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ABSTRACT 

COVID-19, the disease caused by the SARS-CoV-2 virus, can cause shortness of breath, lung 

damage, and impaired respiratory function.  Containing the virus has proven difficult, in large part 

due to its high transmissibility during the pre-symptomatic incubation.  The study’s aim was to 

determine if changes in respiratory rate could serve as a leading indicator of SARS-CoV-2 

infections. A total of 271 individuals  (age = 37.3 ± 9.5, 190 male, 81 female) who experienced 

symptoms consistent with COVID-19 were included – 81 tested positive for SARS-CoV-2 and 

190 tested negative; these 271 individuals collectively contributed 2672 samples (days) of data 

(1856 healthy days, 231 while infected with COVID-19 and 585 while infected with something 

other than COVID-19). To train a novel algorithm, individuals were segmented as follows; (1) a 

training dataset of individuals who tested positive for COVID-19 (n=57 people, 537 samples); (2) 

a validation dataset of individuals who tested positive for COVID-19  (n=24 people, 320 samples) 

; (3) a validation dataset of individuals who tested negative for COVID-19 (n=190 people, 1815 

samples). All data was extracted from the WHOOP system, which uses data from a wrist-worn 

strap to produce validated estimates of respiratory rate and other physiological measures. Using 

the training dataset, a model was developed to estimate the probability of SARS-CoV-2 infection 

based on changes in respiratory rate during night-time sleep. The model’s ability to identify 

COVID-positive individuals not used in training and robustness against COVID-negative 

individuals with similar symptoms were examined for a critical six-day period spanning the onset 

of symptoms. The model identified 20% of COVID-19 positive individuals in the validation 

dataset in the two days prior to symptom onset, and 80% of COVID-19 positive cases by the third 

day of symptoms. 
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Introduction 

The novel coronavirus disease (COVID-19) is caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) virus [1] and predominantly presents as a lower respiratory tract 

infection. Severe cases of the disease can result in alveolar damage and progressive respiratory 

failure [2].  Containing the virus has proven difficult due to its high transmissibility during the pre-

symptomatic incubation phase [3], and widespread shortages of testing.  

Outside of traditional laboratory testing, few practical COVID-19 monitoring systems have

been proposed. Some businesses looking to reopen following physical distancing mandates have

implemented daily monitoring of temperature to identify and isolate potentially infected 

individuals; while this method would be expected to have a high level of sensitivity – workers with

fevers would correctly be sent home – infectious individuals that do not present with a fever may

be exposed to colleagues during the 2 to 14-day pre-symptomatic incubation period [4, 5].  This 

limitation of fever-based screening is significant given that infectiousness is known to peak 0-2 

days prior to symptom onset [6].

Respiratory rate is a common screening tool to identify lower respiratory tract infections 

in clinical settings [7]; guidelines define tachypnea as a respiratory rate greater than 20 respirations 

per minute (rpm), and advise further tests (e.g., chest radiography) when present [7]. While such 

thresholds are useful in clinical settings, they are only implemented once symptoms have emerged 

and are not sensitive to intraindividual differences in normal respiratory function. Given that 

COVID-19 impairs and damages the respiratory system [2], it is reasonable to suggest that changes 

in respiratory efficiency – and therefore resting respiratory rate – might occur in the early stages 

of infection. In this context, noninvasive daily monitoring of respiratory rate may be used to detect 
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subclinical intraindividual deviations and identify potential infections that would otherwise be 

overlooked by clinical thresholds [7]. 

If deviations in respiratory rate are found to be an accurate indicator of COVID-19 

infection, respiratory rate monitoring could form part of the protocol used by medical professionals 

and organizations to enforce self-isolation and target testing. The aim of this study was to assess 

the ability of a novel algorithm to classify changes in respiratory rate as indicative of COVID-19 

infection immediately prior to and during the first days of symptoms and to evaluate the model’s 

robustness to instances of similar clinical presentations with differing etiology. 

Materials and methods

Respiratory rate, resting heart rate (RHR) and heart rate variability (HRV) were measured using

the WHOOP strap; the algorithms used to derive these metrics from the wearable’s

photoplethysmography sensor are beyond the scope of this paper, but have been validated in third

party analysis and shown to have high levels of agreement with gold standard methodology [8]. 

The WHOOP strap is a small, waterproof, and rechargeable device containing a 

photoplethysmogram, accelerometer, thermometer, capacitive touch sensor, and gyroscope, which 

can be worn comfortably 24-hours per day and lasts 5 days between charges. The wrist-worn strap

wirelessly transfers data to mobile devices running the associated WHOOP app; from there, data 

is transferred to a secure cloud-based data storage and processing server, collectively known as the

WHOOP system.

The following physiological data were obtained from the WHOOP system for this study: 
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● Respiratory rate – median value of respirations per minute, derived each night during the

main sleep period via photoplethysmography.

● RHR – average beats per minute sampled during the last five minutes of the last episode

of slow wave sleep each night.

● HRV – sampled during the last five minutes of the last episode of slow wave sleep each

night using the root mean square of successive RR interval differences (rMSSD) method

in units of milliseconds.

In addition to automated tracking of physiological data, the WHOOP app supports tracking of 

manually reported contextual factors. In response to the COVID-19 pandemic, on 14 March 2020, 

WHOOP added the ability to track COVID-19 symptoms and test results. Member-reported 

incidences of COVID-19 symptoms and test results were extracted through 06 June 2020. 

Respiratory rate, RHR, and HRV were extracted between 01 November 2019 and 30 November 

2019; respiratory rate was additionally sampled between 1 January 2020 and 06 June 2020 for 

individuals that reported test results for COVID-19. 
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Data analysis 

Stability of metrics 

Respiratory rate was evaluated as a potentially sensitive indicator of infection due to anecdotal 

observations of low internight variation in WHOOP data. A search of Pubmed showed no extant 

longitudinal studies reporting on variability of nightly respiratory rate in healthy adults. Therefore, 

to support the use of this metric in the model, a supplementary dataset from November 2019 was 

generated for analysis. A date range of 1 November 2019 through 30 November 2019 was chosen 

to avoid confounding factors related to the COVID-19 pandemic. A total of 25,000 WHOOP 

members were randomly selected (n = 750,000 nights); the only inclusion criteria was having 

respiratory rate recorded on all 30 consecutive nights. Resting heart rate and resting heart rate 

variability over this period were included for comparison. The following variables were calculated 

from the November dataset for each of the physiological metrics: 

● Mean intraindividual mean: mean within-member means.  

● Standard deviation of intraindividual means: standard deviation of within-member means.  

● Mean intraindividual standard deviation: mean within-member standard deviation. 

● Standard deviation of intraindividual standard deviations: standard deviation of within-

member standard deviations. 

● Coefficient of variation: intraindividual standard deviation divided by the intraindividual 

mean. 
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Predictive model 

Data Extraction 

A total of 271 adults (age = 37.3 ± 9.5, 190 male, 81 female) were included in the study; inclusion 

criteria were (1) self-reporting symptoms consistent with COVID-19 (i.e., cough, fever and/or 

fatigue) and (2) having been tested for the SARS-CoV-2 virus. These individuals were separated 

into three groups: 

● training dataset: individuals who began experiencing COVID-19 symptoms between 14

March 2020 and 14 April 2020 (n = 57);

● validation dataset 1: COVID-19 positive individuals who began experiencing COVID-19

symptoms between 14 April and 6 June 2020 (n = 24);

● validation dataset 2: individuals who experienced COVID-19 symptoms but reported a

negative test result (n = 190).

 In order to develop the algorithm, data were categorized by day relative to symptom onset (day 0) 

into: 

● healthy days: data extracted from 30 to 14 days prior to symptom onset;

● infected days: data extracted between 2 days prior to symptom onset and 3 days post

symptom onset.

All 271 individuals contributed to both categories, with a maximum of 15 healthy days per person 

and 6 infected days per person. For the training dataset, 146 infected days and 391 healthy days 

were included.  Due to the class imbalance between infected days and healthy days, synthetic 

samples (i.e., days) were generated for the positive class (i.e., infected days) by adding uniformly 

distributed random noise on the interval [0, 1) to each infected day, bringing the number of infected 
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days to 292.  Generation of synthetic samples was done only for training and was not repeated for 

the validation datasets. Synthetic samples were only used for training the model and were excluded 

from the analysis of the training set presented throughout. For validation dataset 1, 85 infected 

days and 235 healthy days were included. For validation dataset 2, 585 infected days and 1230 

healthy days were included.  

Data transformation 

The daily respiratory rate value (herein, current value) for each individual was transformed into 

features based on how it compared to the values taken on each of the 21 days prior.  In all datasets, 

only current values for which the prior 21 consecutive nights’ respiratory rates were available were

included. These features capture the dynamics of deviation from recent trends along a variety of

time scales. In generating the classifier’s features, the following metrics were used:

● RR0: current value (a respiratory rate)

● x̃: median of the respiratory rates in the 14 day period between 21 and 7 nights prior to 

the current value.

● σ: standard deviation of the respiratory rates in the 14 day period between 21 and 7 nights

prior to the current value.

● μ2: mean of the current value and immediately prior night’s respiratory rate.

● μ3: mean of the current value and immediately prior two nights’ respiratory rates.

● μ6: median of the immediately prior 6 nights of respiratory rates, excluding RR0.

● m6: slope of the linear regression of the collection of the respiratory rates of the current

day to 6 days prior, excluding RR0.
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The features derived from these metrics were: 

1. μ2 / x̃

2. (μ2 - x̃) / σ

3. RR0 - μ3

4. m6

5. μ2 - μ6

Collectively, these internally derived and novel features capture dynamics of the changes in 

respiratory rate over time. Utilizing a modified z-score (i.e., utilizing a median value rather than 

mean), creates a baseline that is robust to outlier values and more stable over the short time periods

explored in this study. Using a lagged baseline, as in x̃ in features 1 and 2, allows data to increase

during an incubation period without artificially elevating the baseline and masking the impact of

the SARS-CoV-2 infection.

A gradient boosted classifier was trained using Python Language Software (version 3.6.2) 

on the derived features to return a probability of SARS-CoV-2 infection on healthy and infected 

days. 

Model performance 

In order to evaluate the model’s performance for classifying healthy and infected days, a threshold 

value was assigned to the probability output of the model such that meeting or exceeding that 

threshold was equivalent to classifying healthy or infected days as COVID-19 positive (C+); while 

failing to exceed the threshold was equivalent to classifying healthy or infected days as COVID-
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19 negative (C-). The threshold value was strategically set at 0.3 to maximize the utility of the 

model by reducing the chance of false negatives at the expense of increasing false positives, in 

recognition that false negatives may have higher costs to society than false positives. The model’s 

performance for classifying healthy days and infected days for each dataset was also evaluated at 

that threshold by calculating sensitivity, specificity, positive predictive value (PPV) and negative 

predictive value (NPV).  

RESULTS 

Stability of metrics 

Thirty-day intraindividual variability of metrics are presented in Table 1. Respiratory rate was 

found to have a lower coefficient of variation than both heart rate variability and resting heart rate. 

 

Table 1. Intraindividual Means and Standard Deviations for selected metrics. 

Metric 
Intraindividual 
Mean (M±SD) 

Intraindividual 
SD (M±SD) 

Coefficient of 
Variation (%) 

Respiratory rate (rpm) 15.53 ± 1.42 0.51 ± 0.20 3.28% 

Resting heart rate (bpm) 55.89 ± 7.37 4.83 ± 1.77 8.60% 

Heart rate variability (ms) 65.22 ± 30.86 17.74 ± 9.59 27.20% 

 

Predictive model 

The model returned a continuous probability that a given sample is indicative of a SARS-CoV-2 

infection (Fig 1). Table 2 summarizes the performance of this model after mapping the model’s 

continuous probability output into C+ and C- classifications, bifurcated on the threshold of 0.3.  
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Fig 1. Top panel: Distribution of classifier output from the training dataset, separating infected 

days and healthy days. Middle panel: Distribution of the classifier output from the validation 

dataset separating COVID-19 positive infected days and healthy days. Bottom panel: Distribution 

of the classifier output from the validation dataset separating COVID-19 negative infected days 

and healthy days. For all panels, black bars denote infected days (top and middle: COVID-19 

positive, bottom: COVID-19 negative), gray bars denote healthy days; y-axes show the relative 

frequency of the classifier’s output values, binned with widths of 0.04, with infected days and 
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healthy bars plotted side by side. Dashed black lines show the threshold value of 0.3 which is used 

to map the continuous distribution of the model’s output to a binary classification. 

 

Table 2. Performance of the model for the classification of healthy days and infected days for 
each dataset. 

Dataset Sensitivity Specificity PPV NPV 

Training dataset - 
COVID-19 Positive 

41.1% 98.5% 90.9% 81.7% 

Validation dataset 1 - 
COVID-19 Positive 

36.5% 95.3% 73.8% 80.6% 

Validation dataset 2 - 
COVID-19 Negative 17.1% 95.0% 61.7% 70.7% 

Note: This table evaluates the model’s ability to discriminate between healthy days and infected 

days for each dataset. In the training and first validation dataset, all infected days are COVID-19 

positive while the second validation dataset’s infected days are COVID-19 negative. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2020. ; https://doi.org/10.1101/2020.06.18.20131417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.18.20131417
http://creativecommons.org/licenses/by-nc/4.0/


PRE-PRINT
 

 
Fig 2. Cumulative percentage of individuals from each dataset that were classified as COVID-19 

positive (C+) or COVID-19 negative (C-) relative to symptom onset (day=0). 

 

Fig 2 quantifies the percentage of individuals in each dataset to whom the model would 

have assigned a positive or negative COVID-19 classification relative to symptom onset. Note that 

only the subset of users who had available samples on each of the 6 evaluated days were included. 
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In the training dataset (n=23), 73.9% of individuals had at least one correct C+ classification over 

the six day period. In validation dataset 1 (n=10), 80.0% of the individual subjects had at least one 

correct C+ classification; during that same relative time period, while 34.2% of the individuals in 

validation dataset 2 (n=79) had one or more C+ classification. 

DISCUSSION 

The aim of this study was to assess the ability of a novel algorithm to classify changes in respiratory 

rate, as indicative of COVID-19 infection immediately prior to and during the first days of 

symptoms. The major findings of this study are (1) stability of nightly respiratory rate 

measurements within healthy individuals makes it a useful metric for tracking changes in wellness; 

(2) the model is capable of distinguishing between healthy days and infected days for individuals 

that tested positive to COVID-19 as well as those who had symptoms but tested negative; (3) the 

model identified 20% of individuals of COVID-19 positive prior to the onset of symptoms, and 

correctly identified 80% of COVID-19 positive individuals by the third day of symptoms. 

Stability of metrics 

This is the first study to report on nightly changes in resting heart rate, heart rate variability, and 

respiratory rate in healthy individuals. Our findings show that while interindividual variation in 

nightly respiratory rate can be large, intraindividual variability across 30 nights is typically quite 

small, with mean intraindividual standard deviation of 0.51 ± 0.20 rpm. The finding that nighttime 

median respiratory rate in healthy individuals has low internight variability is a novel finding of 

this paper and suggests that deviations in respiratory rate may be a useful indicator of acute changes 

in lower respiratory tract health.  
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Predictive model 

This is the first study to examine the potential for continuously monitored respiratory rate to 

identify early stages of COVID-19 infections. A predictive algorithm was formulated to leverage 

individual baseline data and determine if nightly respiratory rate when contextualized by 21-day 

trends can predict COVID-19 infections. A significant finding was that 20% of COVID-19 positive

individuals were identified prior to the onset of symptoms and 80% of COVID-19 positive

individuals were correctly identified by the third day of symptoms (Fig 2). This suggests that the

final stages of incubation and early stages of the infection may have a detectable signature that can

identify individuals who should self-isolate and seek testing. This novel approach may be

particularly advantageous for individuals with low resting respiratory rates, who despite

experiencing significantly elevated respiratory rates relative to their personal baseline, might not

be medically classified as tachypneic according to globally defined norms [7]. 

There are a number of practical applications for the current model’s ability to analyze daily

changes in respiratory rate, including aiding testing protocols and monitoring essential workers.

The limited availability of testing kits and the time-intensive nature of most laboratory tests makes

repeated screening for an individual both costly and impractical. Despite strict testing criteria, 3-

12% of laboratory COVID-19 tests return a positive result [9]. Given the performance of the

current model at discriminating between COVID-19 and other illnesses with similar

symptomatology, it could potentially be used to streamline testing protocols in areas that may have

testing kit shortages. In addition, this algorithm may be particularly useful in situations where

physical distancing is impractical (e.g., industry, elite sport, healthcare), but where a positive

COVID-19 case could have major implications. Along with recommended hygiene and physical
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distancing protocols, wearable technology could be used as a point of care measure to monitor 

employees and/or athletes during the transition back to work and competition.  

Some boundary conditions should be considered when interpreting the results of this study. 

Firstly, COVID-19 test results and date of symptom onset were reported by WHOOP members 

directly in the WHOOP app and were not verified by medical professionals. All COVID positive 

individuals included in the analyses experienced symptomatic COVID-19 disease, thus the model 

has not been evaluated for its performance in fully asymptomatic cases; given that asymptomatic 

COVID-19 cases are contagious [10], further analysis is required to determine the utility of the 

algorithm in those cases. We note that we did not collect final diagnoses from individuals who 

tested negative to COVID-19, so the COVID-19 negative cohort may represent individuals with a 

variety of illnesses; further research beyond the scope of this study is warranted to segment model 

performance by non-COVID-19 diagnosis, especially for conditions with similar initial clinical 

presentations. The number of unique individuals included in the analyses could be seen as a 

limitation, however the model was trained using data extracted from multiple days from each user. 

When interpreting the model’s performance, it should be noted that the sensitivity and 

specificity of the model are determined both by the discriminatory power of the features and by 

the threshold selected to discriminate between C+ and C- designations. As illustrated in Fig 1, 

healthy days tend to be assigned lower probabilities of being COVID-19 positive while infected 

days tend to be assigned higher probabilities. For the same probability distributions, a higher 

threshold would result in higher specificity but lower sensitivity, while a lower threshold makes 

the opposite tradeoff increasing sensitivity while decreasing specificity. The optimal threshold for 

a given model is dependent on its intended application; while a threshold of 0.5 would maximize 

accuracy, this is often not the metric most associated with practical utility. For the algorithm 
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presented in this study, a false positive – indicating that COVID-19 negative individual may be 

COVID-19 positive – means that an individual self-isolates unnecessarily, while a false negative 

– indicating that a COVID-19 positive individual is COVID-19 negative – could result in the

individual interacting with and potentially infecting others. Therefore, the reduced threshold value 

of 0.3 was chosen in recognition that false negatives have higher costs to society than false 

positives. We note that the threshold selection process was not particularly rigorous and that the 

optimal tradeoff between false positives and false negatives would be dependent on a number of 

unknown factors beyond the scope of this analysis. Finally, it should be noted that the WHOOP 

strap is not a medical device and should not be used as a substitute for professional medical advice, 

diagnosis or treatment. 

Conclusions 

This study presents a novel, non-invasive method for detecting SARS-CoV-2 infection prior to

and during the first days of symptoms. The findings indicate that the early stages of the infection

may have a detectable signature that could help identify individuals who should self-isolate and

seek testing. Future investigations should examine the performance of respiratory rate based 

algorithms to classify infection among larger and more diverse cohorts.
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