
Benchmarking Deep Learning Models and
Automated Model Design for COVID-19 Detection

with Chest CT Scans
Xin He∗, Shihao Wang∗, Shaohuai Shi∗ Xiaowen Chu∗§

Jiangping Tang†, Xin Liu†, Chenggang Yan†, Jiyong Zhang† ¶, Guiguang Ding‡
∗Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

†School of Automation, Hangzhou Dianzi University, Hang Zhou, China
‡School of Software, Tsinghua University, Beijing, China

Abstract—COVID-19 pandemic has spread all over the world
for months. As its transmissibility and high pathogenicity se-
riously threaten people’s lives, the accurate and fast detection
of the COVID-19 infection is crucial. Although many recent
studies have shown that deep learning based solutions can
help detect COVID-19 based on chest CT scans, there lacks a
consistent and systematic comparison and evaluation on these
techniques. In this paper, we first build a clean and segmented
CT dataset called Clean-CC-CCII by fixing the errors and
removing some noises in a large CT scan dataset CC-CCII
with three classes: novel coronavirus pneumonia (NCP), common
pneumonia (CP), and normal controls (Normal). After cleaning,
our dataset consists of a total of 340,190 slices of 3,993 scans
from 2,698 patients. Then we benchmark and compare the
performance of a series of state-of-the-art (SOTA) 3D and 2D
convolutional neural networks (CNNs). The results show that 3D
CNNs outperform 2D CNNs in general. With extensive effort
of hyperparameter tuning, we find that the 3D CNN model
DenseNet3D121 achieves the highest accuracy of 88.63% (F1-
score is 88.14% and AUC is 0.940), and another 3D CNN model
ResNet3D34 achieves the best AUC of 0.959 (accuracy is 87.83%
and F1-score is 86.04%). We further demonstrate that the mixup
data augmentation technique can largely improve the model
performance. At last, we design an automated deep learning
methodology to generate a lightweight deep learning model
MNas3DNet41 that achieves an accuracy of 87.14%, F1-score of
87.25%, and AUC of 0.957, which are on par with the best models
made by AI experts. The automated deep learning design is a
promising methodology that can help health-care professionals
develop effective deep learning models using their private data
sets. Our Clean-CC-CCII dataset and source code are available
at:https://github.com/arthursdays/HKBU HPML COVID-19.

Index Terms—COVID-19, Benchmark, Deep learning, Au-
toML, Chest CT, Data augmentation

I. INTRODUCTION

The COVID-19 (Corona Virus Disease 2019) pandemic
is an ongoing pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. The SARS-CoV-
2 virus can be easily spread among people via small droplets
produced by coughing, sneezing, and talking [2]. Even worse,

§ Corresponding author at Hong Kong Baptist University, Tel.: +852-3411-
5998; Email: chxw@comp.hkbu.edu.hk
¶Corresponding author at Hangzhou Dianzi University; Email:

jzhang@hdu.edu.cn

SARS-CoV-2 can be highly stable in a favourable environment
so that it can adhere to different object surfaces up to several
days [3], which causes a higher risk of getting infected by
touching these contaminated surfaces and then touching their
own faces.

COVID-19 is not only easily contagious, but also a seri-
ous threat to human lives. The COVID-19 infected patients
usually present with pneumonia-like symptoms (fever, dry
cough, dyspnea, etc.) and gastrointestinal symptoms such as
diarrhea, followed by a severe acute respiratory infection. In
some cases, acute respiratory distress accompanied by severe
respiratory complications may even lead to death. According
to the COVID-19 situation report [4] provided by the World
Health Organization (WHO), as of the end of May, there were
5,934,936 COVID-19 infections and 367,166 deaths globally.
The usual incubation period of COVID-19 ranges from one to
14 days. Many COVID-19 patients do not even know that they
have been infected without any symptoms, which would easily
cause delayed treatments and lead to a sudden exacerbation
of the condition. Therefore, a fast and accurate method of
diagnosing COVID-19 infection is crucial.

Currently, there are two commonly used methods for
COVID-19 diagnosis. One is viral testing, which uses real-time
reverse transcription-polymerase chain reaction (rRT-PCR) to
detect viral RNA fragments. The other one is making diag-
noses based on characteristic imaging features on chest X-rays
or computed tomography (CT) scan images. [5] conducted the
effectiveness comparison between the two diagnosis methods
and concluded that chest CT has a faster detection from the
initial negative to positive than rRT-PCR. However, the manual
process of analyzing and diagnosing based on CT images
highly relies on professional knowledge and is time-consuming
to analyze the features on the CT images. Therefore, many
recent studies have tried to use deep learning (DL) methods
to assist COVID-19 diagnosis with chest X-rays or CT scan
images.

However, the reported accuracy of the existing DL-based
COVID-19 detection solutions spans a broad spectrum because
they were evaluated on different datasets, making it difficult
to achieve a fair comparison. In this paper, we aim to conduct

1

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

a reproducible comparative study of DL methods for COVID-
19 detection using chest CT scans. To this end, we first build
a clean and segmented CT scans dataset based on a large-
scale open-source dataset1 from CC-CCII (China Consortium
of Chest CT Image Investigation) [6]. Our dataset, named
Clean-CC-CCI, consists of three classes: novel coronavirus
pneumonia (NCP), common pneumonia (CP), and normal
controls (Normal). Totally, there are 340,190 slices of 3,993
scans from 2,698 patients in our dataset, where the number
of slices of NCP, CP, and Normal is 131,517, 135,038, and
73,635, respectively. We split the dataset into the training and
test sets according to the patient’s ID with a ratio of 4:1, the
details of which are shown in Table II. Notice that our test set
size is the largest one (e.g., it is twice of that in [6]), making
our evaluation results more conservative than existing ones.
Our benchmark dataset is made open to the public and can
facilitate the fair comparison of new DL models for COVID-
19 detection.

In this paper, we use our dataset to benchmark two types
of state-of-the-art (SOTA) DL models: 1) 3D convolutional
neural networks (CNNs), including DenseNet3D121 [17],
R2Plus1D [18], MC3 18 [18], ResNeXt3D101 [17], Pre-
Act ResNet [17], and ResNet3D series [17]; 2) 2D CNNs, in-
cluding DenseNet121 [19], DenseNet201 [19], ResNet50 [20],
ResNet101 [20] and ResNeXt101 [21]. We explore three key
factors that may affect the detection performance, including
model depth, methods of reading slice images, and model
architecture. First, regarding the model depth, we compare
the performance of the ResNet architecture [20] with 3D
from 10 layers to 152 layers, i.e., ResNet3D10, ResNet3D18,
ResNet3D34, ResNet3D50, ResNet3D101, ResNet3D152, and
ResNet3D200. Second, in terms of how to read the slice
images, we consider two popular approaches: one is to read
a slice as an RGB image with three channels; another is to
convert the slice to a greyscale image with only one channel.
Therefore, the scan images used to train the model will
be different because of the different ways of slice reading.
Third, we exploit multiple DNN architectures including the
hand-craft models and automatically generated models with
AutoML techniques [22], [23]. We use seven 3D models to
analyze the effect of two types of scan data. Besides, we
discuss the influence of the number of slices in a CT scan
on the model performance. We also evaluate the effectiveness
of the mixup data augmentation method by comparing model
accuracy before and after applying the mixup method. Our
major contributions are summarized as follows:

1) We build an open benchmark dataset Clean-CC-CCII
for COVID-19 detection using chest CT scans, and
benchmark 9 different CNN architectures with more than
20 variants.

2) We find that both 3D and 2D CNNs are promising
solutions for detecting COVID-19 infections. However,
the overall performance of 3D CNNs is better than 2D

1We found some errors and noises in the dataset, and hence built our own
version.

CNNs. Besides, the results of the ResNet3D series show
that the model performance does not scale very well with
the model depth.

3) We find that the models can achieve higher AUC when
the slices are converted to greyscale images.

4) To the best of our knowledge, this is the first paper to
explore the relationship between model performance and
the number of slices in a CT scan. Our result shows
that there is no significant correlation between them. In
other words, increasing the number of slices does not
necessarily improve the model performance. Instead, the
model trained on scan data with a small number of slices
can also achieve comparable or even better results.

5) We demonstrate that the mixup data augmentation
method [24] can effectively improve model accuracy in
our study.

6) We develop an automated deep learning methodol-
ogy to generate a lightweight deep learning model
MNas3DNet41. On our dataset, it achieves an accuracy
of 87.14%, F1-score of 87.25%, and AUC of 0.957,
which are on par with the best results of the highly
fine-tuned models made by AI experts.

The rest of the paper is organized as follows. Section II
describes the related work. In section III, we describe the
strategies used to build our dataset, the comparison study
of SOTA CNN models, and the automated model design
methodology. Section IV presents and discusses the experi-
mental results. We conclude the paper and introduce the future
research directions in Section V.

II. RELATED WORK

In recent years, DL techniques have been proved to be
effective in the diagnosis of diseases with X-ray and CT
images [25]. To enable machine learning techniques be ap-
plied in helping detect COVID-19, an increasing number of
publicly available COVID-19 datasets has been proposed in
the past few months as shown in Table I. These datasets can
be classified into two classes: X-ray and CT scan images.
Machine/Deep learning techniques highly rely on both the
quality and quantity of the dataset.

A. Publicly-available datasets of COVID-19

IEEE8023 Coivd-chestxray-dataset [26] is an open dataset
of COVID-19 cases with chest X-ray and CT images, which
allows users to submit other COVID-19 data to this dataset.
However, this dataset mainly focuses on X-ray images with
only a very small number of CT scans. Based on this dataset,
several DL based techniques have been proposed [7]–[9] to
detect COVID-19.

Covid-ct-dataset [27] is a CT dataset of COVID-19, which
is mainly composed of CT images extracted from PDF files
of COVID-19 papers in medRxiv and bioRxiv. Thus, it has
two main drawbacks. First, many CT images contain some
marks created by the CT machine or doctors, which may have
a high impact on the DL techniques. Second, each patient has
only one to several CT images instead of a complete 3D scan

2

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

TABLE I
SUMMARY OF THE EXISTING STUDIES OF DEEP LEARNING-BASED METHODS FOR COVID-19 DETECTION. ‡: THE NUMBER OF SCANS. *: THE NUMBER

OF PATIENTS.

Paper Type 2D/3D
dataset

Download
-able?

Dataset Statistics Class Statistics (#slices) Size of
Test Set

2D/3D
model?

Accuracy
(%) AUC#patients #scans #slices NCP Non-NCP

CP Normal
[7] X-ray 2D Yes - - 1,531 100 1,431 764 2D - 0.9172
[8] X-ray 2D Yes - - 5,941 68 4,290 1,583 1,188 2D 88.39 -
[9] X-ray 2D Yes - - 100 50 50 20 2D 98.00 -
[10] CT 2D No - - 133 68 65 26 2D 93.20 -
[11] CT 2D No 194 - 1,020 510 510 102 2D 99.63 0.994
[12] CT 2D Yes - - 425 178 247 45 2D 98.78 -
[13] CT 2D Yes 143 - 746 349 397 186 2D 86.00 0.91
[14] CT 2D Yes - - 746 349 397 105 2D 87.60 0.961
[15] CT 3D No 542 630 - 313* 229* 131* 3D 90.10 0.975
[16] CT 3D No 3,322 4,356 - 1,296‡ 1,735‡ 1,325‡ 427‡ 3D - 0.96
[6] CT 3D Yes 2,778 4,356 444,034 1,578‡ 1,614‡ 1,164‡ 389‡ 3D 92.49 0.976

Ours CT 3D Yes 2,698 3,993 340,190 1,515‡ 1,513‡ 965‡ 798‡ 2D&3D 88.63 0.959

volume, which results in some difficulties to use 3D CNNs to
exploit the depth information of the lung.

CC-CCII is another publicly available CT volume dataset
proposed by [6]. It is currently one of the largest CT datasets
for COVID-19, which contains 617,775 slices of CT images
from 6,752 scans of 4,154 patients. It has 3 classes of novel
coronavirus pneumonia (NCP), common pneumonia (CP), and
normal controls (Normal). CP includes bacterial pneumonia
and viral pneumonia. However, this dataset (version 1.0 re-
leased on 23 April 2020) contains some errors (e.g., disorder
of CT images in some scans, some scans include CT of the
head but not the lung, etc.).

COVID-19-CT-Seg-Dataset [28] is a publicly available CT
dataset of COVID-19. It contains 20 well-labeled scans with
annotation of left lung, right lung and lesions. Three ex-
perienced radiologists are involved for each annotation: two
radiologists do the annotation and one does the verification.

B. DL-based methods for COVID-19 detection

Most research is conducted on CT images, but many of
them do not exploit the 3D information of CT images, such
as the work by [10], [13], [14]. They only propose the DL
models with 2D CNNs for COVID-19 detection. [11] is the
most related work to ours; but it only benchmarks ten 2D
CNNs and compares their performance in classifying 2D CT
images on their private dataset with 102 testing images.

On the other hand, the studies in utilizing 3D CT images are
relatively rare, which is mainly due to the lack of 3D CT scan
dataset of COVID-19 in the earlier days. However, there still
exist some work proposing 3D CNNs with their private 3D CT
datasets (e.g., [16], [15]). Recently, [6] publish a large-scale
publicly available 3D CT dataset, based on which they propose
3D CNNs methods to segment lesion and detect COVID-19.
However, in [6], only two DL models are exploited to evaluate
the model performance using 10% of the dataset as test set. It
is of practical importance to evaluate which types of models
are suitable to the 3D CT images in detecting COVID-19.

There are also some other studies conducted on X-ray
images. For example, [9] propose three 2D CNNs for COVID-
19 detection. [7] introduce a deep anomaly detection model

for fast and reliable screening. [8] investigate the estimation
of uncertainty and interpretability by droiopweights-based
Baysian CNN on the X-ray images. [12] use both X-ray
images and CT images to do segmentation and detection.

C. Automated model design for medical image analysis

In recent years, Automated Machine Learning (AutoML)
has created many SOTA results by automatically searching
model architectures and hyper-parameters for specific tasks
[22], [23], [29]. For example, [30] introduce AutoML into
the medical image processing task. They used five public
datasets, MESSIDOR, OCT images, HAM 10000, Paediatric
images and CXR images, to train models by Google Cloud
AutoML. Their experimental results demonstrate that AutoML
can generate competitive classifiers compared to manually
designed DL models.

III. MATERIALS AND METHODS

A. Dataset

[6] provide an open-source chest CT image dataset for
COVID-19 diagnosis, namely China Consortium of Chest CT
Image Investigation (CC-CCII), which contains a total of
617,775 CT slices of 6,752 CT scans from 4,154 patients. CC-
CCII has three classes: novel coronavirus pneumonia (NCP),
common pneumonia (CP), and normal controls (Normal). CP
includes bacterial pneumonia and viral pneumonia. To best of
our knowledge, CC-CCII is the largest COVID-19 CT dataset
which is publicly available currently. It would be helpful for
accelerating the research on machine learning based methods
in COVID-19 diagnosis. However, CC-CCII has five main
issues (i.e., damaged data, non-unified data type, repeated and
noisy slices, disordered slices, and non-segmented slices) that
would have high negative impacts on the model performance.
In this section, we first describe our methods to address the
problems in CC-CCII to generate a better dataset for DL
techniques. Then we introduce the strategies of scan images
construction.

3

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

(a) NCP CT scan

(b) CP CT scan

(c) Normal CT scan

Fig. 1. Some samples of segmented chest CT scan images of class (a) NCP,
(b) CP, and (c) Normal.

1) Data pre-processing: Damaged data. According to the
work in [6], the authors claim that the original number of
CT slices in NCP, CP, and Normal is 164,241, 183,933, and
95,860, respectively. However, the dataset provided by [6] is
composed of many zip files, some of which are damaged
(i.e., around 10% of downloaded files cannot be successfully
decompressed). As a result, we only obtain 397,945 CT slices,
where there are 152,791, 157,940, and 87,214 slices in the
class NCP, Normal, and CP, respectively.

Non-unified data type. In CC-CCII, there are various types
of image files, such as “tif”, “jpg”, “bmp”, and “png”. For the
same type of image files, some suffix names are also different,
e.g., “0001.jpg” and “0002.JPG”, which is not friendly to
reading data. Therefore, we unify all slice image files to the
PNG format with the suffix “.png” without losing information
of the original files.

Repeated & noisy slices. The third problem is that there
exist duplicated slices in many CT scans. For example, in the
class of Normal of CC-CCII, the scan ID of 199 in the patient
ID of 764 has the repeated images (file names: 68-135) that
are the same with file names: 1-67. For the DL-based methods
using 3D CT volumes, the repeated slices are very noisy to
the models since the 3D CT volume with repeated slices may
form two lungs. Some repeated scans also affect the shape of
the lung in the CT volume so that the model could easily fail
to correctly extract the features. Thus, we manually remove
those duplicated slices to avoid redundant data by scanning all
the images in CC-CCII. In addition, some CT images of CC-
CCII contain unrelated body parts (e.g., the head or buttocks)
that are not related to the lung. For example, in the class of
CP, scan 3098 in patient 736 has the head part in CT images
“0000.png” and “0011.png”.

Fig. 2. The frequency of the different number of slices. The minimum and
maximum number of slices are 9 and 457, respectively.

Disordered slices. In CC-CCII, the slices should have been
organized in the same order for different scans so that the soft-
ware can read the images according to the file name to generate
a complete 3D lung. For example, by default, ”0001.png” is
regarded as the first slice followed by ”0002.png, 0003.png,
...”. However, the images in some scans are disordered so that
these images cannot be constructed as the same shape of 3D
lung with other scans with correct orders. These disordered
slices could give confusing information to the DL models.
Therefore, we go through all scans of CC-CCII and rearrange
the disordered slices to the correct order.

Lung segmentation. The last problem is that in some slices,
the lungs are segmented, while some are not. The segmented
lungs and un-segmented lungs have very clear difference that
the un-segmented lungs have clear white borders out of the
lung regions while segmented lungs have not. In order to keep
the consistency for all slices, we use an open-source K-Means
based method 2 to segment lungs form the CT slices and
remove the white background. Fig. 1 presents some examples
of CT scan of class NCP, CP, and Normal after segmentation.

TABLE II
THE STATISTICS OF OUR CLEAN-CC-CCII DATASET. THE DATASET IS

DIVIDED INTO THE TRAINING AND TEST SETS. THE RATIO OF THE
NUMBER OF PATIENTS, SCANS AND SLICES FOR THE TWO SETS IS 4:1.
NCP, CP, AND NORMAL INDICATE NOVEL CORONAVIRUSPNEUMONIA,

COMMON PNEUMONIA, AND NORMAL CONTROL, RESPECTIVELY.

Classes #Patients #Scans #Slices
Train Test Train Test Train Test

NCP 726 190 1,213 302 106,075 25,442
CP 778 186 1,210 303 106,878 28,160

Normal 660 158 772 193 59,164 14,471
Total 2,164 534 3,195 798 272,117 68,073

After addressing the above problems, we construct a clean
CC-CCII dataset named Clean-CC-CCII, which is more suit-
able to DL-based methods in COVID-19 diagnosis. The statis-
tics of our dataset are presented in Table II. Finally, our Clean-
CC-CCII dataset consists of 340,190 slices of 3,993 scans from
2,698 patients. The dataset is divided into the training set and
the test set according to patients to make sure that the CT scan

2https://github.com/booz-allen-hamilton/DSB3Tutorial

4

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

images from the same patient will appear either only in the
training set or in the test set. The ratio of the number of scans
in the training set and the test set is 4:1.

2) Scan images construction: After data pre-processing, we
need to construct CT scan images as inputs of DL models for
training. As shown in Fig. 3, there are two steps before feeding
data into DL models: slice sampling and slice processing.

Slice sampling: In our dataset, each CT scan contains a
different number of slices as shown in Fig. 2. The minimum
and maximum number of slices are 9 and 457, respectively.
However, DL models generally require the same dimensional
inputs. To keep the same dimension inputs, we propose two
types of slice sampling strategies: random sampling and sym-
metrical sampling. Specifically, the random sampling strategy
is applied to the training set, which can be regarded as
data augmentation, while the symmetrical sampling strategy is
performed on the test set to avoid introducing randomness into
the testing results. Besides, because the number of slices can
be manually set to different values, both sampling strategies
support automatically select upsampling or downsampling
based on the original and target number of slices. We will
also study the performance impact of the number of slices
in Section IV-C. Notably, the relative order between slices
remains the same before and after sampling. The details of
our sampling strategies are given in Algorithms 1 and 2 of A.

Slice processing: After slice sampling, each scan data is
composed of the same number of slices. We then resize all
slices to 160×160 and central crop to 128×128. In this way,
the final input data sizes for the 3D and 2D models are c×d×
128×128 and d×128×128, respectively, where c ∈ {1, 3} is
the number of channels of the slice image, and d indicates the
configured number of slices. For all scan data in the training
set, we apply a 3D random horizontal flip transformation. The
scan data in both the training and test sets is normalized by
subtracting the mean and dividing the variance.

B. A comparative study of COVID-19 detection methods

In this study, we aim to investigate the performance of
different types of DL models on detecting COVID-19 infection
with chest CT scans. Therefore, we implement various experi-
ments to evaluate the potential effective methods for COVID-
19 diagnosis. Specifically, we compare the performance be-
tween SOTA DL models, including 3D and 2D models, and
explore the relationship between model performance and (a)
model depth and (b) how to read slice images. We also evaluate
the effectiveness of the mixup data augmentation method in
improving model classification accuracy.

Our pipeline of using DL models to classify CP, NCP, and
Normal CT scans is shown in Fig. 3. The first step is to
construct CT scan images to feed into the DL models by slice
sampling and processing. The sizes of all slices are fixed to
128×128 for the model inputs. The models are trained with
the training set and evaluated on the test set.

1) Exp 1: Comparing different CNN models: In this
study, we evaluate 17 CNN classification models shown
in Table III, including 3D models and 2D models. For

TABLE III
THE CNN CLASSIFICATION MODELS USED IN OUR STUDY. THE INPUT
SIZES FOR 3D AND 2D MODELS ARE c× d× h× w AND d× h× w,

RESPECTIVELY, WHERE c IS THE NUMBER OF CHANNELS OF THE SLICE
IMAGE, d IS THE NUMBER OF SLICES IN A SCAN IMAGE, h AND w

INDICATE THE HEIGHT AND WIDTH OF THE SLICE IMAGE, RESPECTIVELY.

Type Network Depth Parameters(M) Input Size

3D

R2Plus1D 18 119.41 c× d× h× w
MC3 18 43.84 c× d× h× w

DenseNet3D 121 43.06 c× d× h× w
PreAct ResNet3D 101 325.19 c× d× h× w

ResNeXt3D 101 1628.52 c× d× h× w
ResNet3D 10 54.94 c× d× h× w
ResNet3D 18 126.53 c× d× h× w
ResNet3D 34 176.26 c× d× h× w
ResNet3D 50 242.29 c× d× h× w
ResNet3D 101 325.21 c× d× h× w
ResNet3D 152 447.88 c× d× h× w
ResNet3D 200 482.98 c× d× h× w

2D

DenseNet2d 121 30.44 d× h× w
DenseNet2d 201 76.35 d× h× w
ResNet2d 50 97.49 d× h× w
ResNet2d 101 169.94 d× h× w

ResNeXt2d 101 338.71 d× h× w

the 3D models, we use DenseNet3D121 [17], R2Plus1D
[18], MC3 18 [18], ResNeXt3D101 [17], PreAct ResNet3D
[17], and ResNet3D series [17] (ResNet3D10, ResNet3D18,
ResNet3D34, ResNet3D50, ResNet3D101, ResNet3D152, and
ResNet3D200). For the 2D models, we use DenseNet121
[19], DenseNet201 [19], ResNet50 [20], ResNet101 [20] and
ResNeXt101 [21].

For the 2D models, the input scan data is composed of
greyscale slice images. In terms of 3D models, we evaluate
two types of scan data: RGB slice images with three input
channels and greyscale slice images. Besides, for both 2D and
3D models, the size of slices is fixed to 128×128. Therefore,
the input sizes for 3D and 2D models are c× d× 128× 128
and d × 128 × 128, respectively, where c is the number of
channels of the slice image that depends on how to read
the slice images, and d is the number of slices in a scan
image. c = 3 and c = 1 indicate that each slice is read as
the RGB and greyscale image, respectively. The number of
input channels in the first convolutional layer of all models is
modified accordingly to handle the input with different size.

2) Exp 2: Comparing the different number of slices: In [6],
the scan input is fixed to 64 slices. However, in our dataset,
the number of slices contained in different CT scans ranges
from 9 to 457, and the mean value is 85 as shown in Fig. 2.
Intuitively, the higher number of slices, the more information
can be extracted by the models, which could result in a higher
performance. We empirically study the performance impacts of
the number of slices by setting d to different values. We choose
four representative 3D models (MC3 18, DenseNet3D121,
ResNet3D101, and ResNeXt3D101) to evaluate the relation-
ship between the model performance and the number of
slices. For MC3 18, DenseNet3D121, and ResNet3D101, we
evaluate five types of scan images containing 16, 32, 64, 128,
and 256 slices, respectively. For ResNeXt3D101, it is too large
to fit into the GPU memory when d > 64, so d is chosen with

5

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

Slice	sampling

(Under-sampling	or
Up-sampling)

Resize	each	slice	to
160×160,	then	center
crop	to	128×128

3D	input:	c×d×128×128
2D	input:	d×128×128

	

CNN	classification
models

CP

NCP

Normal

stack Mixup
.	.	.

scan	0

scan	n

A B
C

Fig. 3. The pipeline of DL models to detect novel coronavirus pneumonia (NCP), common pneumonia (CP), and normal controls (Normal) from chest CT
scans. For each step, the input data of the models is a batch of scan images. All scan images contain the same number of slices by sampling, and the size
of each slice is fixed to 128× 128. The final input data sizes for the 3D and 2D models are c× d× 128× 128 and d× 128× 128, respectively, where c
is the number of channels of slice images, and d indicates the number of slices in a scan data. Three dashed boxes represent three different experiments: 1)
the box A explores the effect of different sizes of scan data on model performance by sampling the different number of slices.; 2) the box B evaluates the
effectiveness of mixup data augmentation method; 3) the box C compares the performance of different models and the performance of models at different
depths.

16, 32, and 64.
3) Exp 3: Training with mixup: Mixup [24] is a generic and

straightforward data augmentation strategy, which has been
proven to be effective in improving the model performance
on 2D image classification tasks. Therefore, we explore the
effectiveness of the mixup method in our 3D CT scan classi-
fication task.

In essence, mixup trains a DL model on linear combinations
of pairs of examples and their labels. The formula is given as
follows:

xmixup = λxi + (1− λ)xj
ymixup = λyi + (1− λ)yj ,

(1)

where (xi, yi) and (xj , yj) are two feature-target vectors
drawn at random from the training set, and the variable
λ ∈ [0, 1] obeys a β-distribution, i.e., λ ∼ β(α, α) for
α ∈ (0,∞). By doing so, a new feature-target vector will
be generated by mixing up two feature-target vectors, which
encourages the model to behave linearly in-between training
examples.

In our experiments, we also use four representative 3D
models (MC3 18, R2Plus1D, ResNet3D101, DenseNet121) to
evaluate the feasibility of the mixup strategy. We set α = 0.4,
as recommended in [24].

C. Automated model design for COVID-19 detection

The results of all baseline experiments (to be discussed
in Section IV) show that DL is a powerful tool to assist
the detection of COVID-19 infection based on CT images,
where 3D models generally outperform 2D models. However,
as shown in Table III, 3D models have a very large model
size and are slow to train. Based on the results of Table IV
and Table V, we can see that a larger or a deeper model
does not necessarily result in better performance. For example,
ResNeXt3D101 is the largest model in our evaluated models,
but its performance is not the best. Therefore, in this section,

we aim to design a lightweight 3D model, which is expected
to achieve comparable or even better results than the baseline
3D models and is easier to deployment for faster detection.

However, manually designing a deep neural network is
a time-consuming process that highly relies on experience
and expertise. Luckily, a recent technique, namely neural
architecture search (NAS), would be a promising solution for
us. NAS can be seen as a sub-field of AutoML [22], [23], [29],
which draws much attention from academia and industry as
it can design various neural networks automatically. In the
following content, we first introduce our search space and
search strategy, and then describe the implementation details
and experimental results.

1) Search space: The first step of NAS is to build the
search space, which defines the design principles of neural
architectures. MobileNet [31] and MobileNetV2 [32] are a
class of efficient models manually designed for mobile and
embedded devices for efficient inference. Many NAS studies
[33], [34] use the MobileNetV2 structure to design the fac-
torized hierarchical search space, but they mainly focus on
2D image recognition tasks. In this work, we also exploit
MobileNetV2 as the backbone to design the 3D search space.

An overview of the final model is shown in Fig. 4, which
consists of n different cells. The number of blocks in a cell can
be different, represented by [B1, ..., Bi, ..., Bn]. The stride is
set to 2 in the first block if the resolutions of input and output
are different, and the stride is 1 in all other blocks. The blocks
within the same cell have the same number of input/output
channels. Besides, the structure of each block is selected
from a series of 3D mobile inverted bottleneck convolution
operations [32], represented by K × K MBConvE, where
K is the filter kernel size and E is the expansion ratio of
linear layers. In our method, the search space consists of
the following operations: {3× 3 MConv3, 3× 3 MConv4,
3 × 3 MConv6, 5 × 5 MConv3, 5 × 5 MConv4, 7 ×

6

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

input

output

Cell	1

Cell	2

Cell	3

Cell	n

Block	3-1

Block	3-B3

...
...

Block	1-1

Block	1-B1

...

conv
1x1

Conv1x1,	Relu6

Dwise	3x3,	Relu6

Conv	1x1,	Linear

+

H×W×F

H×W×3F

H×W×F

3×3_MBConv3

H×W×3F

Conv1x1,	Relu6

Dwise	5x5,	Relu6

Conv	1x1,	Linear

+

H×W×F

H×W×6F

H×W×F

5×5_MBConv6

H×W×6F

Fig. 4. The overview of our search space. The model is generated by stacking
a predefined number of cells, and each cell contains a different number of
repeated identical blocks. Only the first block has a stride of 2 if resolutions
of input and output are different, but all other blocks have a stride of 1.

7 MConv3, 7× 7 MConv4}.
2) Search strategy: After building the search space, we can

see that the key idea of the search task is to select the best sub-
model (in terms of validation accuracy) from the super-model.
As summarized in [22], [29], there are various of search strate-
gies, such as reinforcement learning, evolutionary algorithms,
gradient descent-based methods, and random search. In recent
studies [35]–[37], the authors demonstrate that random search
is a more competitive method than many others. Therefore,
we also apply the random search strategy.

3) Implementation details: The pipeline of our NAS
methodology is shown in Fig. 5, which contains two stages
for searching 3D models on our Clean-CC-CCII dataset: the
search stage and the evaluation stage.

Search stage. In the search stage, we search for 100 epochs.
Each epoch consists of a number of steps. We sample a new
neural architecture every five steps and make sure that every
sampled architecture is trained. Note that only the training set
is used for training and evaluating the sampled models in the
search stage. At the end of the search stage, there are 100
neural architectures and their corresponding training accuracy.

Evaluation stage. After the search stage, we need to select
several top ranked models (in terms of validation accuracy)
for the next stage. Specifically, according to the training
records, we choose those models that perform better validation
accuracy than the previous sampled models. The selected
models are first trained with the training set from scratch for
200 epochs, and then evaluated on the test set.

Implementation details. For both search and evaluation
stages, we use the Adam optimizer [38] with an initial learning

record	the	training
accuracy

Top	models Train	from
scratch best	model

Search	
space

Random	sample
Random
model

repeat	n	epochs

I.	Search	stage

II.	Evaluation	stage

Fig. 5. The pipeline of random strategy of searching for 3D models on our
dataset. There are two stages: 1) search and 2) evaluation stage. The search
stage is to select some promising neural networks, which are then evaluated
in the evaluation stage.

rate of 0.001. The batch size is 64. The loss function is cross-
entropy. All input CT scan samples consist of 64 greyscale
slice images. The number of cells is fixed to 6. We design
two experiments to search for models with different depths:
one is [4, 4, 4, 4, 4, 1] (21 layers), the other is [8, 8, 8, 8, 8, 1]
(41 layers). For both cases, the number of channels of each
block in different cells is [24, 40, 80, 96, 192, 320]. Each exper-
iment is conducted on four Nvidia Tesla V100 GPUs (32-GB
version). Furthermore, to improve the searching efficiency, we
fix the height and width of the input scan to 60×60 during the
search stage, and restore the size to 128×128 in the evaluation
stage.

Our NAS-related code is based on NNI3 and can be found
at https://github.com/arthursdays/HKBU HPML COVID-19.

IV. RESULTS AND DISCUSSION

In this section, we present and analyze the results of the
different experiments mentioned above. All models are trained
using the Adam [38] optimizer with an initial learning rate of
0.001. The cosine annealing scheduler [39] is applied to adjust
the learning rate.

A. Evaluation metrics

To compare the performance of CNN models, we use several
commonly used evaluation metrics as follows:

Sensitivity (Recall) =
NTP

NTP +NFN
, (2)

3https://github.com/microsoft/nni

7

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

(a) The ROC curves of 3D models that are trained
with greyscale slices.

(b) The ROC curves of 3D models that are trained
with RGB slices.

(c) The ROC curves of 2D models that are trained
with greyscale slices.

Fig. 6. The ROC curves of 3D and 2D models. The overall performance of 3D models is better than 2D models. Besides, the variance between the performance
of the models that are trained with greyscale slices is smaller.

TABLE IV
THE PERFORMANCE COMPARISON BETWEEN DIFFERENT CNN CLASSIFICATION MODELS ON THE TEST SET. THE POSITIVE AND NEGATIVE CASES ARE

ASSIGNED TO NCP AND NON-NCP (I.E., CP AND NORMAL) SCANS, RESPECTIVELY. FOR 3D MODELS, THERE TWO TYPES OF INPUT SIZE: 3 AND 1
INDICATE THAT THE SCAN DATA IS COMPOSED BY RGB AND GREYSCALE SLICE IMAGES, RESPECTIVELY.

Type Model Depth Input size Accuracy
(%)

Precision
(%)

Sensitivity(Recall)
(%)

Specificity
(%)

F1-score
(%) AUC

3D

R2Plus1D 18 3× 64× 128× 128 80.88 78.37 82.78 86.09 80.52 0.885
R2Plus1D 18 1× 64× 128× 128 85.25 88.11 83.44 93.15 85.71 0.907

MC3 18 3× 64× 128× 128 84.75 88.34 82.78 93.35 85.47 0.899
MC3 18 1× 64× 128× 128 85.82 87.07 84.77 92.34 85.91 0.945

DenseNet3D 121 3× 64× 128× 128 87.62 85.94 89.07 91.13 87.48 0.898
DenseNet3D 121 1× 64× 128× 128 83.83 88.68 77.81 93.95 82.89 0.913
ResNet3D 18 3× 64× 128× 128 83.21 81.21 84.44 88.1 82.79 0.910
ResNet3D 18 1× 64× 128× 128 87.26 86.18 86.75 91.53 86.47 0.927
ResNet3D 101 3× 64× 128× 128 86 88.19 84.11 93.15 86.1 0.873
ResNet3D 101 1× 64× 128× 128 84.5 84.62 83.77 90.73 84.19 0.918

PreAct ResNet3D 101 3× 64× 128× 128 85.34 85.19 83.77 91.13 84.47 0.906
PreAct ResNet3D 101 1× 64× 128× 128 82.96 80.32 82.45 87.7 81.37 0.904

ResNeXt 101 3× 64× 128× 128 82.88 85 78.81 91.53 81.79 0.805
ResNeXt 101 1× 64× 128× 128 83.33 85.87 80.46 91.94 83.08 0.909

2D

DenseNet 121 64× 128× 128 79.5 85.06 73.51 92.14 78.86 0.880
DenseNet 201 64× 128× 128 81.75 78.98 82.12 86.69 80.52 0.884
ResNet 50 64× 128× 128 76.8 73.62 74.83 83.67 74.22 0.852
ResNet 101 64× 128× 128 79.43 78.35 75.5 87.3 76.9 0.853

ResNeXt 101 64× 128× 128 76.19 74.58 72.85 84.88 73.7 0.845

Specificity =
NTN

NTN +NFP
, (3)

Precision =
NTP

NTP +NFP
, (4)

F1-score =
2× (precision× recall)

precision + recall
, (5)

Accuracy = 1
N

∑N
i=1 Z(y

i
pred, y

i
true) , (6)

where Z(p, q) =
{

1, if p = q
0, otherwise .

Besides, the area under the receiver operating characteristic
(ROC) curve (AUC) is also applied to evaluate the perfor-
mance of COVID-19 diagnosis. In this study, the positive and

negative cases are assigned to NCP and non-NCP (i.e., CP
and Normal) scans, respectively. Specifically, NTP and NTN

indicate the number of correctly classified NCP and non-NCP
scans, respectively. NFP and NFN indicate the number of
wrongly classified NCP and non-NCP scans, respectively. The
accuracy is the micro-averaging value for all test data, which
is used to evaluate the overall performance.

B. Results of Exp 1: Comparing different CNN models

The performance comparison between different CNN modes
including 3D and 2D is shown in Table IV, in which the
number of slices in the scan data is fixed to 64 and there
are two types of inputs that differ in the way of reading slice
images.

The results in Table IV show that both 2D and 3D models
can achieve relatively good results on our Clean-CC-CCII

8

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

TABLE V
THE PERFORMANCE COMPARISON BETWEEN RESNET3D MODELS OF DIFFERENT DEPTHS ON THE TEST SET. FOR ALL MODELS, THE INPUT SCAN DATA

HAS THE SAME NUMBER OF SLICES, I.E., 64. ”ACCURACY” INDICATES THE FINAL VALUE OF ALL DATA, WHILE FOR METRICS SUCH AS ”PRECISION,
SENSITIVITY, SPECIFICITY, F1-SCORE”, NCP IS THE POSITIVE SAMPLE, AND NON-NCP (CP AND NORMAL) IS THE NEGATIVE SAMPLE.

Model Depth Input size Accuracy
(%)

Precision
(%)

Sensitivity(Recall)
(%)

Specificity
(%)

F1-score
(%) AUC

ResNet3D 10 1× 64× 128× 128 85.35 79.68 83.11 87.10 81.36 0.918
ResNet3D 18 1× 64× 128× 128 87.26 86.18 86.75 91.53 86.47 0.927
ResNet3D 34 1× 64× 128× 128 87.83 85.34 86.75 90.93 86.04 0.959
ResNet3D 50 1× 64× 128× 128 86.61 88.15 83.77 93.15 85.91 0.924
ResNet3D 101 1× 64× 128× 128 84.50 84.62 83.77 90.73 84.19 0.918
ResNet3D 152 1× 64× 128× 128 85.46 85.57 86.42 91.13 86.00 0.915
ResNet3D 200 1× 64× 128× 128 87.19 88.70 85.76 93.35 87.21 0.927

TABLE VI
THE PERFORMANCE OF MODELS THAT ARE TRAINED WITH SCAN DATA COMPRISING OF THE DIFFERENT NUMBER OF SLICES.

Model Depth #Slices Accuracy
(%)

Precision
(%)

Sensitivity(Recall)
(%)

Specificity
(%)

F1-score
(%) AUC

MC3 18 16 86.78 89.00 85.76 93.55 87.35 0.936
MC3 18 32 86.16 87.11 82.78 92.54 84.89 0.913
MC3 18 64 84.75 88.34 82.78 93.35 85.47 0.890
MC3 18 128 87.50 87.76 85.43 92.74 86.58 0.920
MC3 18 256 86.12 85.91 84.77 91.53 85.33 0.908

ResNet3D 101 16 85.1 86.33 79.47 92.34 82.76 0.889
ResNet3D 101 32 85.54 89.62 77.15 94.56 82.92 0.896
ResNet3D 101 64 86.00 88.19 84.11 93.15 86.1 0.873
ResNet3D 101 128 87.86 89.51 84.77 93.95 87.07 0.934
ResNet3D 101 256 87.88 89.58 85.43 93.95 87.46 0.891

ResNeXt3D 101 16 86.1 88.81 84.11 93.55 86.39 0.921
ResNeXt3D 101 32 83.94 84.83 81.46 91.13 83.11 0.909
ResNeXt3D 101 64 83.33 85.87 80.46 91.94 83.08 0.893
DenseNet3D 121 16 88.39 89.00 85.76 93.55 87.35 0.934
DenseNet3D 121 32 87.02 88.97 82.78 93.75 85.76 0.897
DenseNet3D 121 64 83.83 88.68 77.81 93.95 82.89 0.913
DenseNet3D 121 128 88.63 90.28 86.09 94.35 88.14 0.940
DenseNet3D 121 256 86.88 90.43 84.44 94.56 87.33 0.925

dataset, which indicates that the computer-aided COVID-19
diagnosis with state-of-the-art DL techniques would be a
promising solution. It shows that DenseNet3D121 is one of
the best models among all evaluated models as it achieves the
best accuracy, precision, sensitivity, specificity, and F1-score,
and MC3 18 obtains the highest AUC score when the slices
are read as the greyscale images.

In terms of the accuracy of 3D models, the different
number of input channels has different impacts on the different
network architectures. However, regarding the AUC metric,
almost all 3D models with the greyscale slice images perform
better the RGB images. One can see that the ROC curves in
Fig. 6 (a) are higher and distributed closer than those in Fig.
6 (b), which indicates that the models trained with greyscale
slices are more robust. The main reason is that the original
CT slices are greyscale images, and duplicating the greyscale
images to RGB images would introduce much repetitive and
redundant information, which instead increases the difficulty
of model training. Regarding the comparison of 2D models
and 3D models, we can see that the overall performance of
the 3D models is better than that of the 2D models, which is
as expected because the convolutional filters in 3D models
can better extract the three-dimensional spatial relationship
between the slices of the scan data.

We also explore the impact of model depth on model
performance as shown in Table V, from which one can see
that there is no model that can have an absolute advantages on
all metrics. Although no significant correlation can be found
between model performance and model depth, the results
suggest that a smaller model can also obtain similar or even
better results than the larger one.

C. Results of Exp 2: Comparing the different number of slices
Table VI presents the results of different models trained with

the scan data comprising the different number of slices. For
MC3 18, DenseNet3D121, and ResNet3D101, we evaluate
the cases of 16, 32, 64, 128, and 256 slices, while for
ResNeXt3D101, we only test the cases of 16, 32, and 64
slices due to its large size. Fig. 7 (a) plots the relationship
between model accuracy and the number of slices. One can
see that only the accuracy of ResNet3D101 increases with the
number of slices, while other models do not. However, because
the distribution of our dataset is imbalanced, higher accuracy
does not mean better performance. As Fig. 7 (b) presents,
when the number of slices is 64, the AUC of ResNet3D101
is smaller than the other cases. Besides, Fig. 7 (b) also shows
that increasing the number of slices does not always improve
the performance. Instead, the models trained on a smaller
number of slices can also achieve comparable or even better

9

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

(a) Accuracy (b) AUC

Fig. 7. The relationship between model performance and the number of slices. Only the accuracy of ResNet3D101 is positively correlated with the number
of slices. When AUC is used as the evaluation metric, there is no obvious relationship between the performance of the model and the number of slices.

TABLE VII
THE PERFORMANCE COMPARISON BETWEEN THE BASELINE MODELS AND THE MODELS SEARCHED BY NAS. FOR ALL MODELS, THE INPUT SCAN

IMAGES ARE COMPOSED OF 64 GREYSCALE SLICE IMAGES.

Model Depth Model
Size (MB)

Accuracy
(%)

Precision
(%)

Sensitivity(Recall)
(%)

Specificity
(%)

F1-score
(%) AUC

DenseNet3D 121 43.06 83.83 88.68 77.81 93.95 82.89 0.913
ResNeXt3D 101 1628.52 83.33 85.87 80.46 91.94 83.08 0.893
ResNet3D 10 54.94 85.35 79.68 83.11 87.10 81.36 0.918
ResNet3D 18 126.53 87.26 86.18 86.75 91.53 86.47 0.927
ResNet3D 34 176.26 87.83 85.34 86.75 90.93 86.04 0.959
ResNet3D 50 242.29 86.61 88.15 83.77 93.15 85.91 0.924
ResNet3D 101 325.21 84.50 84.62 83.77 90.73 84.19 0.918
ResNet3D 152 447.88 85.46 85.57 86.42 91.13 86.00 0.915
ResNet3D 200 482.98 87.19 88.70 85.76 93.35 87.21 0.927
r2plus1d 18 119.41 85.25 88.11 83.44 93.15 85.71 0.907

MC3 18 43.84 85.82 87.07 84.77 92.34 85.91 0.945
Preact res 101 325.19 82.96 80.32 82.45 87.70 81.37 0.904

MNas3DNet 21 12.34 87.12 85.52 84.11 91.33 84.81 0.951
MNas3DNet 41 22.91 87.14 88.44 86.09 93.15 87.25 0.957

TABLE VIII
THE MODEL ACCURACY BEFORE AND AFTER USING THE MIXUP

STRATEGY. THE NUMBER OF SLICES IS FIXED TO 64 FOR ALL MODELS.

Model Accuracy(%) Improvement
(%)before mixup after mixup

R2Plus1D18 85.25 88.25 +3.00
MC3 18 85.82 87.26 +1.44

DenseNet3D121 83.83 88.10 +4.27
ResNet3D101 84.50 87.14 +2.64

results. For example, both MC3 18 and ResNeXt3D achieves
the highest value of AUC when the number of slices is 16.

D. Results of Exp 3: Training with mixup

Table VIII presents the model performance before and after
using the mixup strategy. One can see that mixup can sig-
nificantly enhance model performance. After applying mixup,
the accuracy of R2Plus1D18, MC3 18, DenseNet3D121, and
ResNet3D101 is improved by 3.00%, 1.44%, 4.27%, and
2.64%, respectively.

A possible explanation for this result might be that the
original training data can be regarded as a pile of scattered

points distributed in high-dimensional space, and a large
number of new data points between the original data points
are created by the mixup method. In this way, the original
dataset is expanded to some extent, and the data distribution
becomes smoother, which regularizes the model training and
improves the model performance.

E. Results of automated model design for COVID-19 detection

We implement two types of NAS experiments. One is to
search for 21-layer networks, taking 3.7 hours, while the
other searching for 41-layer networks took 5 hours. Table VII
presents the performance comparison between the baseline
3D models and our searched 3D models by NAS, namely
MNas3DNet. To have a fair comparison, for all models,
the input scan images are composed of 64 greyscale slice
images. Compared to the baseline 3D models, the sizes of
our searched models are much smaller, where MNas3DNet21
and MNas3DNet41 are 12.34 and 22.91 MB, respectively. At
the same time, both models achieve the SOTA performance.
Specifically, MNas3DNet41 achieves an accuracy of 87.14%,
F1-score of 87.25%, and AUC of 0.957, which are on par with

10

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

the best models designed by AI experts. The strong empirical
results prove the effectiveness of random search strategy, and
demonstrate that NAS is a promising research direction for
designing neural networks of detecting COVID-19.

V. CONCLUSION AND FUTURE WORK

In this paper, we aim to benchmark DL models and use
AutoML techniques to design DL models for COVID-19
detection using chest CT scans. Our experimental results show
that DL models are promising solutions, and 3D models
outperform 2D models. We find that the model performance
does not absolutely improve with the increase of model depth
or the number of slices. In other words, a smaller model
trained on less number of slices can also achieve comparable
or even better results. Besides, we demonstrate that mixup
data augmentation can effectively improve model performance.
Last but not least, we design an automated deep learning
methodology to generate a lightweight deep learning model,
which achieves comparable results to the models designed by
AI experts.

We have several directions for future work on the agenda as
follows. First, most of the data in our dataset are from China,
thus we plan to collect more data from other countries to
further improve the accuracy of COVID-19 detection. Second,
we will try to apply semantic segmentation technology to our
dataset, so as to help doctors diagnose more effectively. Last,
we will try other SOTA NAS methods to explore more types
of deep learning models.

REFERENCES

[1] W. H. Organization et al., “Naming the coronavirus disease (covid-
19) and the virus that causes it,” World Health Organization.
https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/technical-guidance/naming-the-coronavirus-disease-(covid-
2019)-and-the-virus-that-causes-it, 2020.

[2] W. H. Organization, “Q&a on coronaviruses (covid-19),” World Health
Organization, 2020.

[3] A. Chin, J. Chu, M. Perera, K. Hui, H.-L. Yen, M. Chan, M. Peiris,
and L. Poon, “Stability of SARS-CoV-2 in different environmental
conditions,” medRxiv, 2020.

[4] W. H. Organization et al., “Coronavirus disease (covid-
2019) situation reports,” Accessd 3 June 2020. [Online].
Available: https://www.who.int/emergencies/diseases/novel-coronavirus-
2019/situation-reports

[5] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, and
L. Xia, “Correlation of chest ct and rt-pcr testing in coronavirus disease
2019 (covid-19) in china: a report of 1014 cases,” Radiology, p. 200642,
2020.

[6] K. Zhang, X. Liu, J. Shen, Z. Li, Y. Sang, X. Wu, Y. Zha, W. Liang,
C. Wang, K. Wang et al., “Clinically applicable AI system for accurate
diagnosis, quantitative measurements, and prognosis of covid-19 pneu-
monia using computed tomography,” Cell, 2020.

[7] J. Zhang, Y. Xie, Y. Li, C. Shen, and Y. Xia, “COVID-19 Screening on
Chest X-ray Images Using Deep Learning based Anomaly Detection,”
2020. [Online]. Available: http://arxiv.org/abs/2003.12338

[8] B. Ghoshal and A. Tucker, “Estimating Uncertainty and Interpretability
in Deep Learning for Coronavirus (COVID-19) Detection,” pp. 1–14,
2020. [Online]. Available: http://arxiv.org/abs/2003.10769

[9] A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection
of Coronavirus Disease (COVID-19) Using X-ray Images and
Deep Convolutional Neural Networks,” 2020. [Online]. Available:
http://arxiv.org/abs/2003.10849

[10] D. Singh, V. Kumar, Vaishali, and M. Kaur, “Classification of COVID-
19 patients from chest CT images using multi-objective differential
evolution-based convolutional neural networks,” European journal of
clinical microbiology & infectious diseases : official publication of
European Society of Clinical Microbiology, 2020.

[11] A. A. Ardakani, A. R. Kanafi, U. R. Acharya, N. Khadem, and
A. Mohammadi, “Application of deep learning technique to manage
COVID-19 in routine clinical practice using CT images: Results
of 10 convolutional neural networks,” Computers in Biology and
Medicine, vol. 121, no. March, p. 103795, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010482520301645

[12] M. Z. Alom, M. M. S. Rahman, M. S. Nasrin, T. M. Taha, and V. K.
Asari, “Covid MTNet: Covid-19 detection with multi-task deep learning
approaches,” 2020.

[13] X. He, X. Yang, S. Zhang, J. Zhao, Y. Zhang, E. Xing, and P. Xie,
“Sample-Efficient Deep Learning for COVID-19 Diagnosis Based on
CT Scans,” medRxiv, vol. XX, no. Xx, p. 2020.04.13.20063941, 2020.

[14] A. Mobiny, P. A. Cicalese, S. Zare, P. Yuan, M. Abavisani, C. C.
Wu, J. Ahuja, P. M. de Groot, and H. Van Nguyen, “Radiologist-Level
COVID-19 Detection Using CT Scans with Detail-Oriented Capsule
Networks,” 2020. [Online]. Available: http://arxiv.org/abs/2004.07407

[15] C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng,
H. Ma, W. Liu, and X. Wang, “Deep Learning-based
Detection for COVID-19 from Chest CT using Weak Label,”
medRxiv, p. 2020.03.12.20027185, 2020. [Online]. Available:
http://medrxiv.org/content/early/2020/03/17/2020.03.12.20027185

[16] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu,
Z. Fang, Q. Song et al., “Artificial intelligence distinguishes covid-19
from community acquired pneumonia on chest ct,” Radiology, p. 200905,
2020.

[17] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2018,
pp. 6546–6555.

[18] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” 2017.

[19] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[22] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
arXiv preprint arXiv:1908.00709, 2019.

[23] F. Hutter, L. Kotthoff, and J. Vanschoren, “Automated machine learning:
Methods, systems, challenges,” Automated Machine Learning, 2019.

[24] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” 2017.

[25] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical Image
Analysis, vol. 42, no. 1995, pp. 60–88, 2017.

[26] J. P. Cohen, P. Morrison, and L. Dao, “Covid-19 image
data collection,” arXiv 2003.11597, 2020. [Online]. Available:
https://github.com/ieee8023/covid-chestxray-dataset

[27] J. Zhao, X. He, X. Yang, Y. Zhang, S. Zhang, and P. Xie, “Covid-ct-
dataset: A ct scan dataset about covid-19,” 2020.

[28] M. Jun, G. Cheng, W. Yixin, A. Xingle, G. Jiantao, Y. Ziqi, Z. Minqing,
L. Xin, D. Xueyuan, C. Shucheng, W. Hao, M. Sen, Y. Xiaoyu,
N. Ziwei, L. Chen, T. Lu, Z. Yuntao, Z. Qiongjie, D. Guoqiang, and
H. Jian, “COVID-19 CT Lung and Infection Segmentation Dataset,”
Apr. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3757476

[29] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” arXiv preprint arXiv:1808.05377, 2018.

[30] L. Faes, S. K. Wagner, D. J. Fu, X. Liu, E. Korot, J. R. Ledsam, T. Back,
R. Chopra, N. Pontikos, C. Kern, G. Moraes, M. K. Schmid, D. Sim,
K. Balaskas, L. M. Bachmann, A. K. Denniston, and P. A. Keane,
“Automated deep learning design for medical image classification
by health-care professionals with no coding experience: a feasibility

11

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

study,” The Lancet Digital Health, vol. 1, no. 5, pp. e232–e242, 2019.
[Online]. Available: http://dx.doi.org/10.1016/S2589-7500(19)30108-6

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[33] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[34] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 734–10 742.

[35] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” arXiv preprint arXiv:1902.07638, 2019.

[36] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Effi-
cient neural architecture search via parameter sharing,” arXiv preprint
arXiv:1802.03268, 2018.

[37] C. Sciuto, K. Yu, M. Jaggi, C. Musat, and M. Salzmann, “Evalu-
ating the search phase of neural architecture search,” arXiv preprint
arXiv:1902.08142, 2019.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014.

[39] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” International Conference on Learning Representations
(ICLR), 2017.

12

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

APPENDIX

A. Slice Sampling Strategies

1) Random Sampling Strategy: The random sampling strat-
egy is applied to the training set. In this way, each scan data
will be composed of different slices, which can be regarded as
data augmentation to improve the model robustness and avoid
overfitting.

Algorithm 1: Random slice sampling algorithm.
Input:
S: the ordered slice list
n: the target number of slices

Output:
Ŝ: the sampled slice list

Function Main(S, n):
if n == len(S) then

Ŝ = S
else if N > len(S) then

Ŝ = Undersample(S, n)
else

Ŝ = Upsample(S, n)

return Ŝ

Function Undersample(S, n):
Ŝ = S.copy()
m = len(S)
d = m - n
for (i = 0; i < d; i = i+ 1) {

index = randint(0, m)
delete Ŝ[index]
m = m - 1

return Ŝ

Function Upsample(S, n):
Ŝ = S.copy()
m = len(S)
d = m - n
for (i = 0; i < d; i = i+ 1) {

index = randint(0, m)
item = S[index]
Ŝ.append(item)

re-order(Ŝ)
return Ŝ

2) Symmetrical Sampling Strategy: The symmetrical sam-
ling strategy is applied to the test set. This avoids the ran-
domness of the test results, and also makes a fair performance
comparison between different models.

Algorithm 2: Symmetrical slice sampling algorithm.
Input:
S: the ordered slice list
n: the target number of slices

Output:
Ŝ: the sampled slice list

Function Main(S, n):
if n == len(S) then

Ŝ = S
else if N > len(S) then

Ŝ = Undersample(S, n)
else

Ŝ = Upsample(S, n)

return Ŝ

Function Undersample(S, n):
Ŝ = S.copy()
m = len(S)
k = m // n // sample interval
// start from the middle index
if m%2 == 1 then

idx = m%2

else
idx = m%2− 1

indices = [idx]
for (i = 0; i < n− 1; i = i+ 1) {

idx = idx + (−1)i× k
indices.append(idx)

re-order(Ŝ)
return Ŝ[indices]

Function Upsample(S, n):
Ŝ = []
m = len(S)
/* d is duplication times, */
/* r is the remaining times of

sampling */
n ÷ m = d ... r
for (i = 0; i < d; i = i+ 1) {

Ŝ.append(S)

Ŝ.append(Undersample(S, r))
re-order(Ŝ)
return Ŝ

13

 . CC-BY 4.0 International licenseIt is made available under a
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.20125963doi: medRxiv preprint

https://doi.org/10.1101/2020.06.08.20125963
http://creativecommons.org/licenses/by/4.0/

