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Abstract The spread of a disease caused by a virus can happen through human to
human contact or could be from the environment. A mathematical model could be
used to capture the dynamics of the disease spread to estimate the infections, recov-
eries, and fatalities that may result from the disease. An estimation is crucial to make
policy decisions and for the alerts for the medical emergencies that may arise. Many
epidemiological models are being used to make such an estimation. One major fac-
tor that is important in the forecasts using the models is the dynamic nature of the
disease spread. Unless we can come up with a way of estimating the parameters that
guide this dynamic spread, the models may not give accurate forecasts. The main
principle is to keep the model generic while making minimal assumptions. In this
work, we have derived a data-driven model from SEIRD, where we attempt to fore-
cast Infected, Recovered and Deceased rates of COVID-19 up to a week. A method
of estimating the parameters of the model is also discussed thoroughly in this work.
The model is tested for India at a district level along with the most affected foreign
cities like Lombardia from Italy and Moscow from Russia.

The forecasts can help the governments in planning for emergencies such as ICU
requirements, PPEs, hospitalizations, and so on as the infection is going to be preva-
lent for some time until a vaccine or cure is invented.

Keywords Time-Dependent · SEIRD Model · data-driven · Parameter Estimation

1 Introduction

Novel Coronavirus has become a pandemic within no time from the time of its detec-
tion in Wuhan, a province of China. This has been declared as a pandemic by WHO
resulting in around 6,876,647 cases worldwide, by 6th of June[3]. Around 237,754
were affected in India alone. With 6,650 reported Deaths, the cases are rapidly rising,
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where Maharashtra is leading the tally. Its rapid progress has necessitated the need
to come up with models to model the spread of the virus under different conditions
like lockdown, hotspots, and migration of people across the places, and so on. The
outbreak of novel coronavirus Covid19 and the ensuing utter chaos and the utter un-
certainty caused by the pandemic in the entire world is unprecedented. More than ever
before, it emphasizes the need for robust mathematical models that can guide policies
to control the spread of infection and help in planning the hospital requirements such
as PPEs, ventilators, etc [10].

In the literature several epidemiological models such as Susceptible, Infected,
Recovered(SIR), Susceptible, Exposed, Infected, Recovered(SEIR) and Susceptible,
Exposed, Infected, Recovered and Deceased (SEIRD), etc have been proposed to
model the virus spreads like H1N1, SARS, Ebola, and others. EpiModel is a very
useful software package, developed in ‘R’ language, that allows simulation of com-
partmental models, stochastic individual contact models, and the more recent network
models [6].

2 Existing Models

A few existing epidemiological models, from which the current model is derived are
discussed here. The first model used to model the pandemic virus spread is the SIR
model.

2.1 SIR

SIR or the Susceptible, Infected, Recovered Model, this popular model [15] considers
a closed population. It initially considers a small part of the population as infected.
This small percentage is considered to infect R0 others, where R0 is the Basic Repro-
duction Rate[1]. The SIR model can be described as

∂S
∂ t

=−β
SI
N

∂ I
∂ t

= β
SI
N
− γI

∂R
∂ t

= γI

Here S, I, R stand for Susceptible, Infected and Recovered respectively. β is the
Transmission rate and γ is the Recovery rate.
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Fig. 1: SIR Model

2.2 SEIR

The SIR model discussed here does not consider the percentage of the population
who are exposed to the disease, but do not show any symptoms. When the incubation
period i.e, the time elapsed before developing symptoms is significant, the SIR model
will not be able to capture it. This leads to the SEIR model- Susceptible, Exposed,
Infected, Recovered. The model is similar to SIR except that there is a transition from
S to E instead of S to I. And the exposed percentage can also infect the Susceptible.
In a closed population, the SEIR model can be represented as

∂S
∂ t

=−β
SI
N

∂E
∂ t

= β
SI
N
−αE

∂ I
∂ t

= αE− γI

∂R
∂ t

= γI

Here, β is the Transmission rate. α is the Incubation rate (Transition rate from E
to I) while γ is the Recovery rate.

Fig. 2: SEIR Model
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Many extensions of the compartmental model have been proposed. These include
extra compartments to denote, for example, the contaminated environmental reservoir
[7], the eight compartment model of Tang et al.[9] to include quarantined individu-
als and hospitalization, etc. Most of the papers in the literature consider the SEIR
model with a deterministic approach by fixing the parameters to model the spread of
infection.[8][11].

Yang and Wang consider the dynamic nature of the tuning parameters themselves.
They consider the time-dependent parameters to model the spread of COVID 19 virus
in Wuhan extending the SEIR model [7]. They have concluded that the disease is an
endemic process and requires a long term plan to spread of the virus.

The model of B.Tang et al. [4] is one of the few which considers the parameters
including the rate of transmission, contact rate, recovery rate as functions of time and
simulate the model in order to predict the size of the infected population. They use
the Markov Chain Monte Carlo (MCMC) procedure to fit the model to the data.

We observe that one of the main challenges in adopting the compartmental mod-
els lies in tuning the number of parameters involved in the model. The work in the
literature fixes the parameters based on the indicators given by epidemiological ex-
perts in the scenario. The emphasis of the current work is to estimate the parameters
from the data.

3 Model formulation and Analysis

– Basic SEIR Model
We initially ran our data against a basic SEIR model. It was observed that the
results are not as accurate as expected. We were also not able to fit the Recovered
rates as expected. So we extended our model to include parameter estimation- an
optimized concept to estimate the parameters as per the data rather than assuming
them.

– Approaches to Parameter Estimation
– Grid Search

In this model, a Grid Search is used to estimate parameters. A broad range is
assigned to each of the parameters. The model then tunes the parameters to
get possible values that fit the data.
This model is computationally expensive. It takes about an hour and a half
to run it on Google Colaboratory. Once the range of parameters is narrowed
down, it forecasts the rates which are more accurate than the previous model.

– Walk forward with Grid Search
After working on different models, it is evident that the parameters are non-
stationary i.e, they change constantly. This model implements the Walk for-
ward approach. Until the last model, the parameters are estimated for the
training set as a whole. In this model, they are estimated incrementally one
day at a time. The parameters obtained for the previous day are used to esti-
mate the current day parameters.
Though this model is relatively more accurate than the previous versions, it
is extremely expensive in terms of computation. Efforts are made to extend
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this model using Parallel computation to no avail. It took about 3-4 hours on
Google Colaboratory to run this model.

4 Time-Dependent SEIRD Model

In order to capture the transmission dynamics, we implemented a time-dependent
SEIRD model. In this model, we try to estimate parameters from the equations de-
rived from the traditional SEIRD model rather than fitting them directly from the
data. [4].
This approach resulted in forecasts of Infected, Recovered, and Deceased rates for
a week and run time is also exceptionally low, compared to previous models. This
model can be represented as follows:

∆S =−β (t)S(t)I(t)
N

(1)

∆E =
β (t)S(t)I(t)

N
− α(t)E(t) (2)

∆ I = α(t)E(t) − γ(t)I(t) − δ (t)I(t) (3)

∆R = γ(t)I(t) (4)

∆D = δ (t)I(t) (5)

From (4), we have

γ(t) =
∆R
I(t)

(6)

From (5), we have

δ (t) =
∆D
I(t)

(7)

Using (6) and (7) in (3) yields

α(t) =
∆ I +∆R+∆D

E(t)
(8)

Using (8) in (2) yields

β (t) =
(∆E +∆ I +∆R+∆D)N

S(t)I(t)
(9)
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Fig. 3: SEIRD Model

4.1 Data requirements and format to run the model

This model takes a .csv file with Cumulative Confirmed, Recovered, and Deceased
values. It takes the data file, ’N’, the population and the start-date of the lockdown of
that area. Shown in Figure 4, is the format of data that is being used.

Fig. 4: Data format

4.2 Model

In our model, the population is classified into 5 categories: the Susceptible, the Ex-
posed, the Infected, the Recovered, and the Deceased. Parameters are estimated on
a day to day basis using equations (6), (7), (8) and (9). The data until the previous
day and the current day is used to calculate the parameters of the previous day. Then
the value for the Exposed population that is calculated is passed on to calculating
the parameters for the next day. It should be noted that there is a difference between
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the real and official data, due to the testing capability in a region. Since our model
is data-driven, and we use the official data, it can forecast only the cases that will be
reported

The data sources used for training the model are available at [2] for India, [14]
for Moscow, Russia and [13] for Lombardia, Italy. For districts in India, the data is
available from 24th April in [2]. It is stated that the Incubation Period is 2-14 days
[7]. So, the forecasts after 14 days might not be accurate. Therefore we limited our
prediction window to 7 days and consider the last 7 days of the data for parameter
selection.

4.3 Parameter Selection

From the 7 days considered, we get 6 sets of model parameters (alpha, beta, gamma,
delta) each. As mentioned before, we use the Dth and (D+1)th days’ data to calculate
Dth day’s parameters. Since the available deceased data is more reliable, we calculate
the Mean Absolute Percentage Error or MAPE between the actual and forecasted
deceased on (D+ 2)th day and so the last day’s parameter set can not be used. As
we increase the validation period, we will be losing the recent parameters. Therefore,
we limited our validation period to one day. We now consider the parameter with
the least deceased MAPE and use it to forecast Infected and Deceased values. If in
case, two parameters have the same deceased MAPE, we select the one with the least
Infected MAPE.

4.4 Algorithm

The code for the model is put up at the link given in [5]. Here, s[], e[], i[], r[], d[]
are arrays to store calculated susceptible, exposed, infected, recovered and Deceased
values
alpha[], beta[], gamma[], delta[] –arrays to store calculated alpha, beta, gamma and
delta values
preds are all the predictions stored in an array pred values are stored in a stack that
contains s, e, i, r, d array values in seird function.
start date is starting date of the data taken from data.csv
T number of days in the training data taken from data.csv
incub period is the Incubation Period mape values stores the calculated mape values.
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Algorithm 1 Time-dependent SEIRD Model
Input: N (population), data.csv, start-date of lockdown
Output: Forecasts for Infected and Deceased cases for 5 days from the date training ends
N← population
Train← data.csv
start date← Train.date
T ← Train.days
incub period = 5
for x = 1 to T do

i[x] = Train.c[x]−Train.r[x]−Train.d[x]
r[x] = Train.r[x]
d[x] = Train.d[x]

end for
for t = 1 to T do

parameter estimation(t)
end for
prediction()
end

parameter estimation(k)
if k = 1 then

al pha[k] = 1/incub period
gamma[k] = (r[k+1]− r[k])/i[k]
gamma[k+1] = (r[k+2]− r[k+1])/i[k+1]
delta[k] = (d[k+1]−d[k])/i[k]
delta[k+1] = (d[k+2]−d[k+1])/i[k+1]
e[k] = (i[k+1]− ((1−gamma[k]−delta[k])∗ i[k]))/al pha[k]
e[k+1] = (i[k+2]− ((1−gamma[k+1]−delta[k+1])∗ i[k+1]))/al pha[k]
s[k] = N− e[k]− i[k]− r[k]−d[k]

else
al pha[k] = ((i[k+1]− i[k])+(r[k+1]− r[k])+(d[k+1]−d[k]))/e[k]

end if
beta[k] = (((e[k+1]− e[k])+(i[k+1]− i[k])+(r[k+1]− r[k])+(d[k+1]−d[k]))∗N)/(s[k]∗ i[k]))
gamma[k] = (r[k+1]− r[k])/i[k]
delta[k] = (d[k+1]−d[k])/i[k]
seird(alpha[k], beta[k], gamma[k], delta[k], k, k+1)
l = 0
if k ≥ T −6 and k ≤ T −2 then

pred = seird(al pha[k],beta[k],gamma[k],delta[k],k,k+2)
mape values[l] = (abs(d[k+2]− pred.d)/d[k+2])∗100
l = l +1

end if
end

seird(alpha, beta, gamma, delta, k, t)
s[t] = s[k]−beta∗ s[k]∗ i[k]/N
e[t] = e[k]−beta∗ s[k]∗ i[k]/N−al pha∗ e[k]
e[t +1] = e[k+1]−beta∗ s[k+1]∗ i[k+1]/N−al pha∗ e[k+1]
i[t] = i[k]+al pha∗ e[k]−gamma∗ i[k]−delta∗ i[k]
r[t] = r[k]+gamma∗ i[k]
d[t] = d[k]+delta∗ i[k]
pred values = (s[t], e[t], i[t], r[t], d[t])
RETURN pred values
end

prediction()
index = retrieve-index-of( min(mape values)
index = index +(T −6)
for x = T +1 to T +7 do

pred = seird(alpha[index], beta[index], gamma[index], delta[index], index, x)
Final pred i = pred.i
Final pred r = pred.r
Final pred d = pred.d

end for
end
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5 Results and Analysis

Forecasted infected and deceased plots for India 2, most affected regions of Maha-
rashtra 4, Tamilnadu 6, Gujarat 8, Italy 12 and Russia 16 are shown in the appendix.
Test data from 4th of June to 11th of June is used for the districts in India and 3rd of
June to 10th June for others.

5.1 Analysis

Actual vs. Forecasted plots of Infected and Deceased cases for India are shown in
Figure 5 and 6 repectively. For Mumbai, figures 7, 8; Chennai 9, 10; Ahmedabad
11, 12; Lombardia 13, 14 and Moscow 15, 16 are presented here for Infected and
Deceased cases respectively.

Fig. 5: Forecasts of Infected Cases of India from 3rd June to 10th June

Fig. 6: Forecasts of Deceased Cases of India from 3rd June to 10th June
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Fig. 7: Forecasts of Infected Cases of Mumbai from 4th June to 11th June

Fig. 8: Forecasts of Deceased Cases of Mumbai from 4th June to 11th June

Fig. 9: Forecasts of Infected Cases of Chennai from 4th June to 11th June
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Fig. 10: Forecasts of Deceased Cases of Chennai from 4th June to 11th June

Fig. 11: Forecasts of Infected Cases of Ahmedabad from 4th June to 11th June

Fig. 12: Forecasts of Deceased Cases of Ahmedabad from 4th June to 11th June
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Fig. 13: Forecasts of Infected Cases of Lombardia, Italy from 25th May to 1st June

Fig. 14: Forecasts of Deceased Cases of Lombardia, Italy from 25th May to 1st June

Fig. 15: Forecasts of Infected Cases of Moscow from 25th May to 1st June
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Fig. 16: Forecasts of Deceased Cases of Moscow from 25th May to 1st June

From the results obtained for the above mentioned areas, it can be summarized
that the model can capture the current-trend properly. Its forecasts are based on the
growth rate of the actual curve. If there is a sudden increase or decrease in the growth
rate, the forecasts will not be so accurate until the model stabilizes.

6 Extensions of the present model

As mentioned earlier, the main principles behind this model are the accuracy of the
forecasts and minimum assumptions. We have taken care to avoid assumptions while
building the model. As we try to add more compartments to the model, the num-
ber of parameters involved also increase. In order to estimate the parameters, either
we make an educated guess or derive them from the data. This model is developed
keeping India in mind. Since there is no proper data available regarding the tests, the
quarantined and others for India, we did not compartmentalize our model. If any other
country has the data required for compartmentalization, the model can be extended
further.

7 Limitations

– This model considers a closed population. Birth, Mortality rates, and others are
not considered.

– This model is limited to short term forecasts as the parameters keep changing and
they can not be approximated to long term.

– The transmission rate for the exposed is not considered due to the uncertainty in
the transmission dynamics of the exposed.

8 Future Scope

– Considering population density instead of a homogeneous population to forecast
accurate results.
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– The forecasts of Infected cases are affected by the sudden change in the data. The
model has to be improved so that it need not wait until the model is stabilized.

– Transmission rate for exposed has to be tuned properly.
– Quarantine factor and others can be included to get a more detailed analysis of

the situation.

9 Conclusions

Several papers are published using SEIR to predict the results. Initial parameters are
assumed to be constant in these papers. The parameters were assumed based on input
from hospitals and other sources. In this model, parameters are calculated from the
data rather than making an educated guess. The goal was to forecast these results
so that we can estimate and plan for Hospital equipment and Personal Protective
Equipment in advance.
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A Tables

Table 1: Forecasts of Infected cases for India

S.No Date Actual Forecast

0 2020-06-04 1.12 ·105 1.12 ·105

1 2020-06-05 1.16 ·105 1.16 ·105

2 2020-06-06 1.21 ·105 1.22 ·105

3 2020-06-07 1.26 ·105 1.27 ·105

4 2020-06-08 1.3 ·105 1.32 ·105

5 2020-06-09 1.34 ·105 1.38 ·105

6 2020-06-10 1.38 ·105 1.44 ·105

Table 2: Forecasts of Death cases for India

S.No Date Actual Forecast

0 2020-06-04 6,363 6,355
1 2020-06-05 6,649 6,622
2 2020-06-06 6,946 6,899
3 2020-06-07 7,207 7,190
4 2020-06-08 7,478 7,493
5 2020-06-09 7,750 7,809
6 2020-06-10 8,107 8,139

Table 3: Forecasts of Infected cases for Mumbai

S.No Date Actual Forecast

0 2020-06-05 25,783 26,347
1 2020-06-06 25,800 27,319
2 2020-06-07 25,946 28,326
3 2020-06-08 26,351 29,370
4 2020-06-09 26,397 30,452
5 2020-06-10 27,116 31,573
6 2020-06-11 27,116 32,733
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Table 4: Forecasts of Death cases for Mumbai

S.No Date Actual Forecast

0 2020-06-05 1,519 1,526
1 2020-06-06 1,577 1,582
2 2020-06-07 1,638 1,641
3 2020-06-08 1,702 1,702
4 2020-06-09 1,760 1,765
5 2020-06-10 1,857 1,830
6 2020-06-11 1,857 1,898

Table 5: Forecasts of Infected cases for Chennai

S.No Date Actual Forecast

0 2020-06-05 9,420 8,103
1 2020-06-06 10,185 8,409
2 2020-06-07 10,944 8,730
3 2020-06-08 11,817 9,064
4 2020-06-09 12,574 9,413
5 2020-06-10 13,089 9,777
6 2020-06-11 13,089 10,156

Table 6: Forecasts of Death cases for Chennai

S.No Date Actual Forecast

0 2020-06-05 179 187
1 2020-06-06 198 199
2 2020-06-07 213 212
3 2020-06-08 225 226
4 2020-06-09 241 239
5 2020-06-10 257 254
6 2020-06-11 257 269
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Table 7: Forecasts of Infected cases for Ahmedabad

S.No Date Actual Forecast

0 2020-06-05 3,231 3,833
1 2020-06-06 3,284 3,756
2 2020-06-07 3,358 3,694
3 2020-06-08 3,462 3,645
4 2020-06-09 3,518 3,606
5 2020-06-10 3,569 3,578
6 2020-06-11 3,569 3,558

]

Table 8: Forecasts of Death cases for Ahmedabad

S.No Date Actual Forecast

0 2020-06-05 968 945
1 2020-06-06 994 963
2 2020-06-07 1,015 981
3 2020-06-08 1,039 999
4 2020-06-09 1,066 1,017
5 2020-06-10 1,092 1,034
6 2020-06-11 1,092 1,051

Table 9: Forecasts from 1st June of Infected cases for Lombardia, Italy

S.No Date Actual Forecast

0 2020-05-26 24,477 23,140
1 2020-05-27 24,037 22,518
2 2020-05-28 22,913 21,924
3 2020-05-29 22,683 21,358
4 2020-05-30 21,809 20,817
5 2020-05-31 20,996 20,300
6 2020-06-01 20,861 19,807
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Table 10: Forecasts from 1st June of Death cases for Lombardia, Italy

S.No Date Actual Forecast

0 2020-05-26 15,896 15,996
1 2020-05-27 15,954 16,045
2 2020-05-28 15,974 16,093
3 2020-05-29 16,012 16,140
4 2020-05-30 16,079 16,185
5 2020-05-31 16,112 16,230
6 2020-06-01 16,131 16,273

Table 11: Forecasts of Infected cases for Lombardia, Italy

S.No Date Actual Forecast

0 2020-06-04 20,224 20,465
1 2020-06-05 19,853 20,336
2 2020-06-06 19,499 20,209
3 2020-06-07 19,420 20,084
4 2020-06-08 19,319 19,959
5 2020-06-09 18,297 19,837
6 2020-06-10 17,857 19,716

Table 12: Forecasts of Death cases for Lombardia, Itlay

S.No Date Actual Forecast

0 2020-06-04 16,201 16,187
1 2020-06-05 16,222 16,205
2 2020-06-06 16,249 16,224
3 2020-06-07 16,270 16,242
4 2020-06-08 16,302 16,260
5 2020-06-09 16,317 16,278
6 2020-06-10 16,349 16,296
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Table 13: Forecasts from 1st June of Infected cases for Moscow, Russia

S.No Date Actual Forecast

0 2020-05-26 1.06 ·105 1.02 ·105

1 2020-05-27 1.02 ·105 1 ·105

2 2020-05-28 99,992 99,115
3 2020-05-29 98,774 98,099
4 2020-05-30 97,464 97,226
5 2020-05-31 98,135 96,485
6 2020-06-01 98,296 95,870

Table 14: Forecasts from 1st June of Death cases for Moscow, Russia

S.No Date Actual Forecast

0 2020-05-26 2,110 2,143
1 2020-05-27 2,183 2,208
2 2020-05-28 2,254 2,273
3 2020-05-29 2,330 2,337
4 2020-05-30 2,408 2,400
5 2020-05-31 2,477 2,462
6 2020-06-01 2,553 2,525

Table 15: Forecasts of Infected cases for Moscow, Russia

S.No Date Actual Forecast

0 2020-06-04 91,750 93,454
1 2020-06-05 90,905 92,857
2 2020-06-06 89,766 92,333
3 2020-06-07 89,384 91,877
4 2020-06-08 89,701 91,488
5 2020-06-09 85,824 91,160
6 2020-06-10 83,167 90,893
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Table 16: Forecasts of Death Cases for Moscow, Russia

S.No Date Actual Forecast

0 2020-06-04 2,749 2,769
1 2020-06-05 2,806 2,840
2 2020-06-06 2,864 2,910
3 2020-06-07 2,919 2,980
4 2020-06-08 2,970 3,050
5 2020-06-09 3,029 3,120
6 2020-06-10 3,085 3,189
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