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Abstract 

Due to the importance of automatic and early autism screening, in this paper, a cry-based screening 

approach for children with Autism Spectrum Disorder (ASD) is introduced. During the study, we 

realized that the ASD specific features are not necessarily observable among all children with ASD 

and among all instances of each child. Therefore, we proposed a new classification approach to be 

able to find such features and their corresponding instances. We tested the proposed approach and 

found two features that can be used to distinguish groups of children with ASD from Typically 

Developing (TD) children. In other words, these features are present in subsets of children with 

ASD not all of them. The approach has been tested on a dataset including 14 boys and 7 girls with 

ASD and 14 TD boys and 7 TD girls,  between 18 to 53 months old. The sensitivity, specificity, 

and precision of the proposed approach for boys were 85.71%, 100%, and 92.85%, respectively. 

These measures were 71.42%, 100%, and 85.71% for girls, respectively.  

Keywords Screening, Autism spectrum disorder, Crying, Clustering, Classification, Feature 

Selection   
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Introduction 

Children with Autism Spectrum Disorder (ASD) are defined by their abnormal or impaired 

development in social interaction and communication, as well as restricted and repetitive 

behaviors, interests, or activities [1]. The rapid growth of ASD in the past 20 years has inspired 

many research efforts toward the diagnosis and rehabilitation of ASD [2-5]. In the field of 

diagnosis, there are several well-established manual methods to diagnose children over 18 months 

[6]. However, the practical average age of diagnosis is over 3 years due to the lack of knowledge 

about ASD and the lack of widespread expertness for autism diagnosis [7, 8]. Considering the fact 

that early diagnosis is crucial for effective treatments [7, 9], there are two main questions: 1) can 

autism be diagnosed earlier than 18 months and 2) is it possible to employ intelligent methods for 

screening of autism to eliminate the widespread need for experts?  

Fortunately, there are studies showing that the age of screening can become lower than 18 months. 

For example, Thabtah and Peebles [10] reviewed several questionnaire-based approaches that may 

be able to screen ASD above 6 months of age. However, those approaches, like Autism Diagnostic 

Interview-Revised (ADI-R) [11] and Autism Diagnostic Observation Schedule (ADOS) [12] 

which have been clinically proven to be effective and adequate, are time-consuming instruments 

[10] and need trained practitioners to use them. To reduce the dependency on the human expertise 

needed in using such questionnaires [8], several studies proposed machine learning methods to 

classify children with ASD [13, 14] using questionnaires. Their goal is to make the process 

automatic and/or find an optimum subset of questions or features. For instance, Abbas et al. [15] 

proposed a multi-modular assessment system combined of three modules,  a parent questionnaire, 

a clinician questionnaire, and a video assessment module. Although the authors used machine 
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learning to automate and improve classification process, however, it still needs human 

involvement to answer questions or assess videos.  

As mentioned above, there are studies tried to screen children with ASD under 18 months, 

however, they still need expertise and/or need manual processing. On the other hand, Emerson et. 

al showed that fMRI [16] can be used to predict the diagnosis of autism at 2 years of age of high-

risk 6-month-old infants. Denisova and Zhao [17] used movement data from rs-fMRI from 1-2 

month-old infants to predict future atypical developmental trajectories as biological features. 

Furthermore, Bosl, Tager-Flusberg, and Nelson [18] suggested that useful biomarkers can be 

extracted from EEG signals for early detection of autism. Blood-based markers [19, 20] and 

prenatal immune markers [21] were also proposed to diagnose ASD that can be used right after 

birth. Although these approaches suggest new directions toward early ASD diagnosis, however, 

these are costly, need expertness, and need dedicated equipment, which would limit their usage. 

Furthermore, these are still at the early stages of research and need further approval. Finally, 

approaches which involve methods such as fMRI or EEG, are hard to be used on children, 

especially on children with autism who may have trouble following instructions appropriately [22], 

have atypical behaviors [23], or have excessive head movements [24, 25].  

There are studies that used vocalization-based analysis to screen children with autism. For 

instance, Brisson et al. [26] showed voice features' differences between children with ASD and 

Typically Developing (TD) children. Several studies, like [27], used speech-related features for 

the screening of children older than 2. To reach the goal of early ASD screening, vocalizations of 

infants under 2 years of age have been investigated [28-30]. Santos et al. [28] used vocalization, 

such as babbling, to screen ASD children at the age of 18 months. They collected data from 23 

and 20 ASD and TD children, respectively. They reported high accuracy of around 97% which can 
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be due to the fact that they used k-fold cross-validation without considering subject-wise hold out 

to have unseen subjects in the test fold [31]. Oller et al. [29] proposed another vocalization-based 

classification method in which they included age and excluded crying. They applied the method 

on 106 TD children and 77 children with ASD between 16 to 48 months and reached 86% 

accuracy. Pokorny et al. [30] extracted eGeMAPS parameter set [32], which includes 88 acoustic 

parameters, on 10 months old children. This set consists of statistics calculated for 25 frequency-

related, energy-related, and spectral low-level descriptors. They reached 75% accuracy on a 

population of 10 TD children and 10 children with ASD.  

Esposito, Hiroi, and Scattoni [33] showed that cry is a promising biomarker for the screening of 

ASD children. Sheinkopf et al. [34] and Orlandi et al. [35] have shown that there are differences 

in the cry of children with ASD compared to TD children. To the best of our knowledge, our own 

group’s preliminary study [36] was the only research that used cry voices for the screening of 

children with ASD. We used a dataset of 5 children with ASD and 4 TD children older than two 

years of age. The accuracy of the proposed method is 96.17% using k-fold cross validation without 

considering subject-wise hold out, which is a shortcoming of this study. In other words, it has been 

overfitted to the available data and may fail to correctly classify new samples. So, a thorough 

examination using an unseen test set on cry features is necessary to evaluate the results. It should 

be noted that the data from our previous study [36] could not be used in the study presented in this 

paper due to the differences in data collection procedures. 

In all the above studies, it was assumed that the specific sound features, distinguishing children 

with ASD from TD children, are common among all the ASD cases. However, this may not be 

true for all the features. For instance, tiptoe walking, which is one of the repetitive behaviors of 

children with ASD, appears in approximately 25% of these children [37]. Consequently, in this 
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paper, we propose a new cry-based approach for screening children with ASD. Our screening 

approach makes use of the assumption that all discriminative characteristics of autism may not 

appear in all ASD children. This assumption is in contrast with the assumption in the ordinary 

instance-based machine learning methods, which assumes that all instances of a class include all 

discriminative features needed for classification. In our proposed method, first discriminable 

instances of the cry, which exist in subsets of children with ASD, are found. Then it uses these 

instances to extract and select features to distinguish between these ASD instances from TD 

instances. It should be mentioned that the final selected features, in this study, are common among 

our set of children with ASD between 18 to 53 months of age. These selected features support 

experiential knowledge of our experts stating that the variations in the cry of children with ASD 

are more than TD children. This approach is different from the other approaches that either used a 

dataset of children with a specific age [28, 30] or used age information for classification [29]. The 

proposed approach has been implemented and tested on 62 participants. The results show the 

effectiveness of the approach considering accuracy, sensitivity, and specificity of screening.   

Method 

Since this study was performed on human participants, first, it was approved by the ethics 

committee at Shahid Beheshti University of Medical Sciences and Health Services. All the parents 

of the participants were informed about the study and signed an agreement form to be included in 

the study.  
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Participants 

There were 62 participants between 18 and 53 months that consisted of two groups, i.e. 31 ASD 

and 31 TD with 24 boys and 7 girls in each group. Since we expected to have different vocalization 

characteristics for boys and girls, the training set was assembled of only boys, including10 TD, 

and 10 ASD.  In other words, we wanted to eliminate the gender effects on the feature extraction 

and model training. Unfortunately, due to the lower number of girls with ASD in the real world, 

not enough data for girls with ASD could be collected. Nonetheless, the model was also tested on 

the girls to see how it would generalize even on girls. 

The inclusion criteria of the ASD participants were: a) had been just diagnosed with ASD based 

on DSM-5 with no other neurodevelopmental, mental, and intellectual disorder, b) there were no 

other known medical, genetic conditions, or environmental factors, and c) had not taken any 

treatment or medication, or had taken treatment less than a month. There were only two girls who 

did not fall into these criteria since they had been diagnosed for more than a year. The participants’ 

average language development assessed based on [38-41] was between 6 to 12 months at the time 

of participation. The autism diagnosis procedure started with the Gilliam Autism Rating Scale-

Second Edition (GARS-2) questionnaire [42] which was answered by the parents. Then the parents 

were interviewed, based on DSM-5, while the participants were evaluated and observed by two 

Ph.D. degree child clinical psychologists. In addition, the diagnosis of ASD was separately 

confirmed by at least a child psychiatrist in a different setting.  TD children were selected from 

those in an age range similar to the ASD participants from volunteer families at homes and health 

centers. They had no evidence and official diagnosis of neurological or psychological disorder at 

the time of recording their voices. The children with ASD were older than 20 months with the 

mean, standard deviation, and range of 35.6, 8.8, and 33 months respectively. The TD children 
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were younger than 51 months with the mean, standard deviation, and range of about 30.8, 10.3, 

and 33 months respectively. It should be mentioned that the diagnosis of the children under 3 years 

was mainly based on experts’ evaluation, not the GARS score. Furthermore, all TD participants 

under 3 years of age were followed up when they passed 3, to make sure the initial TD assignment 

was correct or still valid.. To do so, we used a set of expert-selected questions based on [43] to 

assess them through interviews with parents. 

Tables 1 and 2 show the details of the training and the test sets’ participants, respectively. In each 

table, the number of voice instances from each participant and the total duration of all its instances 

in seconds are shown in columns 3 and 4, respectively. The recording device category, i.e. a high-

quality recorder (HQR) and typical cell phones (CP), is given in the device category column. The 

next two columns include GARS-2 scores and the language developmental milestone of the 

participants with ASD at the time of recording. In six cases, there were no GRAS scores available 

at the time of study (No Data (ND)). The column labeled as “Place” shows the location of the 

recording which can be homes (H), autism centers (C1, C2, and C3), and health centers (C4, C5, 

and C6). There were a total number of 359 samples for all children. 53.44 % of the samples were 

from ASD participants and 46.56 % were from TD participants.  

Table 1.The training set participants’ data 

 ID Age 

(month) 

# of 

instances 

Total 

duration

(sec) 

Device GARS 

score 

Language 

milestone 

(month) 

Place Reason of cry 

A
S

D
 

ASD1 20 9 7.8 CP 104 0-6 C1 Annoyed/Uncomfortable 

ASD2 24 3 1.5 HQR 83 0-6 C2 Unwilling 

ASD3 26 5 2.1 HQR 120 0-6 C1 Annoyed/Uncomfortable 

ASD4 28 13 9.1 HQR 121 0-6 C2 Annoyed/Uncomfortable 

ASD5 29 14 26 HQR 89 6-12 C2 Unwilling/Complaining 

ASD6 31 4 2.4 HQR 87 0-6 C2 Unwilling/Complaining 

ASD7 36 11 11 HQR 87 6-12 C2 Unwilling/Complaining 

ASD8 43 2 0.7 CP ND ND C2 Unwilling 

ASD9 45 3 2.6 CP 72 6-12 C2 Complaining 
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ASD10 45 4 3.4 CP ND ND H Sleepy 
T

D
  

TD1 21 11 14 HQR NA NA H Complaining 

TD2 24 12 12 HQR NA NA C4 Scared/Unwilling 

TD3 26 2 2.3 HQR NA NA C5 Unwilling 

TD4 28 6 13 CP NA NA C5 Scared/Unwilling 

TD5 36 3 2.6 CP NA NA H Unwilling/Complaining 

TD6 38 3 1.5 HQR NA NA C6 Complaining 

TD7 41 3 2.4 HQR NA NA H Unwilling 

TD8 43 3 2.2 CP NA NA H Sleepy 

TD9 44 2 1.2 CP NA NA H Complaining 

TD10 51 2 1.7 CP NA NA H Complaining 

 

Table 2.The test set information 

  

ID Age 

(month) 

# of 

instances 

Total 

duration

(S) 

Device GARS 

score 

Language 

milestone 

(months) 

Place Reason of cry 

A
S

D
 

B
o

y
s 

ASD11 28 12 7.2 HQR 102 0-6 C2 Unwilling/ Uncomfortable 

ASD12 30 18 17.1 HQR ND ND C3 Mother Separation 

ASD13 30 3 2.9 CP ND ND H Unwilling/Sleepy 

ASD14 31 5 2.3 HQR 73 0-6 C2/ H Mother Separation/Hungriness 

ASD15 33 3 2.5 HQR 91 0-6 C2 Unwilling 

ASD16 33 2 2.5 HQR 104 0-6 C1 Annoyed/Uncomfortable 

ASD17 34 1 0.6 HQR 91 0-6 C2 Unwilling/Complaining 

ASD18 35 2 1.7 HQR 81 ND C1 Annoyed/Uncomfortable 

ASD19 37 1 0.6 HQR 94 12-18 C2 Unwilling/Complaining 

ASD20 40 19 14 HQR 91 0-6 C1 Annoyed 

ASD21 45 1 0.3 HQR 81 6-12 C2 Unwilling/Complaining 

ASD22 48 2 1.6 HQR 100 6-12 C2 Annoyed/Complaining 

ASD23 52 6 3.1 HQR 113 12-18 C2 Unwilling/Complaining 

ASD24 53 7 5.2 HQR 78 6-12 C1 Annoyed/Uncomfortable 

G
ir

ls
  

ASD25 25 12 14 HQR 85 0-6 C2 Unwilling/Complaining 

ASD26 26 5 2 CP 102 0-6 C1 Scared 

ASD27 31 3 1.7 HQR 94 0-6 C2 Unwilling/Complaining 

ASD28 32 2 1.3 HQR 100 0-6 C2 Unwilling/Complaining 

ASD29 41 8 3 HQR 102 0-6 C2 Unwilling/Complaining 

ASD30 45 2 1.2 CP ND ND H Thirsty 

ASD31 49 7 12 CP ND ND H Unwilling/Complaining 

T
D

 

B
o

y
s 

TD11 18 4 2 HQR NA NA C4 Scared 

TD12 18 7 5.1 HQR NA NA C4 Scared/Unwilling 

TD13 19 7 4.2 HQR NA NA C5 Unwilling 

TD14 20 9 8 HQR NA NA C5 Unwilling/Complaining 

TD15 21 4 1.2 HQR NA NA H Complaining 

TD16 24 3 2.7 HQR NA NA C5 Scared /Unwilling 

TD17 24 2 1.5 HQR NA NA C5 Scared/Unwilling 

TD18 24 6 5.1 HQR NA NA C4 Unwilling/Complaining 

TD19 24 4 2.4 HQR NA NA C5 Unwilling/Complaining 

TD20 24 5 4.2 HQR NA NA C5 Unwilling/Complaining 

TD21 29 11 10 HQR NA NA H Unwilling/Complaining 

TD22 30 4 2 HQR NA NA C5 Scared/Unwilling 
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TD23 30 4 2 CP NA NA H Unwilling 

TD24 43 12 11 HQR NA NA H Complaining 
G

ir
ls

 
TD25 24 5 6 HQR NA NA C4 Unwilling/Complaining 

TD26 25 2 4.4 HQR NA NA C5 Scared 

TD27 29 5 5 HQR NA NA C5 Scared 

TD28 33 2 2.1 CP NA NA H Complaining 

TD29 45 16 11 HQR NA NA H Unwilling/Complaining 

TD30 50 6 7 HQR NA NA H Complaining 

TD31 51 2 0.7 CP NA NA H Unwilling 

 Two groups of 10 TD and 10 ASD children were selected for training the classifiers such that two 

groups were as balanced as possible with respect to the age and the recording device. Thus, each 

child in the TD group had a corresponding child in the ASD group with about the same age. As a 

result of this balancing of our data, we obtained training participants with the age between 20 and 

51 months. The mean ages in the training set were 32.7 and 35.2 months for ASD and TD 

participants, respectively. The standard deviations are 9 and 9.9 months with the range of 25 and 

30 months for ASD and TD participants, respectively. 

Although this approach was trained and tested on children older than 18 months, we tested the 

approach on 57 participants between 10 to 18 months to investigate how it works on children under 

18 months. These 57 participants consisted of 28 boys and 29 girls with the mean of 15.2 for both 

and standard deviations of 2.8 and 2.9 respectively. All these participants were evaluated afterward 

at the age of 3 or more by the same follow-up procedure using our expert-selected questionnaire.. 

At the time of initial voice collection, 55 of these participants had no evident or diagnosed disorder. 

Two of them were referred to our experts due to the positive results of screening by our method. 

The diagnosis or concerns for the two mentioned participants as well as the participants with any 

evidence of having abnormality in the developmental milestones during the follow-up procedure 

are summarized in Table 3. The summary of disorders is given in the last column of Table 3 is 

based on the parental interviews and our experts’ evaluation. Unfortunately, Child5, Child6, and 

Child7’s parents did not cooperate to get experts’ evaluation.  
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Table 3. The participants with an abnormality in the follow-up 

ID Gender Age (in months) Disorder 

at recording time at following-up time 

Child1 M 11 11 Developmental delaya, 

signs of genetic diseases 

Child2 M 17 17 UNDDb 

Child3 M 12 40 ASDb 

Child4 M 12 36 Sensory processing 

disorderc, several ADHD 

symptomsb 

Child5 M 18 40 Language delay 

Child6 M 15 46 Developmental delay 

symptoms 

Child7 M 12 43 Developmental delay 

symptoms 

UNDD, Unspecified Neurodevelopmental Disorder. 

a Clinical observation by our expert based on [43]. 

b Clinical observation by our expert based on [1] 

c Clinical observation by our expert based on [44]. 

Data collection and preprocessing 

As mentioned earlier, the data was recorded using high-quality devices and typical smartphones. 

The high-quality devices were a UX560 Sony voice recorder and a Sony UX512F voice recorder. 

To use typical smartphones, a voice-recording and archiving application was developed and used 

on various types of smartphones. All voices, through the application or the high-quality recorders, 

were recorded in wav format, 16 bits, and with the sampling rate of 44.1 kHz. The reason for using 

various devices was to avoid biasing the approach to a specific device. Similarly, the place of 

recording was not restricted to one place to make the results applicable to all places.  

The parents and trained voice collectors were asked to record the voices in a quiet environment. 

Furthermore, they were asked to keep the recorders or smartphones about 25 cm from the 
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participants’ mouth. Despite the proposed two recommendations, there were recorded voices 

without following the recommendations and did not have the required quality. Thus, those 

recordings were eliminated from the study. Also, all the cry voices that were due to pain had been 

removed from the study since they were similar between the TD and ASD groups.  

After data collection, there was a preprocessing phase in which only pure cry parts of the 

recordings, with no other types of vocalization, were selected. To explain more, the parts of cry 

voices which were accompanying screaming, saying words/other vocalizations, or were occurred 

with closed/non-empty mouth were eliminated. All segmentations and eliminations were done 

manually using Sound Forge Pro 11.0. From the selected cries, the beginning and the end, which 

contain voice rises and fades, were removed to keep only the steady parts of the cries. It prevents 

having too much variation in the voice which can lead to unsuitable statistics. Also, the 

uvular/guttural parts of the cries were removed. The reason is that we believe these parts distort 

the feature values of the steady parts of a voice. Each remaining continuous segment of the cries 

was considered and used as a sample (instance) in this study. Finally, since the basic voice features 

were extracted from 20 milliseconds frames, to generate statistical features of the basic features, 

the minimum length of the cry segments were set to 15 frames, i.e. 300 milliseconds. Thus, any 

cry samples below 300 milliseconds were eliminated from the study. In this study, the final 

prepared samples were between 320 milliseconds to 3 seconds. 

Feature extraction  

Previous studies working on voice features for discriminating ASD children use different sets of 

features. These methods share several common features like F0, i.e. the fundamental frequency of 

a voice, and Mel-Frequency Cepstral Coefficients (MFCC), i.e. coefficients which represent the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2019.12.28.19016022doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.28.19016022
http://creativecommons.org/licenses/by-nc-nd/4.0/


short-term power spectrum of a sound [45]. F0 has been one of the most common features used 

[26, 27, 34]. However, since age is an important factor affecting F0 [46], this feature is useful 

when participants have a similar age. On the other hand, MFCC coefficients and several related 

statistical values have been reported to be useful features in several studies [30, 36, 47]. 

Considering useful features reported in the previous studies and the specifications of the current 

study, several features were selected to be used in this work that are explained in the following.  

In this study, each instance was divided into 20 milliseconds frames, to extract basic voice features. 

We used several features proposed by Motlagh, Moradi, and Pouretemad [36] and by Belalcázar-

Bolaños et al. [48]. The features used by Motlagh, Moradi, and Pouretemad [36] include certain 

statistics like mean and covariance of the frame-wise basic features, like MFCC coefficients, over 

a voice segment. They also used the mean and variance of frame-wise temporal derivative [49, 50] 

of the basic features. The frame-wise temporal derivative means the difference between two 

consecutive frames, which in a sense is the rate of change of a feature value in one frame step. We 

modified the spectral flatness features by including the range of 125-250 Hz beside the 250-500 

Hz range. This range was added to cover a wider frequency range than the normal children 

frequency range, which showed to be necessary in the process of feature extraction and selection. 

Each range is divided into 4 octaves and the spectral flatness is computed for those octaves.  

We removed all uninformative and noisy features of the set which are explained in the following. 

The mean of frame-wise temporal derivative of the basic features is removed because it is not a 

meaningful feature and is equal to taking the difference between the value of the last and the first 

frames. There are means of the features related to the energy, such as the audio power, total 

loudness, SONE, and the first coefficient of MFCC, that were removed to make the classifier 
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independent of the loudness/power in children’s voices. Zero crossing rate (ZCR) is omitted too, 

due to its dependency on the noise in the environment.  

The second set of features used in this study is from Belalcázar-Bolaños et al. [48] because it has 

phonation features, like jitter and shimmer. Jitter and shimmer, which have been reported to be 

discriminative for ASD, are linked to perceptions of breathiness, hoarseness, and roughness [51]. 

Other features used from Belalcázar-Bolaños et al. [48] include glottal features related to vocal 

quality and the closing velocity of the vocal folds [28]. The mean of logarithmic energy feature is 

omitted for the same reason as other energy-related features. A summary of the features added to 

or removed from the sets by [36] and [48], is presented in Table 4. 

Table 4. The features and statistics which were added or removed to the two feature sets. 

 Feature removing/adding  Reason 

Second 

set 

logarithmic 

energy 

Mean statistic is removed Classification dependency on 

loudness/power of cry 

 

 

 

 

 

 

 

First set 

Audio power 

Total loudness 

SONE 

First MFCC 

coefficient 

ZCR The basic feature is 

removed 

The feature’s dependency on 

environmental noise 

All basic 

features 

applicable 

mean of frame-wise 

temporal derivative of the 

basic features is removed 

No meaning for the feature  

MFCC  Coefficients of 14-24 are 

added 

Having higher-order coefficients 

for vocal cords information as 

well as vocal tract 

Spectral flatness A range of 125-250 Hz is 

added 

Covering the low-frequency 

range of human voice  
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The proposed subset instance classifier 

To explain the proposed classifier, let’s assume that there is a target group of participants that we 

want to distinguish from the rest of the participants, called the rest. Furthermore, each participant 

in the target group may have several instances that may be used to distinguish the target group 

from the rest. Fig 1a shows a situation in which all instances of all participants of the target group 

are differentiable using common classifiers that we call Whole Set Instance (WSI) classifiers. In 

this figure, the circles represent our target group and the triangles represent the rest. The color 

coding is used to differentiate between the instances of each participant among each group. In 

contrast to the situation in Fig 1a, in Fig 1b the target group cannot be easily distinguished from 

the rest. In such a situation, there are instances of two participants in the target group, i.e. the red 

and brown circles that are not easily separable from the instances in the rest (Case 1). Furthermore, 

there is a participant with no instances, i.e. the orange circles, easily separable from the rest (Case 

2).  An example of Case 1 is tiptoe walking in children with ASD, which is common in about 25% 

of these children [37] who do it most of the time. An example of Case 2 is children with ASD who 

do not tiptoe walk. In other words, there are children with ASD who cannot be distinguished from 

TD children using the tiptoe walking behavior.   

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 22, 2020. ; https://doi.org/10.1101/2019.12.28.19016022doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.28.19016022
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig 1. Two different hypothetical types of two-dimensional data of the target group and the 

rest. The instances shown by the warm-colored circles and the cool-colored triangles are for the 

target group and the rest, respectively. All instances belonging to a participant have the same color.  

In (a), all the target group participants’ instances are distinguishable using a classifier. In (b), only 

some instances of the target group participants are separable from the other instances by a 

classifier.  

Applying any WSI classifier may fail for the data type shown in Fig 1b. Consequently, we 

proposed SubSet Instance (SSI) classifier that first finds differentiable instances and then trains a 

classifier on these instances. As an example, the proposed SSI classifier first tries to find the circles 

on the left of the line in Fig 1b, using a clustering method. Then, it uses these circles, as exclusive 

instances having a specific feature common in a subset of the target group, to train a classifier 

separating a subset of the target group.  

The steps of common WSI classifiers are shown in Fig 2a. The steps of our proposed SSI classifier 

are shown in Fig 2b. In the SSI classification approach, after the feature extraction and clustering 

steps, for each cluster, a classifier is trained to separate its exclusive instances from the instances 

of the rest of the participants. In the testing phase, any participant with only one instance classified 
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in the target group (positive instance), is classified as a target group’s participant. The pseudo-

code for the proposed approach is given in Algorithms 1 and 2. 

 

Fig 2. An overall view of WSI and SSI methods. (a) In WSI method, after feature extraction, a 

classifier is trained on all instances and majority pooling (MP) is usually used in the testing phase. 

In this study Best-chance threshold Pooling (BP), which is a threshold-based pooling with the 

threshold giving the best accuracy on the test set, is also used to give the best chance to WSI 

classifier. (b) In the proposed SSI classifier, after feature extraction, clustering is applied to find 

and select exclusive instances containing instances of the target group participants only. Then 

classifiers are trained using exclusive instances, and a participant is classified in the target group 

in the testing phase if any classifier detects a positive instance for it. 

 Algorithm 1. Training SSI classifiers  

𝑇: set of all target group instances 

𝑅: set of all the rest instances  

𝐹: set of all Classifiers 
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𝜌: threshold for the number of samples in a cluster 

𝑠: the number of minimum samples needed in a cluster to be able to train a classifier for it 

𝐶𝑗: The 𝑗𝑡ℎ cluster  

𝑛: number of clusters 

𝐹 =  ∅ 

1: While ∃𝑗 |𝐶𝑗| >  𝜌   ; while there is a cluster bigger than a threshold or n =1  

2:  𝑛 = 𝑛 + 1 ; increase the number of clusters 

3:  Cluster the 𝑇 + 𝑅 into 𝑛 clusters 𝐶𝑗 , 𝑗 = 1, … , 𝑛   

4:   𝐸𝐶 = {𝐶𝑗  ⊂   𝑇}  ; the set of clusters of only exclusive instances, i.e. exclusive clusters  

5:  If  𝐸𝐶 ≠  ∅ ; check if there is any exclusive cluster 

6:   For all 𝐶𝑗  in 𝐸𝐶 with |𝐶𝑗|  > 𝑠 

7:    Train a classifier using positive labels c ∈ 𝐶𝑗 and negative labels 𝑟 ∈ R 

8:    Add the classifier to 𝐹 

9:   𝑇 = 𝑇 − ∑ 𝐶𝑗

𝐶𝑗 ⊂ 𝐸𝐶  

 
; remove the instances of the exclusive clusters from target group instances 

10:   𝑛 = 1 ; set 1 to re-start clustering in two groups on the remaining instances  

 

 

Algorithm 2. Testing SSI classifiers  

𝐹: set of trained classifiers 

𝐴: set of subject instances 

1: For all instances a of 𝐴 

2:  𝑃 = {𝑎 ∈ 𝐴|∃𝑓, 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑠 𝑎 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒}  

3:  If 𝑃 ≠  ∅ 

4:  The participant is from the target group  

5:  Else 

6:  The participant is from the rest 

 

In the proposed training algorithm of the SSI approach, the goal is to find clusters containing the 

ASD instances only. Then a classifier is trained using the instances of these clusters and added to 

a list of all trained classifiers (lines 7 and 8 of Algorithm 1). As shown in the loop of the algorithm, 

starting at line 1, the data is clustered starting with two clusters. Then the number of clusters is 
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increased until a cluster containing only the target group instances emerges. The exclusive 

instances in such a cluster are removed from the set of all target group’s instances, and the loop is 

restarted. Before restarting the loop if the number of instances in this cluster is more than a 

threshold, a new classifier using these instances is trained and this classifier is added to the set of 

all trained classifiers. The loop stops when the number of samples in each cluster is less than a 

threshold.  

For testing the participants, using the trained classifiers, all the instances of each participant are 

classified one by one using all the trained classifiers (line 2 of Algorithm 2). A subject would be 

classified in the target group if at least one of its instances is classified in the target group at least 

by one of the classifiers (lines 3 and 4 of Algorithm 2). Otherwise, if there is no instance classified 

among the target group, the participant is classified as the rest (lines 5 and 6).  

Details of the implementations 

The classifiers were implemented in Python using scikit-learn library. 

WSI Classifiers: 

We tested several common WSI classifiers, but we report only the result of SVM with RBF kernel 

and with no feature selection, which gives the best average accuracy. It should be noted that several 

feature selection approaches, like L1-SVM and backward elimination, were tested but they only 

reduced the accuracy. We used group 5-fold cross-validation for tuning hyper-parameters. Group 

K-fold means that all instances of each participant are placed in only one of the folds. This prevents 

having the same participant’s instances in the train and validation folds simultaneously. In each 
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fold, there were two ASD and two TD participants. It should be mentioned that before applying 

the algorithms, we balanced the number of instances of the two groups using upsampling. 

Two approaches were exploited to combine the decisions on different samples of a participant in 

the WSI approach. The first approach was majority pooling which classifies a participant as ASD 

if the number of instances classified as ASD was more than 50 percent of all instances. The second 

approach was threshold-based pooling which is similar to the first approach except that a threshold 

other than 50 percent is used.  

SSI Classifiers: 

Before applying the algorithm, we balanced the number of instances of the two groups by 

upsampling. The threshold for the minimum number of samples needed in a cluster, to be able to 

train a classifier is set to 10. It should be mentioned that agglomerative clustering and decision tree 

are the methods used for clustering and classification parts of Algorithm 1, respectively. 

Training the SSI classifiers: 

After running Algorithm 1 on our data, two exclusive clusters with enough instances, i.e. at least 

10 instances in our study, were found. Then two classifiers were trained corresponding to each 

cluster. One of these exclusive clusters had 11 instances from 4 ASD participants (Table 1). These 

11 instances consisted of 6 out of 9 instances of ASD1, 2 out of 4 instances of ASD10, 1 out of 2 

instances of ASD8, and 2 out of 4 instances of ASD6. As explained in the algorithm, for each 

cluster, a decision tree classifier was trained using the ASD instances in the cluster versus all TD 

instances. Interestingly, only one feature was enough to discriminate instances in the cluster from 

all TD instances. Among those features that can discriminate the cluster’s instances, we selected 

the Variance of Frame-wise Temporal Derivative (VFTD) of the 7th MFCC coefficient as the 
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feature which can discriminate more ASD participants from the set of all participants with a simple 

threshold. The classifier obtained by thresholding on this feature was the first classifier.  This 

feature supports our expert’s report regarding the higher variations in the cry of ASD children than 

TD children. From 10 ASD children, 8 of them can be discriminated using this feature. For each 

participant, the number of instances found by this classifier is shown in the 2nd column of Table 5. 

Table 5. The number of instances of each participant in the training set that are classified as ASD 

using each trained SSI classifier. 

ID First SSI 

classifier 

Second SSI 

classifier 

ASD1 8 3 

ASD2 1 2 

ASD3 3 1 

ASD4 10 9 

ASD5 0 0 

ASD6 1 3 

ASD7 1 0 

ASD8 1 2 

ASD9 0 1 

ASD10 2 4 

After excluding the ASD samples from the first classifier, the second classifier was trained based 

on the second exclusive cluster. This cluster included all instances of participant ASD4.  The only 

feature used for classifying this cluster was VFTD of the 6th SONE coefficient. SONE is a unit of 

loudness which is a subjective perception of sound pressure [52]. Having higher VFTD of the 6th 

SONE coefficient confirms the experiential knowledge of our experts mentioned before. Among 

all the ASD participant, eight have instances with VFTD of the 6th SONE higher than a threshold 

(Shown in the 3rd column of Table 5). The results of classification based on these two features are 

depicted in Fig 3. As it is mentioned in the proposed method section, the participants with at least 

one instance classified into this cluster would be considered as a participant with ASD. 
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Fig 3 Two classifiers trained on the two exclusive clusters found during the SSI classifier 

training phase. (a) The Variance of Frame-wise Temporal Derivative (VFTD) of the 7th MFCC 

coefficient separates 27 instances of 8 ASD subjects from all TD instances of the training set. (b) 

VFTD of the 6th SONE coefficient separates 17 instances of 7 ASD participants from all TD 

instances of the training set. 

Results 

In this part, the performance of our proposed SSI classifier against a common WSI classifier is 

evaluated on our test set of ASD and TD participants. Each participant has multiple instances 

which are cleaned using the criteria explained in the data collection and preprocessing section. The 

participants who had at least one accepted instance were used in the training and testing phases, 

which are shown in Tables 1 and 2.  

 The output of the SSI approach was two classifiers, each of them works by thresholding on a 

feature. The number of instances of ASD participants in the training set, correctly detected by the 

first and the second classifiers, are shown in the second and third columns of Table 5, respectively. 
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On the other hand, the best-resulting classifier for the WSI approach was Radial Basis Function-

Support Vector Machine (RBF-SVM) [53].  

The classification results on the test set for different classifiers are shown in Table 6. The portion 

of each participant’s instances correctly classified by each classifier is written in percentage under 

the name of the classifier. The decision made by the WSI and SSI classifiers for each participant 

is shown by ASD or TD. To classify each subject using the WSI classifier, the Majority Pooling 

(MP) and the Best-chance threshold Pooling (BP) approaches are used. BP is a threshold-based 

pooling with the threshold giving the best accuracy on the test set for male participants. For the 

boys, MP has specificity, sensitivity, and precision equal to 100%, 35.71%, and 67.85%, 

respectively. On the other hand, BP leads to specificity, sensitivity, and precision equal to 85.71%, 

71.42%, and 78.57%, respectively. The threshold for BP was set to 20% that means if 20% of 

instances of a participant were classified as ASD instance, the participant was classified as ASD. 

The results of the percentage of instances correctly classified by the two classifiers in the SSI 

approach are shown as C1 (the first SSI classifier) and C2 (the second SSI classifier) in Table 6. 

The aggregated result of C1 and C2 makes the final decision of the SSI classifier which is shown in 

the decision column under the SSI classification section. The achieved specificity, sensitivity, and 

precision using the proposed method for the boys are 100%, 85.71%, and 92.85%, respectively.  

Table 6. The results of classifiers on the instances of each participant in the test set. 

 

TD children Children with ASD 

 

 

 

ID 

Portion of instances classified as TD in 

percentage and the decision 

 

 

ID 

Portion of instances classified as ASD in 

percentage and the decision 

WSI classification SSI classification WSI classification SSI classification 

SVM Dec. C1 C2 Dec

. 

SVM Dec. C1 C2 Dec. 

MP BP MP BP 

B
o

y
s TD11 100 TD TD 100 100 TD ASD11 50 A A 17 50 ASD 

TD12 100 TD TD 100 100 TD ASD12 33 TD ASD 11 28 ASD 

TD13 100 TD TD 100 100 TD ASD13 33 TD ASD 33 0 ASD 
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TD14 100 TD TD 100 100 TD ASD14 20 TD ASD 20 20 ASD 

TD15 100 TD TD 100 100 TD ASD15 0 TD TD 0 40 ASD 

TD16 100 TD TD 100 100 TD ASD16 50 ASD  ASD 100 0 ASD 

TD17 100 TD TD 100 100 TD ASD17 0 TD TD 0 100 ASD 

TD18 83 TD TD 100 100 TD ASD18 50 ASD ASD  50 50 ASD 

TD19 100 TD TD 100 100 TD ASD19 0 TD TD 0 0 TD 

TD20 80 TD ASD 100 100 TD ASD20 42 TD ASD  42 16 ASD 

TD21 100 TD TD 100 100 TD ASD21 100 ASD ASD  0 0 TD 

TD22 100 TD TD 100 100 TD ASD22 0 TD TD 0 50 ASD 

TD23 75 TD ASD 100 100 TD ASD23 33 TD ASD  33 17 ASD 

TD24 92 TD TD 100 100 TD ASD24 86 ASD ASD  86 86 ASD 

Acc. %   100 85.71   100   35.71 71.42   85.71 

G
ir

ls
 

TD25 100 TD TD 100 100 TD ASD25 42 TD ASD  17 0 ASD 

TD26 100 TD TD 100 100 TD ASD26 60 ASD ASD  60 20 ASD 

TD27 100 TD TD 100 100 TD ASD27 50 ASD ASD  0 0 TD 

TD28 100 TD TD 100 100 TD ASD28 100 ASD ASD  0 50 ASD 

TD29 100 TD TD 100 100 TD ASD29 62 ASD ASD  50 50 ASD 

TD30 67 TD ASD 100 100 TD ASD30 100 ASD ASD  50 50 ASD 

TD31 100 TD TD 100 100 TD ASD31 0 TD TD 0 0 TD 

Acc. %   100 85.71   100   71.42 85.71   71.42 

Each classifier result on a subject’s instances are reported in percentage.  

Dec., Decision; MP, Majority Pooling; BC, Best-chance threshold Pooling; C1, Classifier1; C2, 

Classifier2; Acc., Accuracy. 

To further show the applicability of the proposed approach to girls, we applied the boys’ trained 

classifiers on the test set of the girls. The results are shown in the last row of Table 6 which show 

that the MP approach has specificity, sensitivity, and precision equal to 100%, 71.42%, and 

85.71%, respectively. Furthermore, the BP approach gives specificity, sensitivity, and precision 

all equal to 85.71%, respectively. The results of the proposed SSI classifier is 100% specificity, 

71.42% sensitivity, and 85.71% precision. 

A two-dimensional scatter plot of the two features, used in C1 and C2 classifiers, are shown in Fig 

4. As it can be seen in this figure, the instances of a participant with ASD are scattered in the area 

containing instances of both TD and ASD participants. Nevertheless, there are instances for this 

participant uniquely distinguishable using the selected two features.  
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Fig 4. Instances of several ASD and TD participants scattered in the space of two features 

given by the proposed SSI method. The instances of a chosen ASD participant are illustrated in 

green to show that a participant may have instances in the area common with TD instances besides 

those two areas separated by the selected thresholds as ASD. The mentioned ASD participant (with 

green instances) is tagged as ASD due to having at least one instance with the greater value than 

at least one of the thresholds on the two features. 

We compared the results of our proposed method with that of the only method available in the 

literature which was trained using only cry features  [36] based on our data. The results (Table 7) 

show the superiority of our method compared to the previously proposed method. 
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Table 7. Comparison of the results on the test set using the two methods; SSI approach and 

a baseline approach. 

  Sensitivity Specificity Precision 

B
o
y
s 

SSI 85.71% 100% 92.85% 

Baseline 50.58% 81% 65% 
G

ir
ls

 SSI 71.42% 100% 85.71% 

Baseline 21% 86.48% 53% 

Investigating the trained classifier on participants under 18 months 

The SSI classifier which was trained using the training set in Table 1 was also tested on the data 

of children younger than 18 months. From 57 participants under 18 months, two boys (Child1 and 

Child2 in Table 3) were classified as ASD by the mentioned trained classifier. These participants 

were referred to our experts for diagnosis. These two were suspected to have neurodevelopmental 

problems. All other boys were classified as TD. However, among them, Child3 was diagnosed 

with ASD at age 2. Also, Child4 showed symptoms of having ADHD and sensory processing 

disorder at age 3. Three other children had symptoms which suggested that they are not TD 

children. Two of the girls who were 18 months old were classified as ASD using the trained 

classifier. The other girls were classified as TD.  The results of testing the trained SSI classifier on 

this data set are summarized in Table 8. 

Table 8. Classification of the participants under 18 months using our trained SSI classifier. 

 Boys  Girls 

ASD TD Othersa  ASD TD Othersa  

Classified as ASD 0 0 2 0 1 0 

Classified as TD 1 22 4 0 27 0 
a Other developmental or mental disorders 
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Discussion and conclusion 

In this paper, we presented a novel cry-based screening method to distinguish between children 

with autism and typically developing children. In the proposed method, groups of children with 

autism who have specific features in their cry voices can be determined. This method is based on 

a new classification approach called SubSet Instance (SSI) classifier. A nice property of the 

proposed SSI classifier, in the case of voice-based autism screening, is its high specificity such 

that a normal child can be detected with no error. We applied the proposed method on a group of 

participants consisted of 24 boys with ASD between 20 and 53 months of age and 24 TD boys 

between 18 and 51 months of age. The two features, found in this study, were used to train a 

classifier on 10 boys with ASD and 10 TD boys. Then, the classifier was used to distinguish 14 

boys with ASD from 14 TD boys, reaching 92.8% accuracy. Due to the fact that girls are less likely 

to have autism and consequently, it is harder to collect enough data from girls than boys, the 

number of girls with ASD was not enough to train a separate classifier for this gender. It should 

be noted that we tested the trained system on 7 girls with ASD and 7 TD girls. It was shown that 

the trained classifier can screen girls with 7% lower accuracy than boys of the test set. In other 

words, it seems that gender matters and it should be considered in the training of the system. In 

testing the data from participants under 18 months, one TD girl was classified as ASD which was 

not the case for any TD children of the male counterparts. This result also confirms the mentioned 

note about the gender effect. However, in our future work, we would try to collect more data of 

girls to be able to train a system to accurately screen girls. In the future, we would also try to train 

a single classifier for boys and girls to determine whether it can be used for both of them.  

It should be mentioned that our training and test data were completely separate making the trained 

model more general. The features found in this study were applicable in the range of ages of our 
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participants from 18 to 53 months. This is in contrast to other approaches that either used a dataset 

of children with a specific age [28, 30] or used age information for classification [29]. Due to the 

age invariant features found in this study, it can be claimed that there are markers in the voice of 

children with ASD that are sustained at least in a range of ages.  

The two discriminative features found in this study were a coefficient of MFCC and a SONE 

coefficient. MFCC and SONE are related to the power spectrum of a speech signal. SONE 

measures loudness in specific Bark bands [50]. On the other hand, MFCC, which is the inverse 

DFT of log-spectrum in the Mel scale, is related to the timbre of the voice [54]. Therefore, MFCC 

and SONE can be interpreted to be related to the timbre and loudness of a tone. Furthermore, based 

on the feedback from our experts, there is unpredictability in the crying voice of children with 

autism which is not true for TD children. Consequently, we used the variance of temporal 

difference as a feature suitable for screening children with autism. This is due to the fact that if a 

signal is constant or changed linearly over time, the variance of temporal difference is zero. 

Therefore, the variance of temporal difference can be seen as the amount of ambiguity or 

unpredictability of a sound. On the other hand, the heightened variability in the two features, found 

in this study, for children with ASD is significant due to the reports from other studies [17, 55] 

which shows increased biological signals variability in children with ASD and infants at high risk 

for autism in comparison to TD children. These features are statistical features of the cry instances 

that hold constant, at least, across an age range studied in this research. 

To the best of our knowledge, [29] and [30] were the only studies on screening children with 

autism using voice features on children younger than 2 years old. Our proposed method has higher 

precision than these two, i.e. 6% more than [29] and 17% more than [30], using only cry features.  

The use of cry features as suitable biomarkers for autism screening matches the claims in [33].  
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In our study only children with ASD and TD children were tested. Other developmental disorders 

or health issues were not tested to see how children with those disorders would be classified using 

the proposed method which can decrease the specificity of 100%. However, this approach is 

proposed to be used as a screening tool and final diagnosis should be done under experts’ 

supervision. So, this approach can be applied as a general screener of autism spectrum disorder.  

The trained classifier was also tested on 57 participants between 10 to 18 months of age. The 

classifier screened two boys from the rest, i.e. Child1 and Child2 (Table 3). Child1 showed 

evidences of genetic disease and diagnosed with developmental delay and Child2 received UNDD 

classification by our experts. This suggests that a) the system can be used for children under 2 

years of age, and b) it may be able to distinguish other neurodevelopmental disorders.  On the other 

hand, there were 5 boys, i.e. Child3 to Child7 (Table 3), who had no evidence of mental or 

developmental disorders at the time of their recording. At the same time, our approach did not 

distinguish them as children with ASD either. However, when they got older than 3 years, they 

showed symptoms of neurodevelopmental disorders. From these children, Child3 and Child4’s 

voices, collected after receiving the diagnosis, were classified as children with ASD using our 

approach. Unfortunately, Child5, Child6, and Child7 did not cooperate to be evaluated by an expert 

to validate the results of our expert-selected questionnaire. Furthermore, they did not cooperate to 

send us their children’s recent cry voices.  

The result of studying these 57 children under age of 18 months may suggest that: a) there could 

be symptoms in the crying voices of children with neurodevelopmental disorders under 18 months 

(Child1 and Child2), b) the approach may not be able to screen a participant with 

neurodevelopmental disorders under the age of 18 months with the possibility of: 1) the participant 

was among those children with neurodevelopmental disorder who do not have our proposed 
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specific features in their crying voices, 2) the participant’s recorded cry samples did not include 

our specific features, and/or 3) Neurodevelopmental disorders and their features had not been 

developed in the child at the time of initial recording. The reason behind not classifying Child3 

and Child4, as children with ASD under the age of 18, could be b.2 or b.3.  To clearly determine 

the reason behind this phenomena, further investigation is needed.  

We believe that this approach can be used to perform early autism screening under 18 months of 

age. Thus, in the future, we need to collect data and test the approach on more data of children 

under 18 months to validate these results with more confidence.  

We have to further check the proposed approach and the extracted features on other 

neurodevelopmental disorders, such as ADHD, to evaluate the capability of the approach to 

distinguish the children with these disorders from TD children.  

Furthermore, without comparing the cries of children with ASD to those without ASD but another 

disorder, we don’t really know if these findings are specific to autism or to general atypical brain 

developments. Thus, we should collect cries of children with other neurodevelopmental disorders 

and compare voices of children with ASD to voices of other neurodevelopmental disorders to see 

if these features would be able to separate them or not.  

It is shown  that crying consists of intricate motor activities  [56]. On the other hand, it is shown 

that children with ASD have problems in the motor domain and in coordination of their motor 

capabilities with other modalities [57]. Consequently, it is possible that the extracted features in 

the crying voices of children with ASD come from this deficiency/problem in the motor domain 

which needs further investigations. 
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Finally, automating the preprocessing part is a technical issue that should be handled if the cry 

voice-based screening is planned to be fully automated. This would be important since such a 

screening system can be deployed in systems such as Amazon Alexa [58] to automatically screen 

problematic cry voices. 
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