I −Dθ)DuCDay+b , (S8)

where Dx represents a diagonal matrix with entries Dii = xi, and the constants are defined a = µP + µC − fµS

and b = µS .

The effective reproductive number is then the spectral radius ρ (i.e. the largest eigenvalue λ) of the next

generation matrix:

Reff(θ) = ρ
[
Ñ(θ)

]
. (S9)

As written, Eq. (S9) represents a model component shown in Fig. 1 (blue annotations) as it maps parameters θ to

a point estimate of Reff. As with the canonical SEIR model, uncertainty in the model parameters themselves can

also be incorporated into overall uncertainty in Reff via Monte Carlo.

S2.4 Age-structured parameters and simulation details

Parameter values used in this study can be found in Supplementary Table S2, and were generally drawn from the

work of Davies et al, and the sources therein. Published estimated contact matrices were used for India and the U.S.

in the manuscript, with additional countries’ contact matrices shown in the accompanying open-source code (26).

S3 Model and demographic informed (MDI) sampling

The calculations that follow rely on facts from optimization theory. We briefly review these here before applying

these results in what follows.

Let n = (n1, ..., nK). Suppose we want to minimize a function of the form

f(n) =
∑
i

ci
ni
, (S10)

subject to the constraint that
∑
i ni = n. Using the method of Lagrange multipliers, it can be shown that f(n) is

minimized when ni ∝
√
ci. We apply this result below with various expressions for ci to determine the optimal

allocation of n tests across subpopulations in order to minimize the uncertainty of quantities of interest.
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S3.1 Minimizing posterior uncertainty for seroprevalence

Given age-specific seroprevalence estimates θ, the estimate for overall seroprevalence is defined as θpop =
∑
i diθi,

where di is the proportion of the population in group i. The uncertainty of this estimator depends on the uncer-

tainties of the age-specific seroprevalences, which inherently depend on the number of tests ni allotted to each

subpopulation. Although the posterior uncertainties of the subpopulation seroprevalences are not available in

closed form, we can nevertheless approximate them using the uncertainties in the corresponding maximum like-

lihood estimators. Here we consider the maximum likelihood estimators based on a separate binomial model for

each subpopulation, i.e models of the form Eq. (S3) where θ is replaced by θi. Note that this model assumes

independence among the subpopulation seroprevalences.

The maximum likelihood estimate of θi, given ni,+ positive tests out of ni tests administered, is

θ̂i =
ni,+/ni − u
1− u− v

,

but this is only valid when both the numerator and denominator are positive, corresponding to a value of θ̂i in the

interval (0, 1). If the above estimator is computed and found to be negative, which happens when the fraction of

tests that are positive is below the false positive rate, then the maximum likelihood lies at the endpoint, θ̂i = 0.

Similarly, if the estimator is found to be greater than one, θ̂i = 1. These estimators are undefined if no tests are

allocated to group i, i.e. when ni = 0.

Using the maximum likelihood estimators as proxies for the subpopulation posterior distributions, we can

approximate the posterior variance of θpop as

Var[θpop] ≈
∑
i

d2
iVar[θ̂i] (S11)

=
∑
i

d2
i

[u+ θi(1− u− v)][1− u− θi(1− u− v)]

ni(1− u− v)2
,

where θi is the true seroprevalence of group i. This variance equation has the form of Eq. (S10) and thus the

optimal allocation of samples is given by

ni ∝ di
√

[u+ θi(1− u− v)][1− u− θi(1− u− v)], (S12)
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where multiplicative constants have been absorbed into the proportion. In the absence of knowledge about the

true subpopulation seroprevalences θ, we recommend simply allocating samples with respect to the demographic

information: ni ∝ di.

S3.2 Minimizing posterior uncertainty for modeling

When the primary quantity of interest is the output from a model, improved test allocation strategies can be devel-

oped by leveraging the model structure. For example, suppose the goal is accurate estimation of the total number

of infected individuals at some future time point t. To avoid confusion with the identity matrix I or the subpop-

ulation index i, let Let ht = (ht1, h
t
2, ...) denote the vector containing the number of infected individuals within

each subpopulation and let the total number of infected individuals be Ht =
∑
i h

t
i. Using the next generation

matrix defined in Eq. (S7) and modification as in Eq. (S8), the next generation matrix updates the vector of infected

individuals per subpopulation as

ht+1 = (I −Dθ)Nh
t

≈ (I −Dθ)kλx (S13)

where x represents the eigenvector of N corresponding to the largest eigenvalue λ, and k is a scalar k = xTht.

1 There are two helpful interpretations of this equation. First, the vector x is the principal “direction” of the next

generation matrix, and repeated iterations of the dynamics in a large population will result in infected fractions

that are proportional to x. In the above, we approximate the effect of N on h as kλx, an approximation which is

better when λ is well separated from the second eigenvalue λ2. Measurements of λ/|λ2| for models considered in

this manuscript ranged from 2 to 4.

A second interpretation of this result appeals to the notion of the next generation matrix N as a network

in which the nodes are infected subpopulations and the directed links Nij explain the effects of an infection at

node j on future infections at node i. In this network dynamical system, by calculating x we have computed the
1The next generation matrix N is non-negative and satisfies the conditions of the Perron-Frobenius theorem which means that it has a

largest eigenvalue λ—for a next generation matrix, R0 = λ—which is greater than or equal to all other eigenvalues, with a corresponding
eigenvector x of non-negative components. This means that repeated applications of N to any initial vector that is not orthogonal to x will
become increasingly parallel to x at a rate of λ/|λ2| per iteration, where λ2 is the second largest eigenvalue of N . This is the basis of the
so-called Power Method which repeatedly applies the matrix to find the largest eigenvalue and its corresponding eigenvector.
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eigenvector centralities of the network’s nodes (36), which are a measure of the importance of each subpopulation

in the network.

With these preliminary calculations in mind, we turn to the estimation of Ht. Because Ht =
∑
i h

t
i, and

because the values hti are all functions of a random variable θ,Ht is also a random variable. Our goal is to minimize

its variance by strategically allocating finite samples in order to minimize the important posterior variances among

the elements of θ. In plain language, some of the subpopulations are more important in shaping future disease

dynamics than others, so MDI will preferentially allocate more samples to those subpopulations in a principled

manner, which we now derive.

As in Eq. (S11), we approximate the posterior variance of θ by the posterior variance of the corresponding

maximum likelihood estimator θ̂. This results in the following approximation of the variance of the total number

infected:

Var[Ht] ≈ Var

[∑
i

(1− θ̂i)α1λ1xi

]

=
∑
i

(α1λ1xi)
2 [u+ θi(1− u− v)][1− u− θi(1− u− v)]

ni(1− u− v)2
.

where xi is the ith element of the principal eigenvector x. The first expression is obtained by using the approxi-

mation in Eq. (S13). The resulting variance expression has the form of Eq. (S10) and thus, ignoring constants, the

optimal allocation of samples is given by

ni ∝ xi
√

[u+ θi(1− u− v)][1− u− θi(1− u− v)]. (S14)

In the absence of knowledge about the true subpopulation seroprevalences θ, we recommend simply allocating

samples with respect to the entries of the principal eigenvector: ni ∝ xi.

S4 Impact of sensitivity and specificity on the “Rule of 3”

Suppose we have a perfect test (u = v = 0) and when we perform n tests, zero are positive. The maximum

likelihood estimate of the seroprevalence would be 0. (28) proposed a simple upper 95% confidence bound on true

seroprevalence equal to 3/n.
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The derivation of this rule is motivated by the following question: “What is the maximum seroprevalence under

which the probability of observing zero positives in n tests is less than or equal to 5%?”. Briefly, the probability of

a negative test is θ and thus the probability of observing n negative tests is (1− θ)n. Setting this equal to 0.05 and

solving for θ, we find θ = 1− .051/n ≈ 3/n, where the approximation is based on the power series representation

of the exponential function.

Now, let’s consider what happens if sensitivity and specificity are not equal to one and again zero positive tests

are observed. The probability of a negative test is then 1− u− θ(1− u− v). An upper 95% confidence bound on

the true seroprevalence is then

θ =
1− u− .051/n

1− u− v
≈ 3/n− u

1− u− v
, (S15)

where the approximation is derived in a similar manner. Notice if u > 3/n, this upper bound is less than zero.

This occurs when there is inconsistency between the specified false positive rate u and the observed data; namely,

this occurs when n is large enough that we would have expected at least one false positive.

Even if seroprevalence is zero, we expect to observe some number positive tests simply due to imperfect test

specificity. Suppose we observe n+ positive tests from a sample of n. An approximate upper 95% confidence

bound on the true seroprevalence: (n+

n − u
)

+ 1.64
√

n+(n−n+)
n3

1− u− v
(S16)
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Supplementary Figures

1% 10% 20% 30% 40% 50%
seroprevalence (%)

100
250
500
750

1000
2000
3000
4000
5000

sa
m

pl
es

 (n
)

100 1000 2000 3000 4000 5000
samples (n)

±0%

±2%

±4%

±6%

±8%

av
er

ag
e 

90
%

 C
I w

id
th seroprevalence

30%
20%
10%
1%

±0%

±2%

±4%

±6%

±8%

av
er

ag
e 

90
%

 C
I w

id
th

D

A

1% 10% 20% 30% 40% 50%
seroprevalence (%)

100
250
500
750

1000
2000
3000
4000
5000

sa
m

pl
es

 (n
)

100 1000 2000 3000 4000 5000
samples (n)

±0%

±2%

±4%

±6%

±8%
av

er
ag

e 
90

%
 C

I w
id

th seroprevalence
30%
20%
10%
1%

±0%

±2%

±4%

±6%

±8%

av
er

ag
e 

90
%

 C
I w

id
th

E

B

1% 10% 20% 30% 40% 50%
seroprevalence (%)

100
250
500
750

1000
2000
3000
4000
5000

sa
m

pl
es

 (n
)

100 1000 2000 3000 4000 5000
samples (n)

±0%

±2%

±4%

±6%

±8%

av
er

ag
e 

90
%

 C
I w

id
th seroprevalence

30%
20%
10%
1%

±0%

±2%

±4%

±6%

±8%

av
er

ag
e 

90
%

 C
I w

id
th

F

C

Figure S1: Uncertainty of population seroprevalence estimates as a function of number of samples and true
population rate. Uncertainty, represented by the width of 90% credible intervals, is presented as± seroprevalence
percentage points in heatmaps and for selected seroprevalence values, based on a serological tests with (A,D)
93.8% sensitivity and 95.6% specificity, matching the claims of a Cellex test, (B,E) 97.2% sensitivity and 100%
specificity, matching the claims of an Aytu IgG test, (C,F) 100% sensitivity and specificity, representing an ideal
test, complementing the results for a test with 93% sensitivity and 97.5% specificity shown in the main text (Fig. 2).
See Supplementary Table S1 for details on serological test kits.
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Figure S2: Uncertainty of overall seroprevalence estimates from convenience and formal sampling strate-
gies. Uncertainty, represented by the width of 90% credible intervals, is presented as ± seroprevalence percentage
points, based on a serological tests with (A,B) 93.8% sensitivity and 95.6% specificity, matching the claims of a
Cellex test, (C,D) 97.2% sensitivity and 100% specificity, matching the claims of an Aytu IgG test, (E,F) 100%
sensitivity and specificity, representing an ideal test. complementing the results for a test with 93% sensitivity and
97.5% specificity shown in the main text (Fig. 3). (A,C,E) Curves show the decrease in average CI widths for 15%
seroprevalence, illustrating the advantages of using uniform and MDI samples over convenience samples. (B,D,F)
Heatmaps show average CI widths for various total sample counts and overall seroprevalence. Convenience sam-
ples derived from newborn blood spots or U.S. blood donors improve with additional sampling but retain baseline
uncertainty due to demographics not covered by the convenience sample. For the estimation of overall seropreva-
lence, uniform sampling is marginally superior to this example of the model and demographic informed (MDI)
sampling strategy, which was designed to optimize estimation of Reff. Each point or pixel is averaged over 250
stochastic draws from the specified seroprevalence with the indicated sensitivity and specificity.
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Figure S3: Uncertainty in serological data produces uncertainty in estimates of epidemic peak height and
timing, even when the test has perfect sensitivity and specificity. Serological test outcomes for (A) n = 100
tests and (B) n = 1000 tests produce are shown as bar graphs for four tests with sensitivity and specificity values
as indicated. Serological test samples were not generated stochastically but instead according to expectation to
highlight how sensitivity and specificity affect inference. Posterior seroprevalence estimates for (C) n = 100 and
(D) n = 1000 scenarios reveal that Bayesian estimate place posteriors over the correct values (15%) but with
uncertainty that depends on n (compare C to D) and on test characteristics (compare peak heights of yellow and
purple to blue and orange). Samples from the seroprevalence posterior produce a distribution of epidemic curves
for scenarios of 25% and 50% social distancing (see Methods), leading to uncertainty in (E) height of epidemic
peak and (F) timing of epidemic peak. Uncertainty is mitigated but not eliminated in the n = 1000 scenario, just
as uncertainty is mitigated but not eliminated using a perfect serological test. Boxplots reflect 100 samples from
SEIR dynamimcs; whiskers span 1.5×IQR, boxes span central quartile, lines indicate medians, and outliers not
shown. See Methods for SEIR simulation details and parameters.
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Overall seroprevalence estimation

Figure S4: Credible interval coverage for overall seroprevalence estimates using four sampling strategies
and four serological test kits. Credible interval coverage, defined as the fraction of posterior credible intervals
that covered the true parameter used to generate the data, are shown for four sampling strategies (columns, colors)
and four test kits (rows), with sensitivity and specificity values as indicated; see legends. Each point represents the
fraction of credible intervals which covered the planted value for the indicated overall seroprevalence value (see
annotations on plots) at the specified number of serological samples n, out of a total of 250 independent trials.
The estimated coverage from a perfectly calibrated posterior will have coverage fractions within 0.9± 0.37 (grey
bands) 95% of the time. Some seroprevalence values are plotted in black simply to guide the eye. The MDI
strategy shown was designed to optimize estimation of Reff.
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Figure S5: Average credible interval width for overall seroprevalence estimates using four sampling strate-
gies and four serological test kits. Credible intervals were calculated for data generated according to four sam-
pling strategies (columns, colors) and four test kits (rows), with sensitivity and specificity values as indicated; see
legends. Each point represents the average width of the intervals for the indicated overall seroprevalence value
(see annotations on plots) at the specified number of serological samples n, out of a total of 250 independent trials.
Some seroprevalence values are plotted in black simply to guide the eye. The MDI strategy shown was designed
to optimize estimation of Reff. Sampling strategies that resulted in posterior credible intervals with inaccurate
coverage (see Supplementary Fig. S4) are crossed out.
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Reff estimation

Figure S6: Credible interval coverage for Reff estimates using four sampling strategies and four serological
test kits. Credible interval coverage, defined as the fraction of posterior credible intervals that covered the true
parameter used to generate the data, are shown for four sampling strategies (columns, colors) and four test kits
(rows), with sensitivity and specificity values as indicated; see legends. Each point represents the fraction of
credible intervals which covered the planted value for the indicated overall seroprevalence value (see annotations
on plots) at the specified number of serological samples n, out of a total of 250 independent trials. The estimated
coverage from a perfectly calibrated posterior will have coverage fractions within 0.9± 0.37 (grey bands) 95% of
the time. Some seroprevalence values are plotted in black simply to guide the eye. The MDI strategy shown was
designed to optimize estimation of Reff.
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Figure S7: Average credible interval width forReff estimates using four sampling strategies and four serolog-
ical test kits. Credible intervals were calculated for data generated according to four sampling strategies (columns,
colors) and four test kits (rows), with sensitivity and specificity values as indicated; see legends. Each point repre-
sents the average width of the intervals for the indicated overall seroprevalence value (see annotations on plots) at
the specified number of serological samples n, out of a total of 250 independent trials. Some seroprevalence values
are plotted in black simply to guide the eye. The MDI strategy shown was designed to optimize estimation of Reff.
Sampling strategies that resulted in posterior credible intervals with inaccurate coverage (see Supplementary Fig.
S6) are crossed out.
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Supplementary Tables

Manufacturer Type of Test Sens. Spec. Sales Approval
∗Sensing Self IgG 93 97.5 CE
Sensing Self IgM 82 96 CE
†Cellex Inc. IgM & IgG 93.8 95.6 FDA, CE
†Aytu Biosciences/Orient Gene Biotech IgG 97.2 100 CE, China
Aytu Biosciences/Orient Gene Biotech IgM 87.9 100 CE, China
ScanWell Health/INNOVITA IgM & IgG 87.3 100 China
SD Biosensor IgM & IgG 82 97 Korea
Liming Bio IgG 82 100 CE, IVD
Liming Bio IgM 62 100 CE, IVD
Shenzhen Yhlo Biotech Company IgG 90 95 CE, IVD
Shenzhen Yhlo Biotech Company IgM 95 95 CE, IVD
∗ included only in main text modeling, calculations, and figures.
† included in Supplementary modeling, calculations, and figures.
1 http://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-based-tests-for-COVID-19.html

Table S1: Serological tests used in this study. Sensitivity and specificity values were taken from manufacturer’s
claims as of April 9, 2020, compiled by the Johns Hopkins Center for Health Security1.

S17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.15.20067066doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20067066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter Meaning Value Reference
α transition rate E → I 0.2
β infectiousness 1.75
γ recovery rate 0.5
ρ social distancing effects 0.5, 0.75
θ seropositive fraction various see Methods
ui Susceptibility of age group i 0.078 (20)

yi
Probability that an infection is clinical

for an age-i individual

[0.056, 0.056, 0.056, 0.064,
0.100, 0.162, 0.240, 0.322,
0.398, 0.455, 0.486, 0.535,

0.723, 0.740 , 0.740 , 0.740]

(20)
(see caption)

Cij
Number of age-j individuals contacted by

an age-i individual per day
various

(22)
(see caption)

µp Mean duration of preclinical infectiousness 2.4 days (20, 37)
µc Mean duration of clinical infectiousness 3.2 days (20, 38)
µs Mean duration of subclinical infectiousness 7 days (20)
f Relative infectiousness of subclinical cases 50% (20)

θi Seropositivity of age-i subpopulation

θ̃ + [-0.014, -0.012, -0.004, 0.002,
0.008, 0.015, 0.018, 0.020,
0.006, 0.005, 0.003, -0.003,

-0.009, -0.010, -0.012, -0.012],
with various θ̃, representing
the average seroprevalence

Table S2: Parameter values used in models. This table is divided into two sections. The top section corresponds
to the parameters of the single-population SEIR model. The bottom section corresponds to the parameters used in
the age-structured SEIR model. Contact matrices Cij used in this manuscript were, in particular, those correspond-
ing to the United States of America and India. Values for yi, the probability that an infection is clinical for an age-i
individual, were generated by using three control points for young, middle and old age, then interpolating between
them with a cosine-smoothing function, as described in (20). Equations for models can be found in Supplementary
Text. Test kit sensitivity and specificity values are provided in Supplementary Table S1.

S18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2020.04.15.20067066doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.15.20067066
http://creativecommons.org/licenses/by-nc-nd/4.0/

