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Background 

 

Diffusion tensor imaging (DTI) is a commonly utilized pre-surgical tractography technique. 
Despite widespread use, DTI suffers from several critical limitations. These include an inability 
to replicate crossing fibers and a low angular-resolution, affecting quality of results. More 
advanced, non-tensor methods have been devised to address DTI’s shortcomings, but they 
remain clinically underutilized due to lack of awareness, logistical and cost factors.  

 

Objective 

 

Nath et al. (2020) described a method of transforming DTI data into non-tensor high-resolution 
data, suitable for tractography, using a deep learning technique. This study aims to apply this 
technique to real-life tumor cases.  

 

Methods 

 

The deep learning model utilizes a residual convolutional neural network architecture to yield a 
spherical harmonic representation of the diffusion-weighted MR signal. The model was trained 
using normal subject data. DTI data from clinical cases were utilized for testing: Subject 1 had a 
right-sided anaplastic oligodendroglioma. Subject 2 had a right-sided glioblastoma. We 
conducted deterministic fiber tractography on both the DTI data and the post-processed deep 
learning algorithm datasets. 

 

Results 

 

Generally, all tracts generated using the deep learning algorithm dataset were qualitatively and 
quantitatively (in terms of tract volume) superior than those created with DTI data. This was true 
for both test cases.  
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Conclusions 

 

We successfully utilized a deep learning technique to convert standard DTI data into data 
capable of high-angular resolution tractography. This method dispenses with specialized 
hardware or dedicated acquisition protocols. It presents an economical and logistically feasible 
method for increasing access to high definition tractography imaging clinically. 

 

 

 

 

 

 

 

 

Abbreviations 

 

DTI – diffusion tensor imaging; MT-CSD – Multi-tissue constrained spherical deconvolution; 
HARDI – High angular resolution diffusion imaging; GQI – Generalized Q-sampling imaging; 
fODF – Fiber orientation distribution function; SDF – Spin distribution function; ResCNN – 
Residual convolutional neural network; HCP – Human connectome project; FLAIR – Fluid 
attenuation inversion recovery; SH – Spherical harmonic; ROI – Region of interest; FA – 
Fractional anisotropy; QA – quantitative anisotropy; AF – arcuate fasciculus; SLF – superior 
longitudinal fasciculus; IFOF – Inferior fronto-occipital fasciculus; UF – Uncinate fasciculus; 
ILF – Inferior longitudinal fasciculus; CST – Corticospinal tract; FAT – Frontal aslant tract 

 

Introduction 

 

Common pre-surgical tractography techniques employ single-shell diffusion tensor imaging 
(DTI) acquisition protocols 1. DTI is known to possess several critical limitations, however, 
potentially affecting the quality of tractography results 2–4. Its major limitation arises from an 
inability to trace crossing fibers within the voxel, resulting in tracts that appear thin, possess false 
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continuities, or terminate abruptly, relative to “real” anatomy 5–7. Alternatives to DTI have been 
devised to address the crossing-fiber issue and improve angular resolution, including multi-tissue 
constrained spherical deconvolution (MT-CST) 8, high-angular resolution diffusion imaging 
(HARDI) 9 and generalized q-sampling imaging (GQI) 10, among others. These techniques 
generally utilize multi-shell diffusion-weighted MRI acquisitions and yield multi-directional 
orientation units such as the fiber orientation distribution function (fODF) 11,12 or spin 
distribution function (SDF) 10. At present, the majority of these non-tensor sequences are utilized 
for research purposes, rather than in clinical settings 6,13. Relative to DTI, however, acquisition of 
multi-shell, non-tensor sequences is more expensive and time-consuming 14, making them 
impractical to implement or utilize clinically. 

 

Deep learning is a powerful tool that permits learning of non-linear mappings between a set of 
inputs and outputs. Nath et al. (2020) presented a deep learning-based pipeline for recovery of 
MT-CSD from single-shell diffusion data using a residual convolutional neural network 
(ResCNN) 14. In this study, we adapted the deep learning model, trained using normal subjects 
from the Human Connectome Project (HCP) 15, and utilized it to process single-shell DTI data 
from 2 real tumor cases.  We then performed tractography on the output data and compared it 
qualitatively and quantitatively with tractography conducted using the standard DTI data.  

Materials and Methods 

Subjects 

Both subjects gave their consent for their anonymized data to be utilized in this study, which was 
approved by the Institutional Review Board at [REDACTED FOR REVIEW].  

Subject 1 – Right-sided parietal tumor 

A male patient in their 50’s presented with a large right-sided parietal mass of 47 x 35 
millimeters, associated with a 1cm midline shift and vasogenic edema. He underwent right-sided 
craniotomy and tumor resection. This was later determined to be a World Health Organization 
(WHO) Grade III anaplastic oligodendroglioma (Figure 1A, B).  

Subject 2 – Right-sided temporal tumor 

A female patient in their 50’s presented with a right-sided temporal mass of 29 x 20 millimeters. 
She subsequently underwent a right-sided craniotomy and tumor resection. This was later 
determined to be a WHO Grade IV glioblastoma (Figure 2A, B).  

Pre-operative Neuroimaging 
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Structural and diffusion scans were acquired. All MR imaging was achieved using a GE 
Discovery MR750 3 Tesla device (GE Healthcare, Milwaukee, WI, U.S.A.) equipped with an 8-
channel head coil.  

Diffusion Tensor Imaging 

DTI was acquired with one image with a b value of 0 seconds/mm2 and 30 isotropically 
distributed diffusion directions with b values of 1000 seconds/mm2. Imaging parameters were as 
follows: TR/TE = 8000 milliseconds/60.7 milliseconds, slice thickness/increment = 2 mm/2 mm, 
flip angle = 90 degrees, matrix size = 128 x 128 millimeters, field of view = 256 millimeters. 
DTI processing was achieved using DSI Studio (http://www.dsi-studio.labsolver.org). The b-
table was checked by an automatic quality control routine in DSI Studio to ensure its accuracy 16. 

Structural Imaging 

For accuracy and comparison, fluid attenuation inversion recovery (FLAIR) sequences were 
overlaid onto the tensor or fODF map: Sagittal CUBE FLAIR sequences utilized a TR/TE: 6000 
milliseconds/133 milliseconds, slice thickness/increment = 1.2 millimeters/0.6 millimeters, flip 
angle = 90 degrees, matrix = 256 x 256 millimeters, field of view 240 millimeters.  

Deep Learning Model 

We adapted the deep learning model proposed by Nath et al. (2020). The input consists of 3 x 3 x 
3 x 45 cubic patches of voxels. The cubic patch consists of 8th order diffusion-weighted 
magnetic resonance imaging spherical harmonic (SH) coefficients for each voxel in the patch 
(see note on spherical harmonics). The algorithm predicts the center voxel using spatial 
information as input features for the deep learning network. The loss function used was: 

 

Where m denotes the number of samples, ytrue  is the set of fODF SH derived from MT-CSD, 
ypred is the set of SH predictions made by ResCNN, Ptrue  is the vector of tissue fraction value and 
Ppred  is the predicted vector of tissue fractions. The ResCNN architecture is divided into three 
parts, its core part being the residual block which consists of multiple functional units, with each 
unit dedicated to a specific order of the SH. A 3D ResCNN architecture with a residual block 
was utilized. Hyper-parameters included a batch size of 1000, a learning rate of 1e-4, activation 
using ‘relu’, 40 training epochs with 250 steps per epoch and a validation frequency of 1. The 
DTI-datasets of the two clinical cases were then passed into the trained algorithm to yield MT-
CSD approximations.  

 

Data from 15 healthy subjects from the HCP were utilized for training and validation of the deep 
learning model in a training-validation-testing split of 5-2-8. The standard HCP acquisition 
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protocol consists of 90 gradient directions for 3 b-values of 1000, 2000 and 3000 s/mm2. To 
ensure that this study would permit for processing of single-shell DTI data encountered in 
clinical settings, we utilized the diffusivity shell of 1000 s/mm2 with 90 gradient directions only 
for each subject, as this mimics the acquisition protocol of clinical DTI sequences. The diffusion 
weighted volumes of that specific shell were fitted to 8th order SH, which acted as input training 
data. The outputs were SH coefficients (8th order) of the fODF.  

Note on Spherical Harmonics 

SH representations are a well-known, low-error representation of the DW-MRI signal 17 that 
remove the dependency of the number of gradient directions. Our model was trained with 8th 
order SH representation, in particular training at higher orders allows for flexibility of utilizing 
lower SH orders by zero padding. The ResCNN architecture provides outputs of MT-CSD at 8th 
order 8 along with voxel fractional volume estimates.  

Fiber Tractography 

All tractography was performed by loading the tensor maps (for the DTI datasets) and fODF 
maps (for the post-processed deep learning algorithm datasets) into DSI Studio (http://dsi-
studio.labsolver.org). Two experts in neuroanatomy and tractography (SP and JFM) performed 
the tract-seeding, cleaning and qualitative, and quantitative analytical portions of the study.  

 

For the DTI data a variable fractional anisotropy (FA) parameter was utilized that permitted for 
maximal realistic tract representation, with minimal generation of spurious or false fibers. A 
deterministic streamline tracking approach 12 was utilized for generating tracts. Other 
tractography parameters included a differential tracking threshold of 0.2, an angular threshold of 
0, a step size of 0.10 millimeters, a minimum fiber length of 30.0 millimeters, a maximum fiber 
length of 300.0 millimeters and automatic termination of tracking algorithm when 10,000 tracts 
were generated.  

 

For the ODF-map outputs of the deep learning algorithm a quantitative anisotropy (QA) 18 
threshold of 0.1 was utilized in each instance. This ensured that generation of spurious fiber 
tracts was minimized while preserving maximal anatomical detail. Other tracking parameters 
included a differential tracking threshold of 0.2, an angular threshold of 0, a step size of 0.10 
millimeters, a minimum fiber length of 30.0 millimeters, a maximum length of 300.0 millimeters 
and termination of tracking algorithm when 10,000 tracts were generated.  
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In both control (DTI) and test (deep learning) cases, the region-of-interest (ROI)-based 
approaches were utilized to generate fiber tracts, based upon expert tractography knowledge, and 
also methods explained in our previous anatomical publications. Tracts generated included the 
arcuate fasciculus (AF) 19, superior longitudinal fasciculus (SLF) 20, inferior fronto-occipital 
fasciculus (IFOF) 21, uncinate fasciculus (UF) 21 and inferior longitudinal fasciculus (ILF) 22. For 
the corticospinal tracts (CST), we utilized a technique involving identifying vertically travelling 
fibers at the level of the pons using a color-coded diffusion map 7 and placing a seed ROI, 
together with another conduit-ROI within the vertically-oriented fibers at the level of the internal 
capsule. For the frontal aslant tract (FAT) 23 a seed-ROI was placed within the vertically-oriented 
sheet of fibers located within the dorsal aspect of the frontal lobe, together with a larger spherical 
ROI placed within the approximate level of the ventrolateral frontal lobe. For the cingulum, a 
single ball-shaped conduit-ROI was placed within the anterolaterally-travelling fibers within 
each hemispheric cingulate gyrus. Nevertheless, due to anatomical distortion produced by the 
tumors, variations in the ROI and seed placements were warranted, and guided by our anatomical 
expertise, in order to generate deviated or infiltrated tracts 7.  

 

Tract Volumes 

Once tracts were generated we calculated their volume for comparison purposes using a 
technique utilized previously 19–22. We used the inbuilt function in DSI Studio, which calculates 
the number of voxels occupied by each fiber trajectory (streamlines) and the volume of the tracts 
(in milliliters) of each tract bundle. Volume of identical tracts (e.g. CST, AF, SLF etc.) in each 
hemisphere were compared between the DTI and deep learning methods, and the difference was 
calculated by subtracting the volume of the tracts generated using the deep learning method from 
the volume of the tracts generated using DTI.  

Results 

Diffusion Indices and Fiber Orientation Maps 

When comparing diffusion maps, our results showed good consistency between the control 
(DTI) and test (deep learning) datasets. In subject 1, peritumoral areas with significant edema 
appeared highly isotropic, i.e. darker than the identical areas of the control FA maps (Figure 1C, 
D). This phenomenon was also apparent when visualizing the directional color-coded FA and 
ODF maps which demonstrated substantial deviation of white matter caused by tumor mass 
effect (Figure 1E, F). For subject 2, the tumor was smaller in comparison to subject 1, and with 
less corresponding edema. Nevertheless, the tumor area appeared more isotropic (darker) on the 
QA map versus the FA map (Figure 2C, D). White matter architecture, as evidenced by 
directional color maps, was well-represented using both techniques, and despite the presence of 
space occupying lesions of varying size and associated edema (Figure 2E, F).   
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Qualitative Comparison 

Subject 1 

Due to the considerable peri-tumoral edema and midline shift, most of the right-sided white 
matter tracts were considerably deviated. Bilateral CSTs were visualized in both the DTI and 
deep learning datasets. Nevertheless, the post-processed CSTs were visually more robust on both 
sides versus the DTI CSTs. The right CST was deviated around the edematous area in the 
parietal lobe. Though DTI managed to replicate this deviation, the higher angular resolution of 
the algorithmic output portrayed a qualitatively superior visualization of the deviated CST fibers 
(Figure 3A, B, C, D). Similarly, the right cingulum bundle was deviated towards the midline 
secondary to mass effect. This phenomenon was readily visualized in tracts using both methods, 
however the deep-learning technique produced bundles which were qualitatively larger-
appearing, and occupying a greater volumetric area (Figure 3E, F). Tumor edema extending to 
the ventrolateral frontal lobe caused the ventral aspect of the FAT to be pushed dorsally. Though 
this deviation was visualized using DTI, again the tracts generated using the deep learning 
dataset produced FAT bundles that were more robust (Figure 4A, B). The right-sided AF and 
SLF were not found due to presence of tumor and edema. Both tracts were found on the left, with 
the deep learning dataset producing tracts that were thicker and occupying a larger proportion of 
white matter volume compared to those generated using DTI (Figure 4C, D). The ILF was 
severely deviated secondary to edema extending into the temporal lobe, as demonstrated by both 
DTI and the deep learning dataset. The right-sided ILF of the latter nevertheless appeared more 
robust when compared to the DTI-generated ILF. Likewise, the mid-portion of the ILF in the 
external capsular area was pushed towards the midline, which was visualized using both 
techniques. Unlike other tracts, however, there was little qualitative difference between the 
IFOFs generated using either technique. Finally, the UFs were largely unaffected by the tumor or 
mass effect. Nevertheless, the UF was the only fiber bundle that was qualitatively superior in 
terms of bundle-thickness when generated using DTI (Figure 4E, F). 

Subject 2 

In comparison to subject 1, subject 2 had a considerably smaller lesion with less peri-tumoral 
edema, and no significant mass-effect. The CSTs were readily visualized using both DTI and the 
deep learning technique. Nevertheless, CSTs generated using the latter method were more robust 
in terms of bundle size, and possessed the laterally-extending fibers of the corona radiata which 
were absent in the DTI tracts (Figure 5A, B, C, D). Bilateral cingulum bundles were readily 
depicted using both DTI and the deep learning method. Again, the latter method resulted in 
qualitatively more robust bundles (Figure 5E, F). The biggest qualitative difference was 
observed in the frontal aslant tracts, which appeared markedly larger using the deep learning 
method (Figure 6A, B, C, D). Unlike subject 1, the smaller amount of peri-tumoral edema did 
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not preclude visualization of the right-sided AF and SLF (Figure 6E, F), which again were 
better depicted using the deep learning technique. This trend was again preserved for the ventral 
fronto-temporal tracts, with the exception of the UF, which like in subject 1, was markedly larger 
when visualized using DTI (Figure 7A, B, C, D, E, F). 

Quantitative Comparison 

Subject 1 

Tract bundles generated using data processed by the deep learning algorithm were in general 
quantitatively larger in volume when compared to tracts created using DTI. The only tracts that 
were larger in volume when generated using the DTI dataset were the UFs (Table 1). 

Subject 2 

Tract bundles generated using data processed by the deep learning algorithm were in general 
quantitatively larger in volume when compared to tracts created using DTI. The only tracts that 
were larger in volume when generated using the DTI dataset were the UFs (Table 1). 

Discussion 

We successfully employed a deep learning algorithm to transform clinically-acquired DTI data 
into non-tensor high-angular resolution data, permitting tractography, in two glioma patients. All 
tracts found within the DTI dataset were also replicated within the deep learning dataset, and the 
deep learning method produced qualitatively superior and quantitatively larger tract bundles.  

Clinical Considerations 

Of the numerous adjunctive techniques available to surgeons, pre-surgical tractographic white 
matter visualization is advantageous as it can be achieved non-invasively and pre-operatively. 
Consequently, accurate depiction of white matter tracts is important, especially those in close 
proximity to the tumor or passing within the plane of approach. Tensor-based techniques have 
been shown to be less reliable than non-tensor techniques at reproducing fiber tracts passing 
through, or near to aberrant or edematous structures 1,5–7,24–26. Peri-tumoral DTI tracts may 
therefore appear to terminate abruptly, be thinned, or be entirely absent5,7. This phenomenon is 
evident in this study, when comparing tracts generated using DTI with those using the post-
processed deep learning datasets.  

 

Using our technique, any institution possessing a DTI-capable MR device can theoretically 
obtain high-resolution tractography without acquisition of research-grade hardware or personnel. 
Furthermore, scanning time may be substantially reduced making high-quality tractographic 
reconstructions clinically feasible: For example, a single shell-shell, 32 direction scan may take 
approximately 5 minutes to acquire, whereas a 3-shell, 90 direction scan may take approximately 
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40 minutes14. Our approach demonstrates that high-quality tractography can be conducted in 
short, clinically-feasible timeframes. 

 

By dispensing with specialized hardware or scanning protocols, our approach may also alleviate 
some of the costs associated with obtaining high-quality white matter imaging. It does, however, 
necessitate the expertise of personnel who are sufficiently proficient in computer programming 
languages, with technical knowledge of machine learning/deep learning and radiological data 
formats (i.e. digital communication and imaging in medicine (DICOM)).  

 

Technical Considerations and Limitations 

Despite the general quantitative and qualitative improvement in white matter tract reproduction 
produced by the deep learning algorithm, neither DTI nor the algorithm could reproduce tracts 
(namely the AF and SLF) within the highly edematous, peritumoral region of subject 1. This 
appears to be a general shortcoming of all tractography approaches, and it highlights the 
potential for complimentary adjunctive techniques, such as intraoperative cortical stimulation2. 
For example, the tracts may still be intact but unable to be visualized tractographically, due to 
presence of edema, tumor or necrosis 5,7.  

 

A further technical consideration remaining to be accounted for is that DTI results in 
qualitatively and quantitatively superior reproduction of the UFs, whereas the deep learning 
algorithm was better at reproducing all other tracts. We postulate that this could be secondary to 
the relatively short length of UF fibers, its acute turning angle over a small area, and the fact that 
the UF shares terminations with other ventral tracts like the IFOF and ILF.  

Conclusions 

In our study, we have successfully demonstrated qualitatively and quantitatively superior white 
matter tractography results produced by a novel deep learning algorithm applied to standard DTI 
data. This method, which yields higher quality tractography provides a more complete 
anatomical picture. It may be particularly useful to neurosurgeons for pre-operative planning. 
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Figure Legends 

Figure 1 

A – Axial FLAIR sequence demonstrating large right sided parietal mass in subject 1. The tumor 
is surrounded with substantial edema, and is causing a degree of midline shift.  

B – Sagittal FLAIR sequence demonstrating the parietal lobe of subject 1. Edema extends into 
the upper parietal lobe, the occipital lobe and the upper temporal lobe.  

C – Fractional anisotropy (FA) map of subject 1, visible is a loss of white matter architectural 
integrity in area of the tumor. 

D – Quantitative anisotropy (QA) map of subject 1. The tumor region appears darker compared 
to the corresponding FA map.  

E – Color diffusion tensor map produced by diffusion tensor imaging (DTI) sequence. Green – 
anteroposteriorly travelling fibers; Blue- superoinferiorly travelling fibers; Red – laterally 
travelling fibers.  

F – Color orientation distribution function map produced by deep learning algorithm (DLA) 
processing demonstrating. Green – anteroposteriorly travelling fibers; Blue- superoinferiorly 
travelling fibers; Red – laterally travelling fibers.  

 

Figure 2 

A – Axial FLAIR sequence demonstrating right sided parietal mass in subject 2. The tumor is 
surrounded with some edema.  

 

B – Sagittal FLAIR sequence demonstrating the superior temporal lobe of subject 2. Edema is 
distributed longitudinally along this gyrus.  

C – Fractional anisotropy (FA) map of subject 2. 
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D – Quantitative anisotropy (QA) map of subject 2.  

E – Color diffusion tensor map produced by diffusion tensor imaging (DTI) sequence. Green – 
anteroposteriorly travelling fibers; Blue- superoinferiorly travelling fibers; Red – laterally 
travelling fibers.  

F – Color orientation distribution function map produced by deep learning algorithm (DLA) 
processing demonstrating. Green – anteroposteriorly travelling fibers; Blue- superoinferiorly 
travelling fibers; Red – laterally travelling fibers.  

 

Figure 3 

A – Coronal view of the DTI-generated CSTs in subject 1. Apparent is the degree of medial-
deviation of the right CST produced by the tumor mass effect.  

B – Coronal view of the deep learning algorithm generated CSTs in subject 1. Compared to 3A, 
the tracts appear more robust, especially the laterally extending fibers of the corona radiata.  

C – An oblique-anterior view of the DTI CSTs in subject 1, here the shape of the tumor/edema 
has created an according deviation of the laterally-travelling CST fibers.  

D - An oblique-anterior view of the deep learning algorithm CSTs in subject 1. Compared to 
figure 3C, the tracts appear more robust along their entire course, which is especially apparent 
when comparing the laterally-travelling fibers of the corona radiata. 

 

E – Axial (supero-inferior) view of the DTI cingulum tracts in subject 1. Though the length of 
the left cingulum has been produced, only a portion of the right has, which is substantially 
deviated to the contralateral hemisphere.  

F – Axial (supero-inferior) view of the bilateral cingulum tracts created using the deep learning 
algorithm. Compared to 3E, not only has a much larger portion of the deviated right cingulum 
been reproduced, both bundles appear more robust. 

Figure 4 

A – Coronal view of the bilateral DTI-generated FATs in subject 1. Apparent is the dorsal 
deviation of the ventral-component of the right FAT.  

B – Coronal view of the bilateral FATs created using the deep learning algorithm. Compared to 
4A, the bundles appear more robust, with a greater number of recreated fibers.  

C – Sagittal view of the left sided AF (red) and SLF (green) bundles created using DTI.  
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D – Sagittal view of the left sided AF (red) and SLF (green) bundles created using the deep 
learning algorithm. Compared to 4C, the tracts are both thicker and occupy a greater area of 
white matter volume. 

E – Axial (infero-superior) view of the IFOF (light purple), ILF (orange) and UF (blue) created 
using DTI. The right sided ILF and IFOF are severely deviated by mass effect.  

F – Axial (infero-superior) view of the IFOF (light purple), ILF (orange) and UF (blue) created 
using the deep learning algorithm. The ILF and IFOF on the tumor affected side are more robust 
compared to those in 4E. In particular, the right ILF demonstrates substantial deviation produced 
by edema extending into the temporal lobe. 

 

Figure 5  

A – Coronal view of the DTI-generated CSTs in subject 2. There is slight thinning of right-sided 
CST fibers when compared to the contralateral hemisphere. 

B – Coronal view of the CSTs generated from the deep learning dataset, overall, both CSTs are 
more robust when compared to the DTI CSTs (5A). Moreover, laterally-extending fibers of the 
corona radiata are reproduced, which are absent on the DTI CSTs.  

C – Oblique-anterior view of the DTI-generated CSTs in subject 2.  

D – Oblique-anterior view of the CSTs generated using the deep learning dataset. Not only are 
the CSTs more robust versus those in 5C, the laterally-extending fibers of the right corona 
radiata are readily visualized. 

E – Supero-inferior axial view of the bilateral cingulum bundles generated using DTI. The right 
cingulum is thinned versus the left, despite not being directly impinged upon by tumor or edema. 

F – Supero-inferior axial view of the bilateral cingulum bundles generated using the deep 
learning dataset. Compared to 5E, both bundles are qualitatively thicker in general, but there is 
still some apparent thinning of the right-sided cingulum.  

 

Figure 6 

A – Antero-posterior coronal view of subject 2’s bilateral FATs generated using DTI. There is no 
apparent deviation of the right-sided FAT.  

B – Antero-posterior coronal view of the bilateral FATs generated using the deep learning 
dataset. There is a striking difference between the FATs generated using this method, compared 
to the DTI-generated FATs (6A). 
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C – Supero-inferior axial view of subject 2’s bilateral FATs generated using DTI. Apparent is 
how thin the generated bundles are, bilaterally.  

D – Supero-inferior axial view of subject 2’s bilateral FATs generated using the deep learning 
algorithm. These are substantially larger in volume and bundle thickness versus those generated 
using DTI (6C). 

E – Right-sided sagittal view of the AF (red) and SLF (green) generated using DTI in subject 2.  

F – Right-sided sagittal view of the AF (red) and SLF (green) generated using the deep learning 
dataset in subject 2. Compared with 6E, both tracts are more robust. 

 

Figure 7 

A – Right-sided sagittal view of the DTI-generated IFOF (light purple), ILF (orange) and UF 
(blue), in subject 2.  

B – Right-sided sagittal view of the IFOF (light purple), ILF (orange) and UF (blue), generated 
using the deep learning dataset in subject 2. In particular, the IFOFs medial frontal terminations 
are present, while they are absent on the DTI generated IFOF (7A). The ILF is also more robust 
compared to the DTI-generated ILF.  

C – Left-sided sagittal view of the DTI-generated IFOF (light purple), ILF (orange) and UF 
(blue), in subject 2.  

D – Left-sided sagittal view of the IFOF (light purple), ILF (orange) and UF (blue), generated 
using the deep learning dataset in subject 2. The IFOF and ILF are both markedly larger than 
those created using the DTI dataset (compare with 7C).  

E – Infero-superior axial view of the DTI-generated IFOF (light purple), ILF (orange) and UF 
(blue), in subject 2. Here, the apparent difference in tract sizes of both ILF and IFOF are 
pronounced, compared to the DTI-generated tracts demonstrated in 7E.  
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