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Abstract  

Background and aims: A recent study investigated the genetic associations and latent genetic structure 

among eight psychiatric disorders using findings from genome-wide association studies (GWASs). No 

data from substance use disorders were included, while these represent an important category of 

mental disorders and could influence the latent genetic structure. We extended the original paper by 

recreating the genetic relationship matrix, graph, and latent genetic factor structure, including 

additional data from substance use disorders. 

Methods: We used GWAS summary statistics of 11 psychiatric disorders, including alcohol 

dependence, nicotine dependence, and cannabis use disorder. We estimated genetic correlations 

between all traits in Linkage Disequilibrium-score regression. A graph was created to illustrate the 

network of genetic correlations. We then used the genetic relationships to model a latent genetic 

factor structure. 

Results: Alcohol and nicotine dependence showed significant genetic correlations with several other 

psychiatric disorders, including ADHD, schizophrenia, and major depression. Cannabis use disorder was 

only significantly associated with ADHD. The addition of substance use disorders resulted in some 

changes in the latent structure of the factor model when compared to the original model including 

eight disorders. All substance use disorders contributed mostly to Factor 3, a heterogeneous factor 

with also loadings from ADHD, major depression, Autism Spectrum disorders, and Tourette Syndrome.  

Conclusions: Alcohol and nicotine dependence show widespread genetic correlations with other 

psychiatric disorders. Including substance use disorders in the factor analysis results in some changes 

in the underlying genetic factor structure. Given the instability of such models, identified structures 

should be interpreted with caution.  
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Introduction 

Last year, Lee et al. (1) published a paper in Cell in which they combined genome-wide association 

study (GWAS) data from eight psychiatric disorders - anorexia nervosa (AN), attention-

deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BIP), major 

depression (MD), obsessive-compulsive disorder (OCD), schizophrenia (SCZ), and Tourette syndrome 

(TS) – to identify novel pleiotropic genes and a latent genetic structure underlying these eight 

disorders. Using exploratory factor-analyses, and confirmed by hierarchical clustering analyses, they 

identified three (correlated) factors explaining approximately half of the genetic variation in these 

eight disorders. The first factor consisted primarily of disorders characterized by compulsive 

behaviours (AN, OCD, and TS), the second by mood and psychotic disorders (MD, BIP, and SCZ), and 

the third by early-onset neurodevelopmental disorders (ASD, ADHD, and TS) as well as MD. The authors 

conclude that their findings have important implications for psychiatric nosology, i.e. the classification 

of psychiatric disorders. 

Unfortunately, the authors did not include any data from substance abuse or dependence 

GWASs in their analyses, while substance use disorders form an important category of mental 

disorders. Substance use disorders are highly impairing, causing great harm to the individual, their 

family and friends, and to the society as a whole (2). There is evidence for substantial phenotypic and 

genetic correlations between substance use disorders and other psychiatric disorders.(3) The decision 

to not include substance use disorders in the analyses is a potential caveat, in particular because the 

investigated traits now most of the lack externalising disorders. The limited inclusion of traits may, 

therefore, have biased the identified latent structure of disorders. 

We extended the analyses by Lee et al. (1) by including additional data from three GWASs on 

substance use disorders: alcohol, nicotine, and cannabis dependence. We investigated the genetic 

relationships between these 11 traits by recreating the genetic relationship matrix and graph and by 

producing a new latent genetic factor structure. 

 

Methods 

We used data from the same eight GWAS studies of psychiatric disorders conducted by the Psychiatric 

Genomics Consortium: attention-deficit/hyperactivity disorder (ADHD, 4), anorexia nervosa (AN, 5), 

autism spectrum disorder (ASD, 6), bipolar disorder (BIP, 7), major depression (MD, 8), obsessive-

compulsive disorder (OCD, 9), schizophrenia (SCZ, 10), and Tourette syndrome (TS, 11). For MD we 

only had access to data excluding 23andMe, resulting in smaller sample than Lee et al. (1) used. In 

addition, we included GWAS data from three GWASs for substance use disorders: alcohol dependence 

(AD; DSM-IV-diagnosis, 12), cannabis use disorder (CUD, ICD diagnosis, 13), and nicotine dependence 
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(ND, Fagerström Test for Nicotine Dependence; dividing the sample in: mild (scores 0–3), moderate 

(scores 4–6), and severe (scores 7–10), 14). See Table 1 for sample sizes and SNP-based heritabilities 

for each disorder, and the original publications for detailed sample descriptions. 

 

Table 1: Sample sizes and SNP-based heritabilities as computed using LDSC regression. 

Psychiatric 

Disorder 
Cases Controls Total 

Effective 

Sample Size 
SNP-based h2 (SE) 

ADHD (4) 19,099 34,194 53,293 49,017.41 .26 (.01) 

AN (5) 3,495 10,982 14,477 10,604.98 .33 (.05) 

ASD (6) 18,382 27,969 46,351 44,368.07 .20 (.02) 

BIP (7) 20,353 31,358 51,710 49,368.94 .36 (.02) 

MD (8) 59,851 113,154 173,005 156,582.3 .08 (.01) 

OCD (9) 2,688 7,037 9,725 7,780.136 .40 (.06) 

SCZ (10) 36,989 11,3075 150,064 111,486.6 .32 (.01) 

TS (11) 4,819 9,488 14,307 12,783.3 .41 (.05) 

AD (12) 11,569 34,999 46,568 34,779.54 .10 (.02) 

CUD (13) 2,387 48,985 51,372 9,104.352 .16 (.06) 

ND (14) NA NA 28,677 28,677 .12 (.02) 

ADHD = attention-deficit/hyperactivity disorder; AN = anorexia nervosa; ASD = autism spectrum disorder; BIP =  
bipolar disorder; MD = major depression; OCD = obsessive-compulsive disorder; SCZ = schizophrenia; TS =  
Tourette syndrome; AD = alcohol dependence; CUD = cannabis use disorder; ND = nicotine dependence. 

 

We estimated bivariate genetic correlations between all pairs of traits using LD-score (LDSC) regression 

(15). The genetic correlations are based on the estimated slopes from the regressions of the product 

of z-scores from two sets of GWAS summary statistics on the linkage disequilibrium (LD) score and 

represent the genetic covariation between two traits based on all polygenic effects captured by the 

genome-wide SNPs. The genome-wide LD patterns used by these methods were estimated in the 

European populations included in the HapMap 3 reference panel (16, 17). The LDSC regression 

analyses were performed using the 1,290,028 genome-wide HapMap SNPs used in the original LD score 

regression studies (16, 17). 

A graph was plotted with the absolute genetic correlations as strength parameter for the edges 

(connections) using R version 3.5.1 (18) and R package igraph (19). Layout followed the Fruchterman-

Reingold algorithm. Non-significant weights (p>0.05 after Bonferroni correction) were removed. 

Centrality of each trait was assessed with eigenvector centrality (20), and reflects whether the trait 

has strong genetic overlap with traits that themselves have strong overlap with other traits. 

We used the genetic correlations derived from the genome-wide genetic data to model the 

joint genetic architecture of the 11 psychiatric disorders, closely following the methods reported by 

Lee et al. (1). First, an exploratory factor analysis (EFA) was performed with a predefined three-factor 

extraction and promax rotation. This determined the factor structure for the subsequent confirmatory 
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factor analysis (CFA), which we performed in Genomic Structural Equation Modelling (Genomic SEM, 

21). Three correlated factors were created, including only paths to traits with path loadings ≥.20 in the 

EFA. The diagonally weighted least squares (DWLS) estimator was used. The full genetic relationship 

matrix was used as input. Comparative fit index (CFI) and standardised root-mean-square residual 

(SRMR) were used as model fit parameters. Secondly, we employed the same procedure adding a 

fourth factor, to establish whether substance use disorders would form a separate factor from the 

other psychiatric disorders. 

  

Results 

The bivariate genetic correlations between all pairs of traits are presented in Figure 1A and the exact 

estimates and standard errors are presented in Supplementary Table 1. Of the initial 8 psychiatric 

disorders, ADHD and MD showed the highest genetic correlations with the substance use disorders, 

with ADHD showing significant genetic correlations with all three substance use disorders (ADHD-AD: 

rg=.46, p=3.8×10-7, ADHD-ND: rg=.54, p=3.3×10-13, ADHD-CUD: rg=.35, p=7.1×10-4) and major depression 

only with alcohol and nicotine dependence (MD-AD: rg=.52, p=1.3×10-10, MD-ND: rg=.45, p=9.4×10-12). 

Both alcohol and nicotine dependence showed significant genetic correlations with four psychiatric 

disorders, whereas cannabis use disorder showed significant genetic correlations only with ADHD. 

Figure 1B shows the genetic relationship graph, displaying the significant SNP-based genetic 

correlations as determined in LD-score regression. Similar to the plot by Lee et al. (1), major depression 

takes a central place in the graph with many strong genetic correlations with other traits, now also 

including alcohol and nicotine dependence. The graph illustrates that ADHD also takes in a central 

place, with additional significant and strong genetic correlations with all three substance use disorders. 

The central positions of major depression and ADHD were reflected in the fact that they showed the 

highest eigenvector centrality scores (0.47 and 0.40, respectively). 

To verify whether our approach matched those reported before, we replicated the EFA for 

eight disorders from Lee et al.(1) without substantial differences, with the same good model fit (CFI= 

0.97, SRMR= 0.08) and roughly identical path loadings. Adding the three substance use disorders also 

yielded a good CFI fit index (0.95), and reasonable SRMR (0.10). The three correlated latent factors 

together explained 51% of the genetic variation in the 11 psychiatric disorders. Figure 1C shows the 

results of the CFA as obtained from Genomic SEM, including paths with path loadings above a threshold 

of ≥0.20 in the EFA. Qualitative changes in the model when compared to the original model by Lee et 

al. are shown in red. The factor loadings largely remained the same, however, some notable changes 

appeared compared to the previous analysis. Similar to the results by Lee et al. (1), Factor 1 consists 

primarily of disorders characterized by compulsive/perfectionistic behaviours (AN, OCD, and TS), but - 

in contrast to their results - we now also find a significant and substantial loading of MD. Our second 
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factor is characterized by psychotic disorders (BIP and SCZ) and alcohol dependence, whereas the 

loading of major depression is no longer significant. Our third factor is now characterised by a large 

number of disorders, including MD, ADHD, ASD, and TS, and all three substance use disorders. We now 

also found a significant negative correlation between Factors 1 and 3.  

Adding a fourth factor did not converge. To aid convergence, we forced the removal of 

additional path loadings by increasing the threshold from 0.20 to 0.35, which forced a single loading 

for each disorder. This model converged but yielded a poor fit (CFI<0; RMSR>1), strongly suggesting 

that a four-factor model is not adequate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 (next page). Genetic relationships between eleven psychiatric disorders. 

A. SNP-based genetic correlations (rg) between 11 psychiatric disorders (including 3 substance use disorders) using LD-Score 

regression. The size of the circles represents the significance of the p-values, whereas the colour represents the magnitude 

of the genetic correlation (darker = stronger). Asterisks indicate statistical significance after Bonferroni correction for multiple 

testing (.05/55 = .0009). 

B. Graphical representation of the SNP-based genetic correlations between 11 psychiatric disorders. Each vertex (node) 

represents a disorder. Edge strength was set to the value of the genetic correlation between the traits. Only edges 

representing significant genetic correlations after Bonferroni correction are shown. The width and colouring of the edges 

represent the strength of the genetic correlation (absolute values of rg). Positive genetic correlations are presented in blue, 

negative correlations in orange. 

C. Results of the genetic factor analysis. Each latent genetic factor represents shared genetic variance across the psychiatric 

disorders that load on it. One-headed arrows connecting the latent genetic factors to the individual disorders represent 

standardized loadings, which can be interpreted as coefficients from a regression of the true genetic liability for the disorder 

on the common factor. Two-headed arrows between the three latent factors represent their correlations. Two-headed arrows 

below the individual psychiatric disorders represent residual genetic variance not explained by the latent factor(s). 

Standardized parameter estimates are shown with their standard errors in parentheses. In red we show qualitative changes 

between the results of our genetic factor analyses with 11 psychiatric disorders and those of the original analysis by Lee et 

al.(1) including eight disorders. 
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Discussion 

We extended analyses of a recent study investigating the genetic associations and underlying genetic 

factor structure among eight psychiatric disorders, by including three substance use disorders. We 

show that alcohol and nicotine dependence are significantly genetically correlated with several of the 

other mental health disorders, including ADHD, schizophrenia, and major depression. Cannabis use 

disorder is only significantly associated with ADHD, but this may be due in part to the limited power of 

the cannabis use disorder GWAS. 

The addition of the substance use disorders to the genetic factor analysis provides additional 

information on the psychiatric three-factor genetic structure identified by Lee et al. (1). Factor 1 (AN, 

OCD, TS, and MD) and 2 (BIP, SCZ, AD) remained quite similar, but MD now loads on Factor 1, whereas 

in the original model MD loaded on Factor 2 (although MD still contributes to Factor 2 through the 

inter-factor correlations). In addition, alcohol dependence now also significantly contributes to Factor 

2. Factor 3 is characterised by its large number of disorders, including all the disorders identified in the 

original structure (TS, MD, ADHD, ASD) plus all three substance use disorders. A four factor model did 

not fit the data well, suggesting that substance use disorders do not form a latent factor separate from 

the previously identified factors or that substance use disorders together with ADHD form a simple 

externalizing genetic trait. Lastly, we now observe a negative correlation between Factor 1 and 3, 

which was not the case in the original model by Lee et al. 

While Lee et al. referred to their third factor as consisting mainly of early-onset 

neurodevelopmental disorders (ASD, ADHD, and TS), the new factor 3 is more heterogeneous. It 

includes four externalising disorders (ADHD, AD, ND, CUD) as well as one internalizing disorder (MD) 

and other less clearly positioned disorders (ASD and TS). Major depression, is a very common mental 

health disorder and associated with the broad range of psychiatric problems, so its contribution to 

multiple factors –including this factor- is not particularly surprising.  

The switch of major depression contributing significantly to Factor 2 in Lee et al.’s factor model 

and to Factor 1 in our factor model highlights the sensitivity of such models to the input data. Aside 

from the additional input data for substance use traits, the input data for major depression in our 

model was a subset of the data used by Lee et al (i.e. their meta-analytic sample without 23andMe 

data), which could also explain some of the differences in the model. Updating source data (when 

larger GWASs come out) and adding additional disorders will likely result in additional changes or 

refinements in the underlying genetic factor structure. Larger GWASs will result in more power to 

detect significant genetic associations, changing the genetic correlation matrix and the genetic 

relationship graph. For example, the cannabis use disorder GWAS has substantial genetic correlations 

with some other traits (see Supplementary Table 1), but these were not significant likely due to the 

limited sample size of the GWAS. Furthermore, it is likely that including GWAS data on other diagnostic 
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data, such as personality disorders, sleep-wake disorders, panic disorders, sexual dysfunction, 

neurological disorders, or other disorders not included in the current analyses, would lead to further 

changes in the underlying structure. For some of these, and other, psychiatric disorders there are 

currently no well-powered GWASs available focussed on clinical diagnostic information. Once these 

are available, a more comprehensive and accurate underlying structure could be identified that may 

indeed have important implications for psychiatric nosology. Until then, given the instability of the 

underlying genetic structure, the identified structure by Lee et al. and those identified in the current 

study, as well as the inferred implications for psychiatric nosology should be interpreted with caution.  

In conclusion, our study illustrated that alcohol and nicotine dependence show widespread 

genetic correlations with other psychiatric disorders. Including substance use disorders in a genetic 

factor analysis results in changes in the underlying genetic factor structure of psychiatric disorders. 

Our study highlights the sensitivity of such (factor) models to the input data. Given the instability of 

such models, identified structures as well as the implications for psychiatric nosology should be 

interpreted with caution. To better estimate the most comprehensive and accurate underlying genetic 

structure, future studies should include data on the broadest possible set of psychiatric disorders. 
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