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Abstract

Predictive accuracy of surgical case duration plays a critical role in reducing cost of
operation room (OR) utilization. The most common approaches used by hospitals rely
on historic averages based on a specific surgeon or a specific procedure type obtained
from the electronic medical record (EMR) scheduling systems. However, low predictive
accuracy of EMR leads to negative impacts on patients and hospitals, such as
rescheduling of surgeries and cancellation. In this study, we aim to improve prediction of
operation case duration with advanced machine learning (ML) algorithms. We obtained
a large data set containing 170,748 operation cases (from Jan 2017 to Dec 2019) from a
hospital. The data covered a broad variety of details on patients, operations, specialties
and surgical teams. Meanwhile, a more recent data with 8,672 cases (from Mar to Apr
2020) was also available to be used for external evaluation. We computed historic
averages from EMR for surgeon- or procedure-specific and they were used as baseline
models for comparison. Subsequently, we developed our models using linear regression,
random forest and extreme gradient boosting (XGB) algorithms. All models were
evaluated with R-squre (R2), mean absolute error (MAE), and percentage overage (case
duration > prediction + 10 % & 15 mins), underage (case duration < prediction - 10 %
& 15 mins) and within (otherwise). The XGB model was superior to the other models
by having higher R2 (85 %) and percentage within (48 %) as well as lower MAE (30.2
mins). The total prediction errors computed for all the models showed that the XGB
model had the lowest inaccurate percent (23.7 %). As a whole, this study applied ML
techniques in the field of OR scheduling to reduce medical and financial burden for
healthcare management. It revealed the importance of operation and surgeon factors in
operation case duration prediction. This study also demonstrated the importance of
performing an external evaluation to better validate performance of ML models.

Introduction 1

It becomes more and more important for clinics and hospitals in managing resources for 2

critical cares during the COVID-19 pandemic. Statistics show that approximately 60 % 3

of patients admitted to the hospital will need to be treated in the Operation Room 4

(OR) [11], and the average cost of OR is up to 2,190 dollars per hour in the United 5
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States [1, 6]. Hence, the OR is considered as one of the highest hospital revenue 6

generators and accounts for as much as 42 % of a hospital’s revenue [6, 10]. Based on 7

these statistics, a good OR schedule and management is not only critical to patients 8

who are in need of elective, urgent and emergent operations, but is also important for 9

surgical teams to be prepared. Owing to the importance of OR, improvement of OR 10

efficiency has high priority so that the cost and time spent on OR is minimized while the 11

utilization of OR is maximized to increase surgical case number and patient access [15]. 12

In a healthcare system, numerous factors are involved in affecting OR efficiency, for 13

example patient expectation and satisfaction, interactions between different professional 14

specialties, unpredictability during operations, surgical case scheduling and etc [20]. 15

Although the process of OR is complex and involves multiple parties, one way to 16

enhance OR efficiency is by increasing the accuracy of predicted surgical case duration. 17

Over- or under-utilization of OR time often leads to undesirable consequences such as 18

idle time, overtime, cancellation or rescheduling of surgeries, which may implement 19

negative impact on the patient, staffs and hospital [21]. In contrast, high efficiency in 20

OR scheduling not only contribute to better arrangement for the usage of operating 21

room and resources, it can also lead to cost reduction and revenue increment since more 22

surgeries can be performed. 23

Currently, most hospitals schedule surgical case duration by employing estimations 24

from surgeon and/or averages of historical case durations, and studies show that both of 25

these methods have limited accuracy [14,17]. For case length estimated by surgeons, 26

factors including patient conditions, anesthetic issues might not be taken into 27

consideration. Moreover, underestimation of case duration often occurs as surgeon 28

estimations were usually made by leaning towards maximizing block scheduling to 29

account for potential cancellations and cost reduction. Furthermore, operations with 30

higher uncertainty and unexpected findings during operation add difficulties and 31

challenges into case length estimation [14]. Historic averages of case duration for a 32

specific surgeon or a specific type of operation obtained from electronic medical record 33

(EMR) scheduling systems have also been used in hospitals. However, these methods 34

have been shown to produce low accuracy due to large variability and lack of same 35

combination in the preoperative data available on the case that is being performed [25]. 36

In order to improve the predictability, researchers utilized linear statistical models, 37

such as regression, or simulation for surgical duration prediction and evaluation of the 38

importance of input variables [8, 12,13]. However, a common shortcoming of these 39

studies is that relatively lesser input variables or features were used in their models due 40

to the limitation of statistical techniques in handling too many input variables. 41

Recently, machine learning (ML) has shown to be powerful and effective in aiding 42

health care management. Master et al. (2017) trained multiple ML models, including 43

decision tree regression, random forest regression, gradient boosted regression trees and 44

hybrid combinations, to predict surgical durations [16]. Ensemble classifiers, 45

implementing least-squares boosting and bagging models with ML, developed by 46

Shahabikargar et al. (2017) were shown to reduce error by 55 % as compared to the 47

original error [21]. With the use of boosted regression tree, Zhao et al. (2019) increased 48

the percentage of accurately booked cases for robot-assisted surgery from 35 % to 52 %. 49

Bartek et al. (2019) reported that they were able to improve predicted cases within 10 50

% threshold tolerance from 32 % to 39 % using an extreme gradient boost model [2]. 51

Nonetheless, these ML studies included only 5-12 different types of procedures and 52

specialties to train their ML models, which may limit the generalization of their models. 53

In this study, we obtained more than 170,000 cases from China Medical University 54

Hospital (CMUH) containing 422 types of procedures across 25 different specialties. 55

From the original data, we further analyzed the working time of primary surgeons and 56

computed their total number of previous surgeries and the total minutes spent on 57
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previous surgeries within the same day as well as within the last 7 days. Since surgeons’ 58

working performance might be affected by previous events, surgical cases performed by 59

the same primary surgeon, especially within the same day, should not be considered as 60

totally independent and unrelated. Hence, previous surgical counts and working time 61

obtained from surgeons’ data were included as additional features in our ML model 62

training to account for their influences on operation case duration. In addition, number 63

of urgent and emergent operations prior to the case that was being performed by the 64

same surgeon, which has not been considered in other studies before, was taken into 65

consideration as well. This factor could affect operation case duration as urgent and 66

emergent operations happen unexpectedly and delay the start of subsequent planned 67

surgeries. As a whole, we hypothesize that these features impose significant influences 68

on operation case duration and may aid in improving the performance of a trained ML 69

model. 70

Methods 71

Data sources 72

Data for this study were collected from EMR scheduling system of CMUH located at 73

Taichung, Taiwan. The data set covered a broad variety and details about patients, 74

operations, specialties and surgical teams. A total of 170,748 cases performed between 75

Jan 1, 2017 to Dec 31, 2019 were used for model development. Meanwhile, 8,672 cases 76

performed between Mar 1 to April 30, 2020 were used as data for external model 77

evaluation in this study. Over 400 different types of procedures across 25 surgical 78

specialties were included in the data set. An institutional review board approval 79

(CMUH109-REC1-091) was obtained from CMUH before carrying out this study. 80

0.1 Exclusion criteria, data processing and feature selection 81

Emergent and urgent surgical cases were removed since these two types of operation can 82

not be scheduled until they happen. Surgeon’s age younger than 28 years and surgical 83

case duration more than 10 hours or less than 10 minutes were also removed. Surgical 84

records with missing values were excluded. Patients who were pregnant or underwent 85

two or more surgical procedures at the same time or with age under 20 year-old were 86

deleted. The exclusion criteria were shown in Fig. 1. This resulted in a data set of 87

142,448 cases that were used for model training and testing. The same criteria were also 88

applied to the data of Mar 1 to April 30, 2020 and 7,231 cases remained after exclusion. 89

Features were selected from available data sources, based on literature review and 90

discussion with surgeons and administrators of CMUH. Although model performance 91

could be enhanced by some postoperative information (e.g. total blood loss), they 92

cannot be used as features for model training because these parameters were either 93

missing or simply estimated by surgeons before surgery. Therefore, only variables that 94

are available before operation were selected for model development. 95

When visualizing all the categories of procedure types and International 96

Classification of Diseases (ICD) code, there were hundreds to thousands of categories in 97

these two variables. To reduce the problem of having too many dimensions during 98

one-hot encoding of categorical features, we combined categories which had case 99

numbers less than 50 in the training set into a category and named it as ‘Others’. 100

Similarly, we combined categories for primary surgeon’s ID, specialty, anesthesia type 101

and room number which had case numbers less than 50 into the category of ‘Others’. 102

In addition, since operation case duration can be related to the performance of 103

surgeons and surgeons’ performance is affected by their working time, we also analysed 104
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Figure 1. The workflow of model training for this study. The data set used for model
training fall within the time range of Jan 1, 2017 to Dec 31, 2019. From this data set,
about 17 % of the cases were excluded based on these criteria: patients with two or more
surgical procedures performed at the same time, emergent and urgent cases, surgeons
with age under 28, patients with age younger than 20, pregnant patients, procedure
duration longer than 10 hours or less than 10 minutes and cases with missing value. The
total number of cases included in the data set for model building was 142,448. This
data set was then split into training (80 %) and validation (20 %) subsets for model
development. Machine learning and linear regression models were developed on the
training data set and validated on the validation data set using R-square and mean
absolute error. Percentage of cases with actual duration differences falling within 10 %
and 15 minutes of predicted procedure duration was also computed. Eventually, the
models were further evaluated on the most recent surgical cases (from Mar 1 to Apr 30,
2020) which were not included in the original data set for model training.
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Patient Surgical team Operation Facility Primary Surgeon’s Prior Events

Age Primary surgeon’s ID Procedure type Room No.
No. of previous surgeries performed
by the surgeon on the same day

Gender Surgeon team size Subprocedure type Day of the week
Total surgical minutes performed by the
surgeon on the same day

ICD code Specialty Anesthesia type Time of day
No. of previous surgeries performed by
the surgeon within the last 7 days

In- /out-patient Primary surgeon’s gender
Total surgical minutes performed by the
surgeon within the last 7 days

ASA status Primary surgeon’s age
No. of previous urgent and emergent surgeries
performed by the same surgeon on the same day

Hypertension
Anemia
Diabetes

Table 1. Preoperative data with 24 predictor variables were used for model development.
The predictor variables can be categorized by relationship to patient, surgical team,
operation, facility and surgeon’s prior events. ICD: International Classification of
Diseases; ID: Identifier: ASA: American Society of Anesthesiologists

primary surgeons’ previous surgical events. The number of previous surgeries and total 105

surgical minutes performed by the same primary surgeons on the same day as well as 106

within the last 7 days, and the number of urgent and emergent operations prior to the 107

case that was being performed by the same surgeon were included in the analysis. 108

Together, 24 predictor variables were included for predictive model building in this 109

study. These predictors can be categorised into 5 groups: patient, surgical team, 110

operation, facility and primary surgeon’s prior events (see Table 1). 111

Model development and training 112

We applied multiple ML methods for operation case duration prediction. Operation case 113

duration (in minutes) is the total period starting from the time patient entering into the 114

OR to the time exiting the OR. Historic averages of case durations based on 115

surgeon-specific or procedure-specific from EMR systems were used as baseline models 116

for comparison in case duration prediction. At the beginning, we performed multivariate 117

linear regression (Reg) to predict operation case duration. However, when we looked at 118

the distribution of operation case duration, it was observed to be skewing to the right 119

(Fig. 2). We performed logarithmic transformation on operation case duration to reduce 120

the skewness. The model built from log transformed multivariate linear regression 121

(logReg) outperformed Reg in all evaluation indexes. Subsequent ML algorithms were 122

also trained by using the log transformed case duration as the target. 123

The first ML algorithm that we tested is random forest (RF), a tree-based 124

supervised learning algorithm. RF uses bootstrap aggregation or bagging technique for 125

regression by constructing a multitude of decision trees based on training data and 126

outputting the mean predicted value from the individual trees [19]. Bagging technique 127

is unlikely to over-fitting, in other words, it reduces the variation without increasing the 128

bias. Tree-based techniques were suitable for our data since they include a large number 129

of categorical variables, e.g. ICD code and procedure type, most of which were sparse. 130

The number of trees that was set in study is 50. Extreme Gradient Boosting (XGB) 131

algorithm is the other supervised ML algorithm that was tested for comparison to RF. 132

Recently, XGB algorithm gains popularity within the data science community due to its 133

ability in overcoming the curse of dimensionality as well as capturing the interaction of 134

variables [18]. 135

XGB is also a decision tree-based algorithm but more computationally efficient for 136

real-time implementation than RF. XGB and RF algorithms are different in the way of 137

how the trees are built. It has been shown that XGB performs better than RF if 138

parameters are tuned carefully, otherwise it would be more likely to over-fitting if the 139

data are noisy [3, 9]. We adopted 5-fold cross validation strategy to tune out the best 140

5/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 12, 2020. ; https://doi.org/10.1101/2020.06.10.20127910doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.10.20127910
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Log transformation of case duration converted the distribution of operation
case duration from (A) skewing to the right to (B) a more normal distribution.

number of iterations by using η = 0.5 (step size shrinkage to prevent over-fitting), 141

maximum 3 depths of the tree, γ = 0.3 (minimum loss reduction, where a larger γ 142

represents a more conservative algorithm) and α = 1 (L1 regularization weighting term, 143

where a larger value indicates a more conservative model). 144

Data-splitting strategy was used in the training for all the models to prevent 145

over-fitting consequences. We randomly separated the data into training and testing 146

subsets at a ratio of 4:1. The training data were used to build different predictive 147

models as well as to extract important predictor variables. The testing data were used 148

for internal evaluation of the models.In addition to interval evaluation, external 149

evaluation on all the models were performed using data from Mar 1 to Apr 30, 2020. 150

These data were not included in the original data set for ML model training. The 151

results obtained from external evaluation are thus better in showing the robustness of 152

the trained model in making accurate prediction. Historic averages of case duration for 153

surgeon- or procedure-specific calculated from EMR were also evaluated on the same 154

internal and external testing sets to ensure fair and uniform comparison across all 155

models. Data processing and cleaning as well as model development in this study were 156

performed using R software. The packages “xgboost and “randomforest were used to 157

implement XGB and RF algorithms in R [4,5]. 158

Model evaluation 159

Multiple predictive models were built to predict operation case duration. Different 160

standards are usually applied to evaluate the predictive performance of the built models. 161

The three key metrics used to evaluate model performance in this study included (1) 162

R-square (R2), (2) mean absolute error (MAE) , and (3) the percentage overage, 163

underage and within. 164

R2 is the coefficient of determination, it represents the proportion of the variance for 165

the actual case duration that is explained by predictor variables in our models. 166

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

(1)

Mean Absolute Error (MAE) measures the average of errors between the actual case 167
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Train set Internal Test set External Test set
Model R2 (%) MAE U (%) O(%) W (%) R2 (%) MAE U (%) O(%) W (%) R2 (%) MAE U (%) O(%) W (%)
Surgeon-
specific

31 60.4 50 31 19 30 60.3 50 31 19 30 64.6 52 32 17

Procedure-
specific

68 37.3 37 25 37 66 38 38 25 36 66 40.7 40 25 35

Reg 80 30.3 32 25 43 78 31.1 32 25 42 79 33 36 23 41
logReg 84 28.7 24 27 49 83 29.5 25 27 48 84 31 27 25 47
RF 83 29.2 23 27 49 83 28.9 23 27 50 84 30.9 26 26 48
XGB 85 27.3 23 26 51 84 28.7 23 27 49 85 30.2 27 25 48

Table 2. Performance of all the models in the training, internal and external testing
sets. The models that were included for comparison in this study were average models
for surgeon- or procedure-specific, multivariate linear regression (Reg), log transformed
multivariate linear regression (logReg), random forest (RF) and Extreme Gradient
Boosting (XGB). MAE: Mean Absolute Error; U: Underage; O: Overage; W: Within

durations and the predictions. 168

MAE =

∑N
i=1 |yi − ŷi|

N
(2)

Percentage overage indicates the percentage of cases with actual case duration > 169

prediction + 10 % tolerance threshold (i.e. 1.1 ∗ prediction) and prediction + 15 170

minutes. Meanwhile, percentage underage is the percentage of actual case duration < 171

prediction - 10 % tolerance threshold (0.9 ∗ prediction) and prediction - 15 minutes. 172

Therefore, percentage within equals to 100 %-(percentage overage + percentage 173

underage). 174

Results 175

Approximately 17 % cases were excluded from the original data of Jan 1, 2017 to Dec 176

31, 2019 based on the exclusion criteria mentioned in Fig. 1. Therefore, 142,448 cases 177

containing more than 420 procedural categories and 25 specialties were included for 178

predictive model development and evaluation. Furthermore, a recent data collected 179

from Mar 1 to April 30, 2020 (7,231 cases after exclusion) were used in external 180

evaluation to study the robustness of model in making prediction. 181

Table 2 shows the results of the metrics used to evaluate performance of all the 182

models in this study. The average model for surgeon-specific had the highest percentage 183

underage, which is 50 % on training, internal and external testing sets. This indicates 184

that 50 % of actual case durations were 15 minutes and 10 % lower than predicted case 185

duration. Other metrics (R2 and MAE) also show that the average model based on a 186

specific surgeon was not a good estimate for operation case duration. On the other 187

hand, the average model based on a specific procedure had lower percentage underage 188

and overage compared to the surgeon-specific model. These differences were due to an 189

extensive procedure classification in the procedure-specific model. However, the 190

percentage underage was still quite high. Since no other information is taken into 191

consideration in the average model, except durations of operation cases happened in the 192

past, prediction bias and low accuracy usually result from the average model. 193

We first fitted the Reg model by including all the input variables showed in Table 1. 194

The evaluation metrics reported lower percentage underage and higher percentage 195

within when compared to the average model on training, internal and external testing 196

sets (Table 2). There was a large improvement in R2 value indicating that predictive 197

performance of model increases when other information are taken into consideration 198

during model development. Since the results of percentage underage, overage and 199

within on training, internal and external testing sets were similar, over-fitting was not 200
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Actual
Average
(surgeon)

Average
(procedure)

Reg logReg RF XGB

Total minutes 920,374 899,510 918,061 934,333 885,784 874,528 888,908
Total prediction error in minutes 467,548 294,137 238,862 224,700 223,686 218,415
Inaccurate percent (%) 50.8 32 26 24.4 24.3 23.7

Table 3. Extreme Gradient Boosting (XGB) model produced the lowest percentage
of cumulative inaccuracy among all the other models. Cumulative differences between
actual and predicted case durations for all the models are shown in this table.

likely to happen in the Reg model. A model is probably considered to be over-fitting 201

when its performance is better on training set but poor on testing set. 202

When we log transformed operation case duration and re-ran a regression model (i.e. 203

logReg), the performance of logReg model improved and outperformed Reg model. 204

Since we are predicting operation case duration, log transformation of the target 205

prevents us from getting values of zero or negative from the predicted output of the 206

model. Log transformation has been used commonly in other studies for the same 207

reason [12, 23]. Again in the logReg model, the results of all the evaluation metrics were 208

close for training, internal and external training sets, so the model was not over-fitting. 209

Although performance of the logReg model was not bad, an assumption of linear 210

relationship between target and input variables was applied in both the Reg and the 211

logReg models. The relationship between target and input variables is usually 212

non-linear in a real world situation. ML algorithms are helpful in making prediction in a 213

more complicated scenario. RF model is the first ML model we built in this study. 214

There was a slight improvement in the performance of RF model when comparing the 215

results of all evaluation metrics to those of the logReg model on both internal and 216

external testing sets. An XGB model was developed subsequently because training 217

duration of the RF model was time consuming and caused low computing efficiency. 218

Performance of the XGB model was better than the RF model on training set but did 219

not improve a lot compared to the RF model on internal and external testing sets. 220

Since XGB was more computing efficient than RF, the XGB model was chosen to be 221

the best model and was used in subsequent analysis. 222

In addition to the three key metrics, we studied inaccuracy of different models by 223

using external testing set. We calculated the total prediction error (in minutes) and the 224

corresponding inaccurate percentage for all the models. The results are reported in 225

Table 3. Total minutes of actual represent the sum of operation case durations for 7,231 226

cases in the external testing set. Inaccurate percent was derived from the percentage of 227

total prediction error divided by actual total minutes. The outcome shows that 228

inaccurate percent of the XGB model was the lowest among all the models. Inaccurate 229

percent of the XGB model was also more than 50 % lower than that of the average 230

model for surgeon-specific and about 25 % lower than that of the procedure-specific 231

average model. This implies that prediction made by the XGB model had low 232

inaccuracy and might help to increase the efficiency of OR scheduling. 233

In Fig. 3, we plotted scatter plots of actual versus predicted duration on the external 234

testing set for the average models of surgeon- and procedure-specific, and the XGB 235

model. A straight line indicating the theoretical perfect relationship, i.e. predicted and 236

actual procedure duration are identical, was added as a reference in each scatter plot. 237

The data points of the XGB models were aligned closer to the straight line. Therefore, 238

the XGB model showed a higher correlation between predicted and actual duration 239

compared to the other two types of average model. Fig. 4 shows the density plot of 240

differences between actual and predicted case durations for the two average models and 241

the XGB models. It clearly demonstrates that the error distribution of XGB model was 242

narrower and closer to 0. As a result, the XGB model is more accurate than the other 243

models in predicting operation case duration. 244
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Figure 3. Scatter plots of actual duration versus prediction obtained from average
models for (A) surgeon- and (B) procedure-specific, as well as from (C) Extreme Gradient
Boosting (XGB) model. A straight line with correlation = 1, representing a perfect
relationship between predicted and actual values, was added as a reference in each plot.

Figure 4. Density plot of differences between the actual operation case durations and
predicted case durations obtained from the XGB model (light blue color) was narrower
and centered more at 0 than density plots of those obtained from the average models
(pink and cyan colors). In the average models, previous operation case durations, either
averaging for a specific surgeon (cyan color) or specific procedure (pink color), were used
as predictions.
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Variable
Weighted feature
gain (%)

Data type
No. of
categories

Anesthesia type 53.11 Categorical 8
Procedure type 12.16 Categorical 422
Hypertension 11.62 Categorical 3
Subprocedure type 6.86 Categorical 394
Primary surgeon’s ID 3.47 Categorical 184
In- /out-patient 3.41 Categorical 2
Specialty 3.13 Categorical 25
Room No. 1.50 Categorical 53
ICD code 0.95 Categorical 1229
No. of previous surgeries performed by
the surgeon within the last 7 days

0.80 Numerical -

Total surgical minutes performed by the
surgeon within the last 7 days

0.79 Numerical -

Primary surgeon’s age 0.64 Numerical -
Surgeon team size 0.57 Categorical 5
Total surgical minutes performed by the
surgeon on the same day

0.31 Numerical -

ASA status 0.23 Categorical 7

Table 4. Top 15 important features used by the Extreme Gradient Boosting (XGB)
model to predict operation case durations are shown in the table. Total surgical minutes
and number of previous surgeries performed by the surgeon within the last 7 days or on
the same day were included in this top 15 list. Weighted feature gain in % is an output
of the XGB algorithm. ICD: International Classification of Diseases; ID: Identifier: ASA:
American Society of Anesthesiologists

To visualize variable importance in the XGB model, we extracted the weighted 245

feature gain (WFG) from the model. WFG was computed based on the reduction of 246

model accuracy when the variable was removed. This value serves as an indication on 247

how important the variable is in making a branch of a decision tree to be purer [5, 22]. 248

A higher WFG percentage indicates that the variable is more important. The result of 249

the top 15 important variables are shown in Table 4. One thing worth noting is that 3 250

of the top 4 important variables are attributed to operation information. Moreover, 251

three of the features which we computed from surgeons’ data (i.e. total surgical minutes 252

performed by the surgeon within the last 7 days and on the same day, and number of 253

previous surgeries performed by the surgeon within the last 7 days) were included in 254

this top 15 list. 255

Discussion 256

Accurate prediction of operation case duration is vital in elevating OR efficiency and 257

reducing cost. This study not only helps to improve accuracy of OR case prediction, it 258

also has novelty in the following aspects. First, the data set used in this study contained 259

more than 140,000 cases and more than 400 different types of surgical procedures which 260

set up a new benchmark for huge amount and large diversity. The maximal number of 261

cases that had been used in other studies were in the range of 40,000 to 60,000 [2, 21]. 262

Second, OR events was modeled as dependent events instead of independent. To this 263

end, we extracted some additional information from surgeons’ data, e.g. previous 264

working time and number of previous surgeries of the primary surgeons within the last 7 265

days and on the same day, and these information were taken into consideration during 266

model building. Third, we tested the model on daily clinical workflows from Mar to 267
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April 2020 as external testing data for model evaluation. Fourth, though urgent and 268

emergent surgeries were excluded from the data, number of urgent and emergent 269

operations prior to the case that was being performed by the same surgeon was included 270

as an input variable to account for its effect on operation case duration. 271

Currently, surgical cases at CMUH are scheduled according to estimates made by 272

primary surgeons. However, surgeon estimates rely heavily on prior experiences of the 273

surgeons and many factors beyond expectation will not be taken into consideration. 274

Since there is no formal record on surgeon estimates, we used averages calculated based 275

on a specific surgeon or procedure type on the testing set to be our baseline models. 276

The performance of these two average models, as reported in Table 2, clearly showed 277

that these models were poor in predicting operation case duration. They also tended to 278

under-predict operation case duration according to their scatter plots of actual versus 279

prediction and density plot of differences between actual versus prediction (see Fig. 3 280

and 4). When 24 feature variables (Table 1) were included in our model development, 281

R2, MAE, percentage underage, overage and within improved greatly compared to the 282

baseline models. We applied 15 minutes as tolerance threshold for percentage underage, 283

overage and within because ± 15 minutes is an acceptable periodic range in CMUH to 284

be considered as accurately booking. To avoid having too stringent standard and to 285

better compare our outcomes with other studies [2, 24], tolerance threshold of 10 % was 286

also applied. 287

By using regression and ML approaches, we were able to decrease the total 288

prediction error (Table 3) of operation case durations at CMUH. Among all the models, 289

performance of the XGB model was considered to be the best because it was more 290

computing efficient and had the lowest inaccuracy. Moreover, even though the results of 291

evaluation metrics of the RF model were similar to the XGB model, the XGB model 292

was still able to reduce the total prediction error in minutes from 223,686 to 218,415 293

minutes. In other words, the XGB model was able to save more than 5,000 minutes of 294

idle or delay times than the RF model. Since most ORs usually have multiple cases 295

scheduled per day, the total prediction error represents the cumulative effect of total 296

OR cases in the 2-month period of Mar to April 2020. This cumulative effect may 297

eventually reflects a significant financial advantage in scheduling an additional 298

operation case [7]. This would also lead to a significant cost reduction and increment in 299

revenue because ORs are utilized appropriately and efficiently. 300

It has been reported in the past studies that primary surgeons contributed the 301

largest variability in operation case duration prediction compared to other factors 302

attributed to patients [2, 16,23]. These studies provide evidence and rationale that more 303

factors relating to primary surgeon should be added as input variables in the training of 304

ML models. Moreover, extensive feature engineering usually improve the quality of ML 305

model which can be independent to the modeling technique itself. As a result, in 306

addition to primary surgeon’s identifier, gender and age, we computed previous working 307

time and number of previous surgeries performed by the same primary surgeons within 308

the last 7 days and on the same day. We also counted the number of urgent and 309

emergent operations prior to the case that was being performed by the same primary 310

surgeon. These variables extracted from the data of primary surgeon were significantly 311

(p < 0.05) correlated with operation case duration (see Table 5 in Appendix). The 312

correlation coefficients of these variables also revealed that an operation case duration 313

performed by a primary surgeon may decrease as he or she becomes more familiar with 314

the surgical procedure but may increase if his or her total surgical minutes are too long. 315

Although performing a surgery multiple times on different patients may help a primary 316

surgeon to be more efficient in his or her next operation, long working time may also 317

lead to lethargic and affect the primary surgeon’s performance. 318

In the methodology of data processing, for predictor variables which contained a lot 319
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of categories, we grouped categories that had cases less than 50 into a categories named 320

‘Others’. In addition to reducing data dimensionality for categorical features, this may 321

aid in generalization of our model. This indicates that our model will still be able to 322

predict case duration even for operations that are rare. Moreover, our model can be 323

applied to new primary surgeons, who are not included in the training set during model 324

development, by setting their ID as ‘Others’ for case duration prediction. However, 325

there is still a need to update our model after a while, for example, when the operation 326

cases performed by a new primary surgeon has increased beyond a certain number. In 327

terms of timing, we recommend updating the model annually by using operation cases 328

performed in the most recent 3 years as training data. 329

One limitation in this study is that we selected predictor variables which could only 330

be extracted from preoperative data. Our ML model still needs to be improved in order 331

to be able to predict surgical case duration dynamically. For example, blood loss during 332

operation may affect case duration as an unexpected increase in blood loss may cause 333

surgeons to take longer time to complete the surgery. Therefore, it would be better if 334

intra-operative data are incorporated during ML model development and prediction 335

made by the ML model can be updated during operation. One common issue in all ML 336

studies in predicting operation case duration, including our study, is that ML models 337

were developed using data from a single site. These ML models have difficulties in 338

generalization, since the surgical team, facilities and patient populations are different 339

across entities. It has to be custom made for a given organization using training data 340

containing its patients, procedures, surgeons, medical staffs, and the facility itself. As a 341

result, the exact same ML model is not meant to and will not perform well when 342

applied to another organization or hospital. The other interesting issue of applying ML 343

or artificial intelligence in operation estimation is that medical technologies evolve fast. 344

Hence, how frequent should a ML or artificial intelligence model need to be updated 345

still remains to be answered. 346

Conclusion 347

The XGB model was superior in predictive performance when comparing to the average, 348

the Reg and the logReg models. The total inaccuracy of predicted outcomes of the XGB 349

model was the lowest among the other models developed in this study. Although the 350

performance of the RF model was close to the XGB model, the XGB model was more 351

computing efficiency than the RF model in which it took shorter time to complete the 352

training process. The coefficient of determination (R2) was higher while percentages of 353

under- and over-prediction of the XGB model built in this study were also lower than 354

other ML studies [2, 21,24]. Moreover, this model improves the current OR scheduling 355

method which is based on estimates made by surgeons at CMUH. 356

We propose extracting additional information from operation and surgeons’ data to 357

be used as predictor variables for ML algorithm training since their importance was 358

high in the XGB model. Moreover, we validated the model types using an external 359

testing set in additional to the internal testing set split from the original data used in 360

model training. This helped us to validate and test the models in a more stringent and 361

rigorous way. Therefore, we suggest external evaluation should be used as a tool to 362

better validate the predictive power of ML models in the future. 363
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Predictor variables
Correlation
coefficient

Standard
error

t-value p-value

No. of previous urgent and emergent surgeries
performed by the same surgeon on the same day

1.49 x 10−2 6.71 x 10−3 2.223 0.03

No. of previous surgeries performed
by the surgeon on the same day

-8.09 x 10−3 7.34 x 10−4 -11.029 <2 x 10−16

Total surgical minutes performed by the
surgeon on the same day

6.06 x 10−5 6.10 x 10−6 9.946 <2 x10−16

No. of previous surgeries performed by
the surgeon within the last 7 days

-1.82 x 10−3 3.59 x 10−4 -5.08 3.78 x 10−7

Total surgical minutes performed by the
surgeon within the last 7 days

1.65 x 10−5 2.84 x 10−6 5.81 6.22 x10−9

Table 5. Correlation coefficient, standard error, t-value and p-value of predictor
variables extracted from primary surgeons’ data. These information were obtained from
the log transformed multivariate regression (logReg) model.
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