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Abstract

After weeks under lockdown, metropolitan areas fighting the spread of COVID-19 aim
to balance public health goals with social and economic standards for well-being.
Mathematical models of disease transmission seeking to evaluate mitigation strategies
must assess the possible impacts of social distancing, economic lockdowns and other
measures. However, obscure relations between model parameters and real-world
phenomena complicate such analyses. Here, we use a high-resolution metapopulation
model of Guadalajara (GDL, Western Mexico) to represent daily mobility patterns
driven by economic activities and their relation to epidemic growth. Given the
prominence of essential activities in the city’s economy, we find that strategies aiming to
mitigate the risk of out-of-home interactions are insufficient to stop the catastrophic
spread of COVID-19. Using baseline reproduction numbers R0 = [2.5, 3.0] in the
absence of interventions, our simulations suggest that household transmission alone can
make Rt ∼ 1, and is estimated to drive 70 ±15% of current epidemic growth. This sets
an upper bound for the impact of mobility-based interventions, which are unlikely to
lower Rt below 1.3 and must be complemented with aggressive campaigns for early case
detection and isolation. As laboratory testing and health services become insufficient to
meet demand in GDL and most other cities, we propose that cities facilitate guidelines
and equipment to help people curb spreading within their own homes. Postponing these
actions will increase their economic cost and decrease their potential returns.

Author summary

Public health strategies to mitigate the spread of COVID-19 in metropolitan areas have
focused on preventing transmission in schools, work sites and other public spaces. Here,
we use a demographically- and spatially-explicit model of Guadalajara (GDL, Western
Mexico) to represent economic lockdowns and their impact on disease spread. Our
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findings suggest that viral exposure within households accounts for 70±15% of the
epidemic’s current growth rate. This highlights the importance of early case detection
and isolation as necessary measures to prevent the spread of COVID-19 between
strangers and close contacts alike.

Introduction 1

Metropolitan areas around the world have implemented containment and mitigation 2

measures against the COVID-19 pandemic. Notably, non-essential activities have been 3

interrupted to limit the number of people exposed to the SARS-CoV-2 virus in schools, 4

retail stores, offices, and other places of interest. However, the economic burden exacted 5

by these measures has overwhelmed societies, leading to massive economic losses that 6

further complicate the fight against the coronavirus pandemic. Carefully validated 7

models of pandemic spread that incorporate realistic population mixing patterns could 8

help restart the economy while limiting the spread of the virus. 9

Recent studies have emphasized the potential benefits of aggressive testing 10

campaigns aimed to find and isolate symptomatic and asymptomatic carriers [1–5], but 11

these measures require a significant amount of resources, present logistical challenges, 12

and become increasingly unattainable in developing nations as incidence soars across 13

metropolitan areas. Although mathematical models of disease transmission can help 14

assess the potential effects of mitigation strategies, the interpretation and 15

communication of simulation results to the broader public is far from trivial [6, 7]. In 16

most models, public health interventions and reactive behavior are represented by 17

time-dependent variables that are related to the epidemic’s reproduction number Rt, 18

defined as the number of secondary cases caused by a single patient who becomes 19

infective at time t [8, 9]. However, without a realistic integration of city-specific 20

demographics and mixing patterns, mathematical models can only assume the relations 21

between mitigation strategies and epidemic growth [10]. 22

In this letter, we develop and evaluate a metapopulation model that incorporates 23

high-resolution census and economic data to replicate economic lockdowns and their 24

relations to COVID-19 transmission in metropolitan areas. Using the Guadalajara 25

Metropolitan Area (GDL, 2020 population estimated at 4.9 million inhabitants) as an 26

example, we find that mitigation strategies that aim to prevent disease spreading in 27

worksites, schools, and public spaces are unlikely to lower Rt below 1.3. However, we 28

estimate that infections within residential settings can explain more than 55% of 29

epidemic growth during economic lockdowns. This suggests that catastrophic spread of 30

COVID-19 can only be avoided with mixed strategies that aim to prevent disease 31

transmission within households and public spaces. As hospital demand soars throughout 32

the world’s cities and the majority of patients go untested, we recommend that 33

governments strive to isolate all symptomatic patients even without laboratory 34

confirmation. Authorities unable to setup designated areas for case isolation must then 35

provide citizens with equipment and guidelines for effective self-isolation at home. 36

Public health context 37

As of June 2, official data indicate that people in the state of Jalisco (∼ 60% of whom 38

live in GDL) have received a total of 23,019 PCR tests for SARS-CoV-2 (2.8 tests per 39

1000 inhabitants, ssj.jalisco.gob.mx/prensa/noticia/9075). With 3,088 confirmed cases 40

to date and 1292 that remain unresolved (13.4% positivity rate), the state of Jalisco is 41

thought to have a disproportionately low incidence despite its social, cultural and 42
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economic prominence in Mexico. Although confirmed case counts can produce 43

misleading comparisons between outbreaks in different regions due to differences in 44

testing rates, daily series of COVID-19 deaths comprise 100 deaths in GDL (2.3 deaths 45

per 100,000 people) out of 10,637 deaths nationwide (8.4 deaths per 100,000 people). 46

The first case of COVID-19 in Jalisco was confirmed on March 11; the next day, 47

non-pharmaceutical measures to curb the spread of COVID-19 began in GDL, when all 48

large public events were cancelled (www.jalisco.gob.mx/es/prensa/noticias/102580). 49

The Jalisco State Government later shut the city’s schools and universities on March 17 50

and issued shelter-in-place orders on March 20, bringing non-essential activities to a 51

partial halt. Furthermore, the use of facemasks in public spaces was made mandatory 52

on April 20. A partial lift of shelter-in-place orders is set to begin on June 1 as 53

worksites adopt social distancing measures to prevent spreading among their customers 54

and employees. 55

Model structure 56

Our model uses 2010 Census data [11] to distribute N = 4.3 million inhabitants across 57

1580 triangular neighborhoods describing the city region [12]. Each neighborhood Ωj 58

defines a metapopulation of size nj and is characterized by demographic and economic 59

variables used to infer the daily mobility habits of its residents (Fig. 1.a). People in 60

each metapopulation are distributed throughout nine epidemiological compartments to 61

keep track of the natural history of COVID-19 (Fig. 1.b, Table S1) such that 62

nj = Sj(t) + E1
j (t) + E2

j (t) +Aj(t) + Inj (t) + Isj (t) +Hj(t) +Rj(t) +Dj(t). (1)

Exposure to SARS-CoV-2 in our model occurs through one of two mechanisms 63

described in Equation (2). The first term βl

nj
SjΦj uses a weighted sum Φj (Eq. 6) of 64

the number of residents in Ωj within each infective stage of COVID-19 and represents 65

homogeneous mixing within each neighborhood. Thus, the transmission potential βl 66

controls the frequency of infection within households and between neighbors. 67

∂Sj
∂t

= − βl
nj
SjΦj(t)− Sj

∑
k

βV
vk(t)

Pjk(t)Ψk(t) (2)

Remote transmission of COVID-19 at places of interest is represented by the second 68

term in the right hand side of Equation 2. Under the formalism of distributed 69

contacts [13,14], this term uses origin-destination matrices Pjk(t) to estimate people’s 70

likely travel habits. Given this information, a weighted sum Ψk(t) (Eq. 7) of the 71

number of infectives visiting locations Ωk at time t represents the risk of infection for 72

susceptibles traveling to this area. Lastly, the effective number SjPjk(t)Ψk(t) of 73

susceptible-infective pairs at Ωk is divided by the total number of visitors vk(t) and 74

multiplied by the transmission potential of remote interactions βV . To investigate how 75

each term in Equation 2 contributes to epidemic growth, we can calculate their separate 76

contributions to the outbreak’s reproductive number Rt as 77

Rt(Ωj) = Θ
βl
nj
Sj + Λ

∑
k

βV
vk(t)

Pjk(t)
∑
m

SmPmk(t). (3)

Here, Θ is a coefficient that weighs the relative transmissivity and duration of 78

disease stages in Figure 1.b (Eq. 9). Meanwhile, Λ also incorporates isolation 79

parameters that reduce the frequency with which symptomatic and isolated patients 80

visit public spaces (Eq. 10). Notice that origin-destination matrices in Equations (2), 81
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Fig 1. Census and economic data are interpolated onto a triangular grid whose
elements represent the different neighborhoods of GDL (panel a). Panel b shows the
disease history of COVID-19 as represented in our model; susceptibles (Sj) join E1

j

upon exposure and later evolve through infective (E2
j , Aj , I

n
j , I

s
j , Hj) and recovered (Rj)

or deceased (Dj) stages. Overall, this approach separates GDL’s 4.3 million inhabitants
into 1580× 9 = 14220 subgroups. The rectangular outline in panel a marks the location
of data shown in Figure 2.a.

(3) are time-dependent. Because mobility patterns were estimated using records of 82

individual worksites and schools [12], we can use businesses’ NAICS (North American 83

Industrial Classification System) activity codes to represent economic lockdowns 84

targeting specific sectors of the city’s economy (Fig. 2.a). 85

Representing lockdown 86

Reductions in urban mobility and school closure have been key components for the 87

design of COVID-19 intervention strategies have been noted as a key parameter to 88

quantify the severity of intervention strategies during this outbreak [15–17]. Our model 89

represents changes in the number of daily trips using Equation (4), which uses 90

sector-specific activity levels ac(t) to weigh the contributions P cjk made by each activity 91

sector c in the absence of interventions (Table 1, see Supplementary Information). 92

Assuming that the city’s baseline status is ac(t) = 1, economic lockdowns can be 93

represented by values ac(t) < 1, thus reducing the magnitude of Pjk(t) and subsequent 94

rates of contact in places of interest. Furthermore, because activity sectors are unevenly 95

distributed throughout the city (Fig. 2.a), different values of ac(t) can also transform 96

the topology of contact networks between the city’s neighborhoods. 97

June 5, 2020 4/15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 7, 2020. ; https://doi.org/10.1101/2020.06.05.20123711doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.05.20123711
http://creativecommons.org/licenses/by-nc/4.0/


Pjk(t) =
∑
c

ac(t)P cjk. (4)

Index Activity sector
Share of

job market
Contribution to
daily mobility

c = 1 Education 8% 36%
c = 2 Essential 41% 29%
c = 3 Commerce 19% 16%
c = 4 Services 19% 13%
c = 5 Industry 13% 6%

Table 1. Places of interest were classified into five sectors to quantify their separate
contributions to urban mobility and epidemic growth. Job data was obtained from the
2014 Economic Census [20], while daily mobility was quantified as the city-wide Trip
Attraction Strength (

∑
k TAS

c
k) of establishments in each sector.

Baseline mobility patterns P cjk in each sector were inferred using the gravity model 98

in Equation (5). This approach uses the Trip Attraction Strength (TASck) of 99

establishments in each sector to weigh the gravity model of Gonzalez et al. [18]. TASck 100

was formulated by Jakimavicius and Burinskiene [19] and is an estimate of the daily 101

number of visitors attracted to Ωk by activities in sector c. It is calculated as a 102

weighted sum of the number of jobs and enrolled students in each neighborhood, which 103

was obtained from the 2014 Economic Census [20] and the 2018 National School 104

Directory [21]. A map of the individual contributions of registered worksites to TASck is 105

shown in Figure 2.b. 106

P cjk ∝ dcj TAS
c
k (∆r0 + ∆rjk)

−b
exp

(
−∆rjk

L

)
. (5)

Overall, the gravity model of Equation (5) describes travellers who seek to minimize 107

the distance ∆rjk between their place of residence Ωj and the places they visit Ωk. 108

However, they’re willing to travel far given the right incentive (areas with higher TASck). 109

Coefficients dcj incorporate demographic information that describes the involvement of 110

metapopulations nj in sector c. For example, d1j is the fraction of people in Ωj who are 111

enrolled in educational programs and was obtained from census data, while dcj , c 6= 1 is a 112

function of the percentage of residents in Ωj who are economically active. By using 113

demographic information to refine inferred mobility patterns Pjk(t), our framework for 114

disease transmission at places of interest (Eq. 2) can explicitly represent the impacts of 115

economic lockdowns and school closure as they first change mobility patterns. 116

Mobility patterns used in our model are calibrated so that the number of people 117

vck =
∑
j njP

c
jk who visit a neighborhood Ωk in simulations matches the census estimate 118

TASck (Fig. 2). Because the mean of ratios vck/TAS
c
k is within 0.05 of 1 for all sectors, 119

we consider that our representation of daily mobility can truthfully represent the 120

relative roles of each activity sector in the city’s transportation network. Notice that 121

activity sectors make contributions to daily mobility
∑
k TAS

c
k that are 122

disproportionate to number of people that they employ (Table 1). This is caused by 123

secondary visitors like students, customers and suppliers whose presence is necessary to 124

sustain activities in each sector [19]. This implies that business closure in each sector 125

will come at its own economic cost but also yield different public health impacts. For 126

example, the closure of industrial activities in our model is least efficient in our model, 127

as it can affect up to 13% of jobs but only prevent 6% of daily trips. 128
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Fig 2. Raw data showing the location, activity sector (color) and number of workers
and/or students (circle size) registered by employers and schools that wer used to
calculate TASck (panel a, see Supplementary Information). The location of this
rectangle within the city is shown in Figure 1.a. Box and whisker plots in panel b show
quartiles of the ratio vck/TAS

c
k between the model representation vck and census

estimate TASck of the number of visitors driven to Ωk by establishments in activity
sectors c. Light circles show that the mean value of this ratio is within 0.05 of 1 for all
sectors, indicating that our origin-destination matrices are not biased to overrepresent
any of these activity sectors.

Results 129

Activity levels ac(t) in our simulations were set using Google COVID-19 Mobility 130

reports (www.google.com/covid19/mobility/) for the state of Jalisco between March 5 131

and May 21 (Fig. 3.a). ”Grocery & Pharmacy” data from Google were used to set 132

activity levels in c = 2, while ”Retail & Recreation” represent c = 3 and Google’s 133

”Workplaces” category sets c = 4, 5. Mobility scenarios used after May 21 are 134

assumptions based on current policy. Simulations were initialized by the introduction of 135

1/(1− ρa) people into exposed groups for each one of the 66 confirmed cases that were 136

identified as imported from other countries into the State of Jalisco. Imported cases on 137

their dates of arrival to the state of Jalisco, and transmission potentials βl, βV were 138

calibrated to reproduce weekly mortality data and produce a baseline reproduction 139

number 2.5 ≤ R0 ≤ 3.0 before interventions (Fig. 3). The infection fatality rate (IFR) 140

was set to 0.7%, meaning that 7 out of every 1000 people exposed to SARS-CoV-2 in 141

our simulations die, while the rest recover 1/κ1 + 1/κ2 + 1/γ1 = 12 days after exposure 142

(all model parameters are shown in Table S1). Starting on April 20, we assume that the 143
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mandatory use of face covering in public spaces lowers the transmission potential of 144

out-of-home transmission βV by 50%. 145
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Fig 3. Model simulations of COVID-19 spread in GDL use activity levels ac(t) from
Google’s mobility reports (a) to infer temporal changes in the reproduction number Rt
(b, Eq. 3). As mobility restrictions become more severe, epidemic growth is increasingly
driven by residential transmission (c). Starting on April 20, we represent the mandatory
use of face covering in public spaces through a 50% reduction in the corresponding
transmission potential βV . The combination of reduced activity levels ac(t) and a
reduced βV set Rt ∼ 1.4 and suffice to reproduce weekly mortality data in panel d.
These results suggest that, under current conditions, more than two thirds of COVID-19
transmission occurs within households and between neighbors (c).

Notice that increases in the basic reproduction number R0 must be compensated by 146

changes in the percentage of infections that occur within households and between 147

neighbors (Fig. 3.c). For example, changing R0 from 2.5 to 2.9 requires that local 148

transmission (βl) represents 35% (instead of 50%) of epidemic growth in the absence of 149

an intervention. This happens because increasing the value of βV relative to βl amplifies 150

the effects of mobility-based interventions ac(t), allowing each simulation to match 151

observed growth rates. 152

While economic lockdowns and the use of face covering have helped curb the spread 153

of COVID-19 through interactions in GDL’s activity hubs, policy and, social 154

communication have not targeted viral exposure within households. Thus, we assume 155
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that βl has not changed significantly since the beginning of this outbreak and estimate 156

that residential routes of transmission can explain more than 55% of current epidemic 157

growth (Fig. 3.c). We now use βV = 0.318, βl = 0.172 (R0 ∼ 2.9) to demonstrate the 158

potential benefits of public health campaigns that aim to prevent COVID-19 159

transmission within households. 160

Reacting, fast and slow 161

We now use the disease transmission scheme in Equation (2) to simulate alternate 162

scenarios where mobility-based (ac(t)-based) interventions are combined with aggressive 163

strategies of case isolation (CI). Our model represents improved CI by changing the 164

values of ρs and α, which were respectively set at ρs = 0.1 d−1 and α = 1/3 d−1 in our 165

calibration runs (Fig. 3). Campaigns simulated below expand CI to reach 40% or 80% 166

(ρs = 0.4 , 0.8) of symptomatic patients only 1/α = 2 days after symptom onset. While 167

isolated in group Hj , symptomatic patients make reduced contributions to residential 168

(30% of baseline value) and remote (3% of baseline value) disease spreading. 169

To assess the urgency of CI strategies, we evaluated the effects of deploying such 170

campaigns on June 1, July 1 and August 1. Likewise, and considering that economic 171

lockdowns are bound to be relaxed soon, we tested two alternate scenarios for urban 172

mobility. In the fast scenario (Fig. 4.a,c), gradual reopening of the economy occurs 173

between June 1 and August 1, when economic activities reach their baseline values (Fig. 174

S1.a). The slow scenario (Fig. 4.b,c) extends partial economic lockdowns until 175

September 1 and keeps schools closed through mid-August (Fig. S1.b), while basic 176

education sets a1(t) = 0.6 between June 1 and July 17 in the fast scenario. 177

Simulation results of daily new cases in Figure 4 suggest that an extended economic 178

lockdown (Figs. 4.b,d) can delay disease spreading after June 1, but will only curb it 179

significantly when combined with widespread CI. Even with 28% CI starting on June 1, 180

the extended lockdown described by activity levels in Figure S1 could sustain more than 181

30,000 new daily infections for roughly 40 days starting in September (Fig. 4.b). 182

Meanwhile, a fast reopening of economic activities would produce similar infection rates 183

3 weeks earlier (Fig. 4.a). In contrast, the early adoption of stricter campaigns with 184

56% CI and extended school closure can produce constant growth (Rt ∼ 1, Figs 4.c,d). 185

Postponing these measures by only one month could cause a two-fold increase in health 186

care demands throughout June, July and August (Fig. 5). 187

Conclusion 188

We used a high resolution metapopulation model of GDL to represent the spread of 189

COVID-19 under various intervention scenarios (Figs. 3, 4). The disease transmission 190

scheme in Equation (2) represents spreading as the result of both residential (βl) and 191

remote (βV ) interactions. Non-local spreading follows time-dependent mixing patterns 192

produced by origin-destination matrices inferred from economic and educational 193

records [12] under a distributed-contacts framework [13,14]. By using explicit 194

representations of business and school closures (Eqs. 4, 5, Fig. 2), our simple approach 195

provides realistic estimates of disease spreading under an economic lockdown. Our 196

simulations illustrate that mobility-based interventions are insufficient to stop epidemic 197

growth, as severe COVID-19 outbreaks can be largely fueled by household transmission 198

(Figs. 3.b,c, 6). 199

COVID-19 strategies in GDL and countless other cities have focused on reducing 200

daily mobility to suppress disease spreading in public spaces, schools, and workplaces. 201
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Fig 4. Comparing economic lockdowns and widespread case isolation as COVID-19
mitigation strategies. Differences between the left (a,c) and right (b,d) panels are
caused by activity levels ac(t) describing fast and slow paths to reopen the city’s
economy (Fig. S1). Simulation ensembles illustrate the effects of improving CI
strategies to isolate 28% (a,b) or 56% (c,d) of all people exposed to SARS-CoV-2 on
three different dates. Patients are isolated two days after symptoms begin, thus
reducing patients’ residential and remote transmission potentials to 10% and 2% their
baseline values respectively (qH = 0.1, cH = 0.2). Gray shading shows periods when all
schools are closed.

Fig 5. Spatial dependence of the percentage of the population exposed to SARS-CoV-2
by September 1 according to simulations in Figure 4.d. These experiments assume that
activity levels follow a slow reopening of the economy (Fig. S1) and that, after
improved CI strategies begin, 80% of symptomatic patients (56% CI) are isolated within
2 days of symptom onset.
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Fig 6. Contributions (see Supplementary Information) to the reproduction number Rt
made by residential transmission (βl) and different economic sectors (βV , Table 1).
Estimates were made using βV = 0.318 and βl = 0.172 for a fully-susceptible population
in the absence of interventions (ac(t) = 1, left) and during an economic lockdown
(ac(t) = [0.1, 0.8, 0.45, 0.45, 0.45], right).

All such measures are reflected on the second term of Equation (2) but don’t tackle 202

contagious interactions that occur between household members and other close contacts 203

(first term in Equation 2), which contribute as much as 80% of estimated transmission 204

under lockdown (Fig. 3). This is visualized in Figure 6, which separates the 205

contributions made to Rt by residential transmission and activity sectors with and 206

without an economic lockdown when βV = 0.318, βl = 0.172. 207

By reducing the remote transmission potential βV , the mandatory use of facemasks 208

in public spaces [22] can further reduce the contribution of remote interactions (Fig. 209

3.b). However, notice that essential activities account for roughly 29% of daily mobility 210

in GDL and cannot be fully suspended during an intervention. This sets an upper 211

bound for the effect of mobility-based strategies that, along with high rates of 212

residential transmission, makes contention unlikely without addressing the mechanisms 213

responsible for disease spreading within households. While lockdowns and social 214

distancing measures as implemented in Wuhan and Shanghai are thought to have 215

stopped the spread of COVID-19 [23], differences in public awareness and compliance, 216

as well as higher rates of case detection and isolation [24] may explain this difference. 217

Wang and coauthors highlight the use of facemasks and frequent disinfection within the 218

households of suspected and confirmed patients [25] as an effective complementary 219

measure to mobility-based interventions. 220

As financial pressure pushes cities to lift shelter-in-place orders and reopen their 221

economies, we propose the prevention of COVID-19 transmission within residential 222

settings as a necessary complementary measure for successful mitigation. Widespread 223

case isolation (CI) as proposed by many studies [2, 3] is unlikely to occur in GDL, as 224

current testing capacity in Mexico is increasingly being reserved for heavily symptomatic 225

patients. Thus, we consider that campaigns must aim to build public awareness about 226

the symptoms of COVID-19 for people to self-diagnose and self-isolate when they’re 227

symptomatic or have interacted with someone who was. Likewise, guidelines for 228
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effective self-isolation at home [25] must be heavily publicized and made readily 229

available to everyone, as a majority of cases in developing countries is likely to go 230

undetected and many people still doubt that COVID-19 threatens their own health [26]. 231

We conclude that urgent action is necessary to prevent COVID-19 transmission 232

within households in GDL and other cities within the early stages of this outbreak. As 233

of June 1, we estimate that 0.5-0.9% of the city’s inhabitants have been exposed to 234

SARS-CoV-2, but such low levels of incidence can give the wrong impression that public 235

health strategies used to date are sufficient to contain the epidemic. However, early 236

adoption of widespread CI and other mitigation strategies that prevent disease 237

spreading within residential settings can amplify the effects of mobility-based strategies 238

and social distancing in public spaces (Fig. 5). 239

The reality of COVID-19 in urban areas is one of drastic inequality in access to 240

healthcare and the ability to self-isolate. Our simulations don’t account for all such 241

heterogeneities, which can largely impact the evolution of an infectious outbreak [27–29]. 242

While our estimates of the reproduction number Rt (Fig. 3.b) are sensible to numerous 243

model parameters and the introduction of imported cases, the conclusion that household 244

transmission is playing an increasing role in epidemic growth (Fig. 4.c) follows from the 245

fact that current policy in GDL only targets spreading in public spaces. 246

Billions around the world committed to stay home over the past months, and social 247

distancing measures have largely helped slow the spread of COVID-19 in schools, 248

worksites and other places of interest. Nonetheless, as the epidemic progresses and 249

household transmission plays an increasing role in spreading disease, communication 250

campaigns must bring attention to guidelines for the early assessment of symptoms and 251

successful self-isolation at home. This is specially crucial in developing and 252

impoverished countries like Mexico, where diagnosis, treatment and clinical isolation are 253

increasingly unattainable. COVID-19 continues to seed infectious clusters throughout 254

metropolitan areas worldwide, many of which will likely grow into regional-scale 255

outbreaks unless we flatten the curve both inside and outside our homes. 256

Supporting information 257

S1 Fig. Mobility scenarios to represent fast (upper) and slow (reopening) of the city’s 258

economy. Simulation results under these activity levels ac(t) and different strategies for 259

case isolation are shown in Figure 4, while the full spatial dependence of solutions is 260

visualized in Figure 5. 261
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S1 Appendix. The weighted presence Φj(t) of infective groups within their own 262

neighborhoods Ωj is written as 263

Φj(t) = qEE
2
j (t) + qAAj(t) + Isj (t) + Inj (t) + qHHj(t). (6)

When infectives travel to locations Ωk, their bulk potential for disease transmission 264

in Equation (2) is given by 265

Ψk(t) =
∑
m

[
qEE

2
m(t) + qAAm(t) + cII

n
m(t) + cII

s
m(t) + cHqHHm(t)

]
Pmk(t). (7)

Coefficients qE = 0.2, qA = 0.5, qH = 0.1 account for changes in the transmissibility 266

of COVID-19 throughout different stages of the disease. Likewise, cI = 0.7, cH = 0.2 are 267

isolation coefficients that introduce reductions in the relative mobility of individuals 268

when they become symptomatic or self-isolated. 269

The number of visitors at a destination Ωk, as used in Equations (2), (3) is given by 270

vk(t) =
∑
j

Pjk(t) {Sj(t) + E1
j (t) + E2

j (t) +Aj(t)+

cI
[
Inj (t) + Isj (t)

]
+Rj(t) + cHHm(t)}.

(8)

Coefficients Θ (Eq. 9) and Λ (Eq. 10) account for the duration and relative 271

transmissibility of patients within each disease stage, necessary to calculate the 272

reproduction number Rt (Eq. 3). 273

Θ =
qE
κ2

+ ρA
qA
γ1

+ (1− ρA)

[
ρs

(
1

γ2
+
qH
α

)
+

(1− ρs)
γ1

]
(9)
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Λ =
qE
κ2

+ ρA
qA
γ1

+ (1− ρA)

[
ρs

(
cHqH
γ2

+
cI
α

)
+

(1− ρs)
γ1

]
(10)

To separate the contributions Rct made to the reproduction number Rt by different 274

economic sectors in Figure 6, we substituted infective mobility matrices Pjk(t) for their 275

sector-specific counterparts ac(t)P
c
jk in Equation (3). Origin-destination matrices 276

Pmk(t)for susceptibles and the form of vk(t) were unchanged. 277

As defined in previous studies [12,19], the Trip Attraction Strength (TASk) of a 278

neighborhood Ωk is calculated as the weighted sum 279

TASk = 3Re + 2.4Se + 1.9In + 1.3(Pr + St), (11)

where parameters Re, Se, In and Pr denote the number of jobs registered at Ωk by 280

retail, service, industrial and primary activity organizations respectively. Similarly, St is 281

the number of students enrolled at educational institutions inside the same area. We 282

used georeferenced employer records from the 2014 Economic Census [20] and the 2018 283

National Directory of Schools [21] to allocate workers and students throughout the city’s 284

neighborhoods. NAICS (North American Industrial Classification System) activity 285

codes were used to assign employers across mobility categories in Equation (11) and 286

Table (1). Raw data used to calculate TASk are shown separated by activity sector are 287

shown in Figure 2. 288

S1 Table. Model parameters. Model parameters used to describe the disease 289

history of COVID-19 as represented in Figure 1.b. 290

Model parameter Description Value
1/κ1 Average length of latent period 2.5 days

1/κ2
Average length of infectiousness
prior to symptom onset

2.5 days

ρa

Proportion of exposed individuals
who become asymptomatically
infected

0.3

ρs

Proportion of fully infectious
individuals who will be
screened and isolated

0.1

1/α
Average time from symptom onset to
diagnosis

3 days

1/γ1 Average time from illness onset to recovery 7 days

1/γ2
Average length of time from
diagnosis to recovery

4 days

δ Disease-induced death rate within hospitals IFR γ2
ρs(1−ρa)

IFR Infection fatality rate 0.7%

qE , qA, qH

Relative transmissibility of
exposed (E), asymptomatic (A),
and isolated (H) individuals.

0.2, 0.5, 0.1

cI , cH

Relative reductions in the mobility
of fully infectious (I) and
isolated (H) individuals

0.7, 0.2
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16. Oliver, N., Letouzé, E., Sterly, H., Delataille, S., De Nadai, M., Lepri, B., ... & de
Cordes, N. Mobile phone data and COVID-19: Missing an opportunity?. arXiv
preprint. 2020;2003.12347.

17. Aloi, A., Alonso, B., Benavente, J., Cordera, R., Echániz, E., González, F., ... &
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