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Abstract

Roughly six months into the COVID-19 pandemic, many countries have man-
aged to contain the spread of the virus by means of strict containment mea-
sures including quarantine, tracing and isolation of patients as well strong
restrictions on population mobility. Here we propose an extended SEIR
model to explore the dynamics of containment and then explore scenarios
for the local extinction of the disease. We present both the deterministic and
stochastic version fo the model and derive the R0 and the probability of local
extinction after relaxation (elimination of transmission) of containment, P0.
We show that local extinctions are possible without further interventions,
with reasonable probability, as long as the number of active cases is driven
to single digits and strict control of case importation is maintained. The
maintenance of defensive behaviors, such as using masks and avoiding ag-
glomerations are also important factors. We also explore the importance of
population immunity even when above the herd immunity threshold.
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1. Introduction1

The COVID-19 pandemic is among the top three biggest in the last on2

hundred years, reaching levels only previously seen in Influenza pandemics[1].3

At the time of writing, more than 8 million confirmed cases have been re-4

ported globally, with more than 500 thousand deaths [2]. Most affected5

countries still observe transmission, even if number of new cases show signs6

of reduction. Even with few cases, if cities (or countries) decide to lift quaran-7

tine measures, transmission may increase again due to the presence of sizeable8

portion of susceptible individuals suddenly at greater risk of infection.9

The initial containment response varied considerably across countries,10

with some countries displaying more success than others in avoiding infec-11

tions and subsequent deaths[3, 4, 5]. The economic impact of the containment12

efforts in the form of quarantines, lock-downs, suspension of international13

travelling and other drastic measures, has been remarkable [6]. This eco-14

nomic strain has forced many countries towards an early suspension of many15

of the most severe containment measures such as quarantines and mobility16

restrictions [7]. Naturally, the re-normalization of social interaction brings17

with it may concerns about the potential for a second wave of transmissions,18

which could potentially grow out of control [8].19

Thus, an important question that emerges after a period of isolation is:20

What’s the probability that local infections will be eliminated once the isolation21

is lifted?. Evaluating scenarios for incidence evolution after these initial22

containment efforts requires models which accommodate both biological and23

population-level dynamics. In particular, models that can represent properly24

the immunological aspects of COVID-19 progression as well as the impact of25

containment mechanisms, such as quarantine and social distancing.26

Many models have been proposed recently to deal with the temporal evo-27

lution of the epidemic[9, 10, 11], but one key aspect that must be considered28

is the contribution of stochastic fluctuations to the interruption of local trans-29

mission after the number of active cases is brought close to zero. Kucharsky30

et al. (2020, [12]), used an stochastic transmission model to estimate the31

daily reproduction number, Rt, which is often used to predict disease ex-32

tinction (Rt < 1), but empirical estimates of basic reproduction numbers33

are very sensitive to noise in the testing rates as well as to changes in case34

definition. Moreover, in real populations, Rt can move back above one quite35
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easily in response to changes in the population protective behavior.36

In this paper, we approach the issue of local disease extinction by cal-37

culating the probability of extinction of the disease as a stochastic epidemic38

process. In the context of epidemics, the correct epidemiological terminology39

for the stochastic extinction is the local “elimination of infections”. In this40

paper, however, we shall continue to use the term extinction throughout,41

as it is shorter and more in line with the literature on stochastic processes.42

The probability of extinction is greater when the number of infected is low,43

so we calculate this probability assuming post-containment scenarios where44

cases have been dropped to very low numbers. We start by presenting the45

deterministic version of the model and derive its basic reproduction number.46

Then we derive an stochastic version of the same model and use it to calcu-47

late an analytical expression for the extinction probability. We conclude by48

looking at scenarios of local extinction and discussing how it applies to real49

scenarios, including also the impact of the fraction of the population already50

immunized upon the lifting of containment.51

2. Methods52

2.1. The SEIAHR model53

First, we describe the (deterministic) model used to represent COVID-54

19 dynamics. The Susceptible-Exposed-Infectious-Removed (SEIR) model is55

a classic model for diseases for which it is important to take into account56

an incubation period, and variants of it have been employed in numerous57

COVID-19 modelling studies [13, 14]. Here, we propose a variation of this58

model with added asymptomatic, hospitalized compartments and a quaran-59

tine mechanism (fig. 1). Ther is no explicit compartments for Quarantied an60

dead individuals as they are pure sink states that do not influence the main61

dynamics.62
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Figure 1: Block diagram of the SEIAHR model. compartments Q and death are included
for illustrative purposes only.

The model is represented as system of ordinary differential equations:

dS

dt
= −λ[(1− χ)S], (1a)

dE

dt
= λ[(1− χ)S]− αE, (1b)

dI

dt
= (1− p)αE − δI − φI, (1c)

dA

dt
= pαE − γA, (1d)

dH

dt
= φI − (ρ+ µ)H, (1e)

dR

dt
= δI + ρH + γA, (1f)

with λ = β(I + A) as the force of infection. State variables S,E, I, A,R,H63

represent the fraction of the population in each of the compartments, thus64

S(t) +E(t) + I(t) +A(t) +H(t) +R(t) = 1 at any time t. Quarantine enters65

the model through the parameter χ which can be taken as a constant or as a66

function of time, χ(t), that represents the modulation of the isolation policies.67

Quarantine works by blocking a fraction χ of the susceptibles from being68
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exposed, i.e., taking part on disease transmission. Time-varying quarantine69

is achieved through multiplying χ by activation (eq. 2) and deactivation (eq.70

3) functions:71

As(t) =
1 + tanh(t− s)

2
, (2)

and72

De(t) =
1− tanh(t− e)

2
, (3)

where s and e are the start and end of the isolation period (e > s), respec-73

tively. A finite period τ = e−s of quarantine can be defined by the combined74

effect of both functions:75

χ(t) = χAs(t)De(t). (4)

Figure 2 illustrates the activation and deactivation of quarantine.76
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Figure 2: χ(t) upon activation and deactivation of quarantine for χ = 0.3. Panel on the
left shows each function separately(χA1(t) and χD1(t)) set to t = 1. The right panel shows
a combination with activation on t = 1 and deactivation on t = 6 (χ(t) = χA1(t)D6(t)).78

2.2. Basic Reproduction Number79

The basic reproduction number for the SEIAHR model can be derived using80

the next generation matrix method[15], which we show in Appendix A. The81

expression for R0 is82

R0 =
β(1− χ)(p(φ+ δ) + (1− p)γ)

γ(δ + φ)
. (5)
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Table 1: State transitions and rates for the stochastic SEIAHR model. In the state
transition column, only the changing state variables are indicated.

Description State transition rate
Infection (S,E)→ (S − 1, E + 1) λ(1− χ)S
Exposed to I (E, I)→ (E − 1, I + 1) (1− p)αE
Exposed to A (E,A)→ (E − 1, A+ 1) pαE
Hospitalization (I,H)→ (I − 1, H + 1) φ I
Recovery of I (I, R)→ (I − 1, R + 1) δI
Recovery of A (A,R)→ (A− 1, R + 1) γA
Recovery of H (H,R)→ (H − 1, R + 1) ρH
Death of H H → H − 1 µH

From equation (5) we can obtain Rt = R0S(t) and another reproduction83

number, denoted by Rc, which we shall call control reproduction number, as84

it represents the average number of secondary cases infected by primary cases85

under some control scenario – i.e. whenever χ > 0.86

2.3. Probability of extinction87

The question of the local extinction the disease can be more realistically88

addressed with a stochastic version of the SEIAHR model, where the com-89

bination of a discrete state and stochastic state transitions allow for actual90

extinctions to occur.91

The transition rates from the ODE model (Eqs 1) listed on table 1, can be92

used to build a continuous–time markov chain model where time is continuous93

but the state is discrete, allowing for a more realistic description of population94

changes over time.95

This model is a multivariate stochastic process {S(t), E(t), I(t), A(t), H(t)}
where R(t) = N − (S(t) + E(t) + I(t) + A(t) + H(t)). We will leave the
equation of R out, because it is decoupled from the rest of the system. A
joint probability function is associated with the set of random state variables,
{S(t), E(t), I(t), A(t), H(t)},

Ps,e,i,a,h(t) = Pr (S(t) = s, E(t) = e, I(t) = i, A(t) = a,H(t) = h) ,

6
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which leads to the Kolmogorov forward equation

dPs,e,i,a,h
dt

= Ps+1,e−1,i,a,hλ(1− χ)(s+ 1) + Ps,e+1,i−1,a,h(1− p)α(e+ 1)

+ Ps,e+1,i,a−1,hpα(e+ 1) + Ps,e,i+1,a,h−1φ(i+ 1) + Ps,e,i+1,a,hδ(i+ 1)

+ Ps,e,i,a+1,hγ(a+ 1) + Ps,e,i,a,h+1ρ(h+ 1) + Ps,e,i,a,h+1µ(h+ 1). (6)

As a continuous–time branching process, the extinction threshold for the96

stochastic model is closely related to the corresponding one in the determin-97

istic model but depends on the initial number of infectious individuals[16].98

Based of the properties of this kind of stochastic processes, Whittle (1955)99

calculated the probability of extinction for the stochastic SIR model to be100

P0 =
(

1
R0

)i
, where i is the initial number of infectious individuals[17].101

We can apply the same technique described for the stochastic SEIR model102

by Allen and Lahodny [16] to derive the probability of extinction for the103

SEIAHR model.104

The analysis presented in Allen and Lahodny [16] assume proximity to the105

DFE with a large enough number of susceptibles and a small number of106

infectious individuals. Assuming a value for R0 from other epidemics or107

estimated from initial exponential growth.108

For a realistic application to the COVID-19 epidemic at the moment t of the109

relaxation of population lockdown, we need to acknowledge that S(t) < N ,110

whilst not knowing what the exact value of S at time t and thus the effective111

reproduction number at the time. Nevertheless, we know from equation (5)112

that Rt is a function of S(t). Therefore, we calculate P0 for various values113

of Rt.114

Analytical expression for P0. The probability of extinction, P0, can be com-115

puted analytically following the derivation of probability-generating func-116

tions for the system of equations in (6), the details of which are given in Ap-117

pendix B. The probability of extinction is computed from the fixed points of118

the PGFs, q1, q2 and q3, which lie in (0, 1)3. With the fixed points in hand,119

we arrive at120

P0 =
3∏
i=1

qkii , (7)

where ki are the initial states k1 = E(0), k2 = I(0) and k3 = A(0). Here we121

denote the moment of relaxation of containment as t = 0.122

7
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Numerical approximation to P0. The expression in (7), while very useful, is123

derived from the assumption that the initial state is small compared to the124

size of the population and that S(0) ≈ N . Due to the possible deviations125

from the theoretical value of P0 when S(0) < N , In the results, we always126

present estimates of P0, obtained by simulation as well.127

We can approximate P0 for a given R0 and an initial number of infected in-128

dividuals (E + I +A). This can be accomplished by running a large number129

of simulations of the stochastic model and computing the fraction of simu-130

lations in which the virus is driven out of the population (E + I + A = 0)131

without first causing an outbreak. To facilitate setting up the simulation to132

specific R0, we can rewrite the force of infection by replacing β as a function133

of R0 (eq. A.8):134

β =
γ (δ + φ)R0

(1− χ) [pφ+ p (δ − γ) + γ]
. (8)

2.4. Effect of Increasing Seroprevalence135

After a first wave of infections a fraction of the population will become im-136

munized against SARS-COV-2. This will have a protective effect on the137

population even if S(t) is still above the so-called “herd immunity” threshold138

of 1/R0. The resulting adjusted P0 for different levels of population immu-139

nization can be determined through simulation of the stochastic SEIAHR140

model (eq. 6).141

3. Results142

Figure 3 shows how imposing strong containment measures can reverse the143

growth of the number of cases. But a second wave starts immediately after144

the restrictions are relaxed. Figure 4 shows that in three out of ten post-145

containment simulations, the containment resulted in the extinction of the146

disease, with the other resulting on a second wave.147

Depending on the value of Rt at the moment the quarantine is lifted and the148

number of remaining active cases, the probability of extinction can favor the149

stochastic extinction of the disease (Fig 5).150

Tables 2 and 3 contain the values of P0 for different scenarios of number of151

infectious, with high and low R0 respectively.152

We also estimated the P0 adjusted for different fractions of immune individ-153

uals (R) in population from 10000 simulations of the stochastic model. The154

results are presented in table 5.155
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Figure 3: Effect of containment, χ = .99 for 55 days starting on the 50th day of the
epidemic. Simulation parameters were φ = 0.01, R0 = 1.7, ρ = 0.21, δ = 0.04, α = 0.34,
µ = 0.02, p = 0.76, s = 50, e = 105.

Table 2: Probabilities of extinction for Rt = 2.5. Approximate P0 was calculated from a
set of 10000 runs of the stochastic SEIAHR model with different number of initial infectious
individuals(I0).

I0 E0 A0 Approx. P0 SEIAHR P0 SIR P0

1 0 0 0.47 0.45 0.4
2 0 0 0.22 0.20 0.16
3 0 0 0.10 0.09 0.06
4 0 0 0.024 0.04 0.025
5 0 0 0.005 0.01 0.01
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Figure 4: Ten runs of the stochastic SEIAHR model with the same parameters used on
fig. 3. In 3 out of 10 runs the containment could eliminate the disease but the remaining 7
gave origin to a second wave. All simulations had I(0) = 2 and R0 = 1.7, on a population
of 5000.

Table 3: Probabilities of extinction for Rt = 1.7. Approximate P0 was calculated from a
set of 10000 runs of the stochastic SEIAHR model with different number of initial infectious
individuals(I0).

I0 E0 A0 Approx. P0 SEIAHR P0 SIR P0

1 0 0 0.63 0.64 0.58
2 0 0 0.43 0.41 0.33
3 0 0 0.25 0.26 0.19
4 0 0 0.18 0.17 0.11
5 0 0 0.10 0.10 0.06

10
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(a) SIR model

(b) SEIAHR model.

Figure 5: Probability of local extinction, P0 as a function of Rt and I0.(a)for the SIR
model and (b) for the SEIAHR model.
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Table 4: Probabilities of extinction for Rt = 1.1. Approximate P0 was calculated from a
set of 10000 runs of the stochastic SEIAHR model with different number of initial infectious
individuals(I0).

I0 E0 A0 Approx. P0 SEIAHR P0 SIR P0

1 0 0 0.91 0.92 0.90
2 0 0 0.82 0.86 0.82
3 0 0 0.75 0.79 0.75
1 1 1 0.71 0.76 –
4 0 0 0.69 0.73 0.68
1 3 0 0.66 0.69 –
5 0 0 0.63 0.68 0.62

Table 5: Adjusted P0 for different levels seroconversion(R(0)) of the population. Results
are the fraction of stochastic extinctions in 10000 simulations, with R0 = 1.1.

I0 R(0) P0

10 0 0.35
10 0.1 0.60
10 0.2 0.82
10 0.3 0.93
15 0.3 0.91
20 0.3 0.88
45 0.3 0.78
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Table 6: Expected time to elimination of infections, in days, counting from the end of
containment. Time is expressed as mean and 95% interval. Values where estimated from
a 10000 runs of the stochastic SEIAHR model and rounded to the nearest integer number
of days.

Immune fraction I0 Time to extinction in days
0 10 149 [38, 325]
0 5 105 [17, 313]
0 1 36 [1, 185]
0.2 10 145 [32, 333]
0.2 5 99 [15, 313
0.2 1 36 [1, 201]
0.4 10 147 [34, 301]
0.4 5 103 [15, 308]
0.4 1 37 [1, 216]

Table 6 shows the expected time in days until extinction under different levels156

of population immunity and post-containment number of infected.157

4. Discussion158

Most countries who managed to control the first wave of COVID-19 did it by159

means of imposed restrictions on human-to-human contact. Be it through160

quarantine, tracing and isolation, use of masks or a combination of social dis-161

tancing tactics, they managed to minimize contacts and thus transmission.162

Here we have introduced a transmission model (SEIAHR) in both determin-163

istic and stochastic formulation, which includes the isolation of susceptibles164

as a means of reducing transmission as well as different levels of infectious165

individuals. From these models (deterministic and stochastic versions) it is166

possible to explore the consequences of social distancing as well as to cal-167

culate the probability of a second wave upon the suspension of distancing168

behavior. Figure 3 shows how imposing strong social distancing can inter-169

rupt the transmission, bringing the prevalence to near zero. However, if steps170

are not taken to permanently change the way people interact in their daily171

routine, at work, school, public transport, etc. The reproduction number172

upon lifting of the restrictive regulations, will still be substantially higher173

than one and will drive a powerful second wave if the population is still far174

from herd immunity conditions.175
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In the deterministic version of SEIAHR, a second wave will always happen176

due to the asymptotic way that the number of infectious approach zero.177

Treating the epidemic process as the stochastic process that it actually is,178

we can see that the probability of local extinction post-reactivation is quite179

substantial (fig 5). In the stochastic SEIAHR, extinction events will happen180

with slightly lower probabilities than those of a SIR model justifying using181

more detailed model to study this problem. Figure 4 shows stochastic ex-182

tinction taking place in three out of ten runs, with Rt = 1.7 and I0 = 2. The183

Stochastic model allows us to compute the probabilities of eliminating local184

transmission under various scenarios, and can be a useful tool for planning185

when to lift restrictions to human mobility and interaction.186

Though the probabilities of elimination of local infections seem rather low187

on the basic scenarios described on tables 2, 3 and 4, these do not tell us the188

whole story. If one takes into account the immunity acquired by the popula-189

tion during the containment period, one can see from the results in table 5,190

that even if a location is still far from achieving herd immunity, any acquired191

immunity will greatly improve the chances local extinction substantially.192

Communities that managed to contain the disease and bring it to the brink193

of extinction with severe economic impact, need to know how likely they are194

in succeeding in their fight against the disease as they return to “normal”195

social and economic activities. Our results also reinforce the need to run196

seroprevalence surveys previous to the reopening so that the probability to197

eliminate local infections e properly adjusted for the context of each locality.198

Here we explored how to improve the chances for local transmission elimina-199

tion but it must be kept in mind that the Rt must be kept low (through the200

use of masks and social distancing) in the post-containment period to guar-201

antee elimination and even when properly executed the time to elimination202

can vary from weeks to months, as shown in table 6.203
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Appendix A. Derivation of the basic reproduction number258

In order to use the next-generation method, we start by identifying all m259

compartments containing infected individuals. In this case they are E, I260

and A and m = 3. Let F be the vector of the rates of appearance of new261

infections in the three infectious compartments:262

F =

λ(1− χ)S
0
0

 . (A.1)

Next, we let Vi(x)− be rate infectious individuals leave compartment i, and263

Vi(x)+ be the rate with which they enter compartment i:264

V− =

 αE
(δ + φ)I
γA

 , (A.2)

and265

V+ =

 0
(1− p)αE
pαE

 . (A.3)

After defining these we can calculate V(x) = Vi(x)− − Vi(x)+:266

V =

 αE
(p− 1)αE + (δ + φ)I
−pαE + γA

 . (A.4)

Now, if we let x = {E, I, A} and x0 be the Disease-free equilibrium (DFE),267

we can define268

F =

[
∂Fi
∂xj

(x0)

]
=

 0 −Sβ(χ− 1) −Sβ(χ− 1)
0 0 0
0 0 0

 , (A.5)

and269

V =

[
∂Vi
∂xj

(x0)

]
=

 α 0 0
α(p− 1) (δ + φ) 0
−αp 0 γ

 . (A.6)
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The next generation matrix is given by FV −1:270

K =

 − (Sβχ−Sβ)pφ+(Sβχ−Sβ)γ+((Sβχ−Sβ)δ−(Sβχ−Sβ)γ)p
δγ+γφ

−Sβχ−Sβ
δ+φ

−Sβχ−Sβ
γ

0 0 0
0 0 0


(A.7)

The spectral radius of K at the DFE (when S(0) ≈ 1), is the basic reproduc-271

tion number of the model, R0 = ρ(FV −1),272

R0 = −(βχ− β)pφ+ (βχ− β)γ + ((βχ− β)δ − (βχ− β)γ)p

δγ + γφ
, (A.8)

which, after simplification, gives equation (5).273

Appendix B. Probability generating functions274

Following [16], we derive the probability-generating functions (PGF) for each
infectious compartment. Starting with Ii(0), the probability of an infected
individual in state i producing offspring of type j given that Ij(0) can be
obtained from

fi(z1, . . . , zk) =
∞∑
jk=0

· · ·
∞∑
j1=0

Pi(z1, . . . , zk)z
j1
1 · · · z

jk
k .

The desired probabilities can be obtained by differentiating the PGF with275

respect to zi and setting all z to 1. Notice fi has a fixed point at z1 = . . . =276

zk = 1.277

Computing the relevant probabilities is straightforward by keeping track of278

the possible transitions (given in Table 1) and considering that only one279

transition may occur in a given time interval ∆t. First, when E(0) = 1,280

I(0) = 0 and A(0) = 0, we have281

f1(z1, z2, z3) = (1− p)z2 + pz3, (B.1)

and when E(0) = 0, I(0) = 1 and A(0) = 0 the PGF is282

f2(z1, z2, z3) =
β(1− χ)z1z2 + δ + φ

β(1− χ) + δ + φ
. (B.2)
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Finally, for the case E(0) = 0, I(0) = 0 and A(0) = 1:283

f2(z1, z2, z3) =
β(1− χ)z1z3 + γ

β(1− χ) + γ
. (B.3)

From the PGFs, we can obtain a matrix M whose entries mji = ∂fi
∂ui
|u=1 are284

the expected number of offspring in state j from an individual in state i.285

Given the PGFs above, we arrive at286

M :=

 0 1− p p
β(1−χ)

β(1−χ)+δ+φ
β(1−χ)

β(1−χ)+δ+φ 0
β(1−χ)

β(1−χ)+γ 0 β(1−χ)
β(1−χ)+γ

 . (B.4)

To obtain the probability of extinction, P0, we need to find the fixed points of
the PGFs, i.e. solutions to equations of the form fi(q1, q2, q3) = qi, qi ∈ (0, 1).
After some tedious algebra, we arrive at

q1 =
−σ + (1− χ)β + (φ+ δ) + γ

2(1− χ)β
, (B.5)

q2 =
(φ+ δ)(σ − (1− χ)β − (φ+ δ) + γ)

2(1− χ)β(p− 1)((φ+ δ)− γ)
, (B.6)

q3 =
γ(σ − (1− χ)β + (φ+ δ)− γ)

2(1− χ)βp((φ+ δ)− γ)
. (B.7)

with σ =
√

((1− χ)β)2 + 2(1− χ)β(2p− 1)((φ+ δ)− γ) + ((φ+ δ)− γ)2.287
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