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Climatic influence on the magnitude of COVID-19 outbreak: a stochastic 58 

model-based global analysis 59 

Abstract:  60 

This study examines the association between community transmission of COVID-19 cases and 61 

climatic predictors, considering travel information and annual parasite index across the three 62 

climatic zones, i.e., tropical, subtropical, and temperate. A Boosted Regression Tree model has 63 

been employed to understand the association between the COVID-19 cases. The results show 64 

that average temperature and average relative humidity are the major contributors in explaining 65 

the differentials of COVID-19 transmission in temperate and subtropical regions whereas the 66 

mean diurnal temperature range and temperature seasonality are the most significant 67 

determinants in tropical regions. The average temperature is the most influential factor affecting 68 

the number of COVID-19 cases in France, Turkey, the US, the UK, and Germany, and the cases 69 

decrease sharply above 10oC. Among the tropical countries, India found to be most affected by 70 

mean diurnal temperature, and Brazil fazed by temperature seasonality. Most of the temperate 71 

countries like France, USA, Turkey, UK, and Germany with an average temperature between 5-72 

12oC had high number of COVID-19 cases. The findings are expected to add to the ongoing 73 

debates on the influence of climatic factors influencing the number of COVID-19 cases and 74 

could help researchers and policymakers to make appropriate decisions for preventing the 75 

spread. 76 

Keywords: Boosted Regression Tree; Climatic association; COVID-19; Disease transmission; 77 

Marginal effect; SARS-CoV-2; Stochastic model. 78 
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 80 

1. Introduction 81 

The global surge of pandemic1 Severe Acute Respiratory Syndrome (SARS) coronavirus disease 82 

(COVID-19) has been unprecedented in the 21st century. The virus has spread rapidly across 83 

international borders1 through global travel from its primary infection epicenter in Wuhan2 84 

(China) to new epicenters in Europe (Italy, Spain, France, Germany, the UK) and North America 85 

(the US and Canada). COVID-19 is highly contagious. The risk of human to human transmission 86 

is very high and mainly through close contact and respiratory droplets.2,3 High fever, contagious 87 

cough, choking, severe pneumonia, and acute respiratory distress syndrome are the common 88 

symptoms. 3 The case fatality rate (CFR) is estimated at 3.4%, while it varies by countries and 89 

population groups. 2 The CFR of the current SARS-COV-2 is lower than its predecessor SARS-90 

COV-13, but its reproduction rate is much higher.  91 

SARS-CoV-1 outbreak in 2003 infected more than 8000 individuals from 29 countries, and 774 92 

died within a period of eight months, whereas, the COVID-19 has currently infected more than 93 

four million people across 212 countries with a death toll of close to 280,000 within four 94 

months.4-6 The very high infection susceptibility or high reproduction rate4 of this virus makes it 95 

particularly dangerous to older people, especially when the vaccinations and the drugs for 96 

treatment are not available. 7 97 

                                                           
1 On 30 January 2020, the COVID-19 announced as an Public Health Emergency of International Concern and on 
11th march, 2020 declared it as a pandemic. 
2 Originated from the Wuhan fish market in December, 2019. 
3 Severe acute respiratory syndrome coronavirus (SARS-CoV), 2002-04 epidemic. More than 8,000 people were 
infected from 29 countries, and 774 died worldwide 
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Historical evidence shows that meteorological conditions, e.g., temperature and relative humidity 98 

bring changes into the human activities that can influence more infections by increasing the 99 

reproduction rate of a virus. 8 For instance, the higher air temperature may lead to an increase in 100 

the use of centrally air-conditioning systems, which host and spread the bacillus, causing 101 

Legionnaires' Disease. 9 Besides, the differential climatic conditions also lead to changes in the 102 

incidences of various infectious diseases such as malaria10, dengue11, influenza12, meningococcal 103 

meningitis13, cryptosporidiosis14, Rift Valley Fever15 Kyasanur Forest disease (KFD)16 and Lyme 104 

disease.17,18  
105 

Many studies suggest that the climatic conditions, e.g., humidity and temperature play key roles 106 

in spreading infectious diseases including SARS-COV-1, 2003.19,20 The daily incidence rate 107 

(DIR) of SARS-COV-1 was 18 times higher in low temperature than that higher temperature.21 
108 

Moreover, high circulation of influenza viral diseases has been found in the winter season in the 109 

temperate region of the southern and northern hemispheres.22,23 The relative humidity is also a 110 

leading cause of occurrences of the influenza epidemic in the US and Vietnam.24,25  
111 

Few recent studies argued that meteorological factors, e.g., humidity and temperature could drive 112 

the pace of ongoing COVID-19 infections 26-28 and local climatic conditions may drive COVID-113 

19 growth rate.29 Yet, the scientific community lacks evidence regarding the potential 114 

associations between climatic factors and COVID-19 cases at the global level. Most of the 115 

previous studies rely on the evidence from the regional levels of data and limited climatic 116 

variables. Luo et al. (2020)30 examined the relationship between province-level climatic 117 

variability and increase of COVID-19 reported cases and suggested that without extensive public 118 

health interventions, increase in temperature and humidity will not lead to a decline in COVID-119 

19 cases. More importantly, Oliveiros et al. (2020)28 signify predictors percentage contribution in 120 
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the rate of progressions of COVID-19 cases in which temperature and humidity only contribute 121 

to 18% and remaining 82% related to other factors, such as public health, population, 122 

infrastructure. Therefore, it is essential to determine the role of climatic factors (e.g., relative 123 

humidity and average temperature) behind the spread of COVID-19, to strengthen the knowledge 124 

base of COVID-19 research. 125 

As the virus spread across the globe, the number of international travellers is the primary 126 

predictor of COVID-19 outbreak31 at national, regional, and local/city level. Due to high 127 

community transmission efficiency, the global cases are increasing day by day.4 However, there 128 

is a significant variation in the number of COVID-19 cases in terms of growth rate and timing 129 

around. Seoul (South Korea), Tokyo (Japan), and Bangkok (Thailand) appear to have been able 130 

to "flatten the curve". At the same time, in several other countries (i.e., India and Brazil) in the 131 

tropical region, the number of COVID-19 cases are reported to be increasing significantly. 132 

Considering the above, ongoing COVID-19 pandemic situations and its increasing growth rate, 133 

more systematic research is essential, which accounts for climatic predictors, international travel, 134 

and chloroquine distribution information. In this background, the present study aims to identify 135 

the relationship between the efficiency of community transmission (spread) of the number of 136 

COVID-19 cases and climatic and bioclimatic factors as well as international travel information 137 

and public health concerns across severely affected cities distributed across tropics, sub-tropics 138 

and temperate climatic zones. 139 

 140 

2. Methods: 141 

2.1 Selection of study sites 142 
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The international travelers were the primary cause of the spread of the COVID-19 to the global 143 

cities. The cities are more susceptible to the spread due to more substantial human mobility, 144 

service sector engagement, and tourist visitors as compared to the rural areas. Therefore, cities 145 

are the primary focus of the present study. Also, COVID-19 cases vary significantly from one 146 

country to another, and the month of the transmission is also different globally. 147 

 148 

Therefore, to understand the pattern of the efficiency of region-wise community transmission, we 149 

collected the data for the countries where more than five cities were found to be significantly 150 

affected by COVID-19 cases with a higher increasing rate as of 21 April 2020. We have selected 151 

at least three cities with the most cases from each country across the world. In the case of the 152 

countries with the largest spillover, including the US, Spain, Italy, France, Germany, the UK, 153 

Turkey, Russia, Brazil, and India, the study selected ten cities for the analysis from each country. 154 

Further, out of ten cities, we have chosen five cities with the highest number of cases, whereas 155 

the remaining five cities were selected randomly to reduce the biases in the representation of a 156 

particular country. For remaining all the countries where cases are medium or less, we have 157 

taken one to three most affected cities based on the area of the countries. For smaller countries, 158 

one city, and for medium or larger countries, we have considered three cities as representatives 159 

for those countries.  160 

 161 

A total of 230 cities were selected for the present study. To understand regional differentiation of 162 

COVID-19 cases, the cities were divided into tropical (0-23°26′11.9″ N/S), subtropical 163 

(23°26′11.9″ N/S- 40° N/S), and temperate (40° N/S - 60°N/S) zones based on latitudes. In the 164 

present study, 72, 63, and 93 cities were located in tropical, subtropical, and temperate regions, 165 
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respectively. Two cities with polar climate were excluded from the study. The study used 166 

Boosted Regression Tree (BRT) model across climatic regions and larger spillover countries. In 167 

the following sub-section, details on variable selection and measurement, data collection 168 

procedure, and model specification are briefly described.  169 

 170 

                 2.2 Descriptions and measurement of predictors 171 

The present study collected and compiled the number of COVID-19 cases data at the city level 172 

from the WHO situation reports, health websites of different countries, and some data were also 173 

collected from the news bulletin, where all cases were regularly updated.  174 

 175 

Air temperature and absolute humidity are two critical variables that may contribute to higher 176 

community transmission.32 In the context of COVID-19, the survival and transmission rates of 177 

viruses are mostly higher in the regions with low humidity and cold temperature.29 Hence, it was 178 

hypothesized that the higher the relative humidity and temperature, the lower the number of 179 

coronaviruses cases. Therefore, for the present analysis, the study used temperature and 180 

temperature-dependent bioclimatic variables (e.g., average diurnal temperature range, minimum 181 

temperature of the coldest month, average temperature of the coldest quarter, and temperature 182 

seasonality) and relative humidity as predictors. For each city, we extracted the average monthly 183 

temperature, and the average relative humidity data from the ECMWF ERA-5 reanalysis for 184 

January to April 2020.33 The month with a maximum number of reported cases was considered to 185 

tabulate temperature and relative humidity predictors data for the respective countries. The 186 

bioclimatic data of all selected countries were extracted from the worldclim historical dataset 187 
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with a 1km resolution. To control for over-dispersion, we choose the maximum reported cases 188 

based on climate for the month, for example January for China and March for Italy. 189 

Several studies showed that Chloroquine, a widely-used anti-malarial drug has a potentiality to 190 

reduce the vulnerability of COVID-19.34-36 Chloroquine is generally used for the prevention of 191 

malaria and is beneficial for treating rheumatoid arthritis in the anti-inflammatory patient. 192 

Chloroquine anti-viral and anti-inflammatory activities may be efficient in the treatment of 193 

COVID-19 patients.34,37 Malaria cases are calculated by the Annual Parasite Index (API) using 194 

both parasites, viz, Plasmodium vivax (Pv), and Plasmodium falciparum (Pf). However, in 195 

malaria-affected regions, Chloroquine is the main drug to alleviate symptoms, which can explain 196 

the reason behind fewer cases in African and South Asian countries. Hence it is assumed as one 197 

of the most important predictors to explain the number of COVID-19 cases worldwide. The API 198 

data were then extracted from the worldwide malaria cases reported in a study of Battle et al. 199 

(2015).38 200 

 201 

It is also established that countries with a higher number of international travelers are more likely 202 

to have high potentiality to infect other people.39 As the data on international passengers are not 203 

available for 2019 and 2020, we used the 2018 data as a proxy to capture the traffic of 204 

international passengers in selected countries. The international passenger data were collected 205 

from the World Bank database. 206 

 207 

             2.3 Modelling approach  208 

We analyzed the cases using a BRT model across the climatic regions and the countries with a 209 

large number of cases. BRT is an additive stochastic model that integrates regression trees by 210 
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including an outcome to their predictors by recursive binary splits and combining multiple 211 

models to a single model, optimizing the predictive performance.40 The model can describe non-212 

linear changes, accommodate missing data, and overcome the problems of outlier data.41 BRT 213 

models are found to be robust for a small number of data with missing data.42 BRT model can 214 

describe multiple interaction, partial dependency (non-monotonous and non-linear) of predictors, 215 

with sufficient flexibility and very high predictive accuracy. Therefore, the model is used to 216 

capture the non-linear relationship between the number of COVID-19 cases and selected 217 

variables in the present study. 218 

To run the BRT model, we first evaluated the multicollinearity using Pearson correlation 219 

coefficient (r) and r ≥ 0.85 was selected as a cut-off threshold (Figure 1; Table S1) to remove 220 

the less important variables.43 The variables were cross-validated using the Variance Inflation 221 

Factor (VIF). We found that the VIF value is more than ten and insignificant for variables 222 

temperature of the coldest month, and an average temperature of the coldest quarter (see Table 223 

S2), and hence these two variables were dropped from the analysis.44 COVID-19 cases were 224 

selected as outcome variable along with a set of six independent variables or predictors (see 225 

Table 1): average temperature, diurnal temperature change, temperature seasonality, relative 226 

humidity, number of travelers, and API.  227 

                      2.3.1 Boosted regression tree modelling 228 

The motivation for boosting regression was to improving various weak learners by combining 229 

two powerful procedures: regression tree and boosting.40,45 The following gradient boosting 230 

model considers the forward stage-wise manner by adding the trained model from F, an 231 

approximation function of the response variable.   232 

F��X� �  F����X� �  β��X�        (1) 233 
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where βm (X) is a weak learner of the basic functions. In the BRT model,  βm is the small 234 

regression tree and F��X� is the sum of the small regression trees. For each boosting interaction, 235 

m number of new regression trees are added to the BRT model (m=1, 2, 3…….M). The input x 236 

denotes the predictors from Table 1 (finally selected variable), aims to estimate response Y i.t+k 237 

from a training set, which entails the perfect βm to satisfy F 238 

F��X� �  F����X�.�� � β��X�.�� � Y�.��	   (2) 239 

which is similar to 240 

β��X�.�� � Y�.��	 
  F����X�.��     (3) 241 

βm in equation (3) is the current residuals r�.�.� � Y�.��	 
 F����X�.�� interaction with m to notice 242 

that current residuals have a negative slope of square error of loss functions, 243 



�

�
���.���� ��	����.����

 
��	����.��
� Y�.��	 
  F����X�.��   (4) 244 

It indicates that βm equalize the negative gradient of the squared loss function. Moreover, 245 

equation (4) proves that loss function is minimized in the gradient boosting algorithm. It also 246 

generalizes other loss functions by substituting the square error with different loss functions and 247 

their gradients. For more details of BRT, see Hastie et al. (2011), Scikit-learn (2015), Persson et 248 

al. (2017)45-47. 249 

To avoid overfitting, a simple regularization strategy is to scale the contribution of each 250 

regression tree by a factor ν. 251 

F��X� �  F����X� �  νβ��X�     (5) 252 

The parameter ν is the learning rate as it magnifies the length of the gradient descent procedure. ν 253 

strongly interacts with the number of boosting iterations M. In order to converge training error, 254 

smaller values of ν require more iterations and more basic functions. Several studies suggest that 255 
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low values of ν favor better test error. For a more detailed discussion of the interaction between ν 256 

and M, see Ridgeway (2007).48 257 

 258 

                 2.3.2 Model Calibration 259 

In this model, a 25% sample were used for training, and 75% sample distributed for testing. This 260 

method has been simulated 1,000 times to generate statistical inference by using ten times the 261 

loss function by cross-validation. In each BRT model, the subsampling procedure requires a 262 

parameter called the ‘bag fraction’ which was set at 0.7549, and at least 1,000 nodes/trees were 263 

used.40 In addition, a sensitivity analysis was conducted by setting a bag fraction of 0.5. All 264 

results presented in the following sections were calculated by averaging the predicted values of 265 

50 bootstrap replicates. All analyses were conducted using DISMO package version Rv3.4.0. 266 

Moreover, the marginal association was assessed for all independent variables across climatic 267 

regions and the countries with major COVID-19 cases spillover. The relative contribution of 268 

response variables were also assessed, where a larger value indicated higher importance.50 269 

                    2.3.3 Model Validation 270 

The model results were checked using the area in the Receiver Operating Characteristic (ROC) 271 

curve. Area under the ROC Curve (AUC) values differ between 0 and 1. The value of 0.5 272 

suggests that the model results were less than random, and the value of 1.0 implies absolute 273 

discrimination.43,51 274 

3. Results: 275 

3.1 Model validation and bag fraction analysis  276 
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The area under the curve in ROC (Figure 2) for the tested data was 0.9462, which confirms a 277 

high level of accuracy and forecasting ability of the model.43 A comparison between two bag 278 

fractions (0.5 and 0.75) was carried out in BRT models (Table S3). In general, only small 279 

variations within 2% were observed in relative contributions (RCs) of variables. The highest 280 

difference between RCs in temperature was about 1.87% in Russia (Table S3). 281 

3.2 Descriptive statistics:  282 

As of 10 May 2020, a total of 4.18 million people were affected, and 0.283 million deaths were 283 

reported in the world.52 The virus has affected 210 territories and countries, wherein most of the 284 

cases were reported in developed countries. The climatic conditions may be relevant to the 285 

variation in the number of COVID-19 cases. To better understand the role of climatic predictors, 286 

Table 2 shows the median, 10th percentile and 90th percentile of the average temperature, 287 

average relative humidity, diurnal temperature change, temperature seasonality in selected 288 

countries and regions across the globe. In the temperate zone, median average temperature, 289 

average relative humidity, diurnal temperature change, and temperature seasonality found to be 290 

9°C, 67%, 7°C, and 70%, respectively, whereas 25°C, 65%, 7°C, and 27%, respectively, in the 291 

tropical zone (Table 2). It indicates that there is a significant variation in temperature and 292 

temperature seasonality within these climatic regions. The number of COVID-19 cases are 293 

negatively associated with average temperature, diurnal temperature change, and relative 294 

humidity, and positively associated with temperature seasonality for all climatic region (Figure 3 295 

and 4). Also, the number of COVID-19 cases was positively associated with the number of 296 

international travelers and API (Table 3).  297 

         3.3. Relative effects of predictors 298 
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Table 3 presents the association between COVID-19 and climatic parameters, number of 299 

international passengers and API based on aggregate global model. We excluded the information 300 

about the number of international travelers for country-level analysis due to single data for the 301 

country level. Although it is a primary source of infection, it has no role in community 302 

transmission within a country. For the variable of API, we considered only those regions which 303 

have malaria endemicity.  304 

Table 3 represents the region and country wise association between climatic parameters and the 305 

number of COVID-19 cases. The results show that average temperature (47.70%) and average 306 

relative humidity (30.50%) were the major contributors in explaining the differentials of 307 

COVID-19 transmission in the temperate zone. At the same time, the mean diurnal range 308 

(54.70%) and temperature seasonality (33.30%) were the most significant determinants of this 309 

viral community transmission in the tropical zone. In the temperate zone, the role of average 310 

temperature (66.5%) and relative humidity (22.3%) were the highest among the selected all 311 

predictors.  312 

 313 

The results show that in temperate countries, the average temperature was a major contributor to 314 

the number of cases in France (90.70%), Turkey (82.80%), the US (75.10%), the UK (39.40%), 315 

Germany (34.30%). Similarly, the average relative humidity contributed more in Spain (71.0%), 316 

the UK (56.60%), and Italy (32.20%), and favorable relative humidity for the spread was found 317 

in the range of 60 to 70 % in countries from the temperate zone. The Russian cases were mostly 318 

affected by the temperature seasonality contributing 92.30% to the spread. The mean diurnal 319 

temperature range was contributing about 60.20% of the cases in Germany (Table 3).  320 

 321 
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The cities located in the tropical zone, like cities form India and Brazil, were mostly influenced 322 

by the diurnal temperature range. In India, 80.70% of the cases were explained by the mean 323 

diurnal temperature, followed by the average temperature (13%) and temperature seasonality 324 

(1.40%). The maximum number of cases in India was explained in the range of temperature 325 

seasonality 22% to 38%. The community transmission in Brazil was mostly influenced by 326 

temperature seasonality (41.40%), followed by the mean diurnal range of temperature (23.10%), 327 

API (12.20%) average temperature (11.60%), and relative humidity (10.30%) (Table 3).  328 

 329 

                3.4 COVID-19 response to the predictors in different climatic regions 330 

The association between climatic indicators and COVID-19 risks is illustrated in Figure 5. A 331 

non-linear relationship is observed between average temperature and COVID-19 cases in the 332 

temperate and sub-tropical zones. The results show that average temperature was negatively 333 

associated with COVID-19 transmission risks, which tend to reduce significantly when the 334 

average temperature varied from 5oC to 12oC in the sub-tropical zone and 5oC to 11oC in the 335 

temperate zone. With increasing average temperature, community transmission is reduced 336 

significantly. The response of the number of COVID-19 cases was slightly positive and 337 

associated with relative humidity, although it was a less influencing factor in the temperate and 338 

sub-tropical zones. After the threshold of about 60% relative humidity in these two regions, the 339 

probability of disease transmission increased (Figure 5). 340 

 341 

On the contrary, these two meteorological parameters did not have a significant association with 342 

the disease transmission in the tropical region. The significant community transmission occurred 343 

with the changes in mean diurnal temperature, which was ranged from 4 to 8oC. After this, there 344 
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was a significant decline in the number of COVID-19 cases in community transmission, which 345 

had little variations with average temperature. The temperature seasonality was also a significant 346 

variable showing positive association for the community transmission in the tropical countries. 347 

Besides these factors, API had a very poor association with the COVID-19 transmission in the 348 

tropical regions.  349 

                  3.5 COVID-19 response to the predictors in different countries: 350 

Figure 6 represents the country-wise association between the climatic predictors and the 351 

COVID-19 cases. The results show that in France, Turkey, the US, the UK, Germany, the 352 

number of COVID-19 cases were non-linearly but highly associated with average temperature. 353 

Maximum cases were found during the temperature range of 5 to 10°C, and after the temperature 354 

increased beyond 10°C infected cases declined. Similarly, the average relative humidity was a 355 

contributing factor in Spain, the UK, and Italy, and favorable relative humidity for the disease 356 

transmission was found to be 60 to 70% in temperate countries. Most interestingly in the case of 357 

Turkey, it was found that the cases were increasing after crossing the 73% threshold of relative 358 

humidity. The temperature seasonality mostly influenced the Russian cases. About 92% of the 359 

cases in Russia were influenced by temperature seasonality, followed by Italy (64.3%), and the 360 

US (21.5%). It concludes that more than 70% variation of temperature (temperature seasonality) 361 

may cause a significant increase in COVID-19 community transmission. But with the 80% of 362 

temperature seasonality, there was a declining trend for the US cases, whereas Russian cases 363 

declined after the value reached 110%. This might be because the location and extension of 364 

Russia is northwards than the US where extreme seasonality was found. Another important 365 

variable, mean diurnal range of temperature contributes more (about 60%) to the community 366 

transmission in Germany (Figure 6).  367 
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It was found that the COVID-19 community transmission in the tropical zone was not strongly 368 

associated with the temperature. Maximum cases are explained by 30-40% of seasonal variation 369 

in temperature, and after 40% seasonal variation in temperature, the number of cases may decline 370 

sharply. The cases in India were mostly associated with the diurnal range of temperature 371 

(80.7%). The cases in Brazil were mostly influenced by the temperature seasonality (41.4%). In 372 

Brazil, the maximum number of cases were found in the range 5° to 8°C of the mean diurnal 373 

temperature. The API values were influenced slight positively, although the rate was very low. In 374 

Brazil, the cases were sharply increasing with an increase of average temperature. The results 375 

also showed that the average temperature ranging from 25 to 30 oC was the most influential 376 

factor behind the number of cases in these tropical countries (Figure 7). 377 

4. Discussion: 378 

Many studies have tried to establish the relationship between meteorological parameters and 379 

transmission of influenza epidemic.12 In recent times, several efforts have also been made to 380 

evaluate the association between climatic predictors and COVID-19 transmission.26-29, 53 Existing 381 

studies mainly focused on regional perspectives of COVID-19 transmission and its association 382 

with climatic conditions. However, studies at the macro level are limited, in particular, the 383 

studies which accounts for different climatic regions. Besides, the influence of climatic 384 

predictors, including travel information and API on the number of COVID-19 cases and 385 

community transmission, has limitedly established. An empirical analysis of the influence of 386 

climatic, bioclimatic, and factors like international travel information and API on COVID-19 387 

community transmission using city-level data across three climatic regions in countries with the 388 

most number of COVID-19 cases is expected to improve the understanding of the spread of the 389 

disease. 390 
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The results of country-level analysis showed that in Indonesia, the only average temperature is 391 

linked with the COVID-19 transmission, while humidity, maximum or minimum temperatures 392 

are not correlated.53 In this background, the present study used climatic, bioclimatic and 393 

international travel information and API data for 72 cities from the tropical, 72 cities from the 394 

sub-tropical and 93 cities from the temperate zones. The study found that increasing temperature 395 

and decreasing average relative humidity were associated with the slowdown the community 396 

transmission of COVID-19. At the same time, Wang et al. (2020a)26 revealed that higher average 397 

temperature and higher relative humidity considerably decrease the COVID-19 transmission. 398 

About 1°C rise in average temperature is related to a reduction of reproduction rate of 399 

transmission by 0.0225 in China26 and a 1% rise in relative humidity lowers the reproduction rate 400 

by 0.0158. Another study by Bu et al. (2000) concludes that in China, average temperature 401 

ranges between 13°C and 19°C and average relative humidity ranges between 50% - 80% 402 

constitute an appropriate condition for the community transmission of this virus.54 403 

A study from China showed that the cases of COVID-19 were highest within the 10°C while it is 404 

considerably low more than 10°C temperature.27 The present study found a linear relationship 405 

between the transmission of COVID-19 and temperature in the temperate region, while there was 406 

no significant association between these two in the tropical region. As China is from a temperate 407 

region, with an increase in temperature, the number of COVID-19 cases also increased in the 408 

country. It might therefore appear that COVID-19 needs a 4°C of minimum level of temperature 409 

for smooth transmission. Also, in the temperate and subtropical regions, COVID-19 transmission 410 

was lower when the temperature remains below 10°C. Possibly, in these regions, the unfavorable 411 

temperature keeps people inside their homes, and “social distancing” was maintained. Therefore, 412 

the temperature might have played a significant role in the dispersion of the virus in the 413 
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temperate and subtropical regions.55 While the average temperature was not associated with 414 

COVID-19 transmission in the tropical region, the temperature seasonality and mean diurnal 415 

temperature become important for the transmission in the region. Since various parameters of 416 

temperature were associated differently with the outbreak in different climatic regions such as 417 

the temperate and tropical zones, it may also vary over regional/country levels due to changes in 418 

geographical and ecological settings. Thus, the regional level analysis of heterogeneous climatic 419 

associations with the transmission is equally necessary along the global assessments. 420 

The present study found that the role of average relative humidity on COVID-19 transmission 421 

was weaker and inconsistent compared to the temperature. COVID-19 community transmission 422 

in temperate zone were generally suitable for growth in the number of cases in the conditions of 423 

high relative humidity but not exceedingly wet environments (>90%). Moreover, in the tropical 424 

zone, high relative humidity is also linked with the transmission rate of COVID-19 cases but not 425 

strongly associated, as in the temperate zone. The results of the present study are consistent with 426 

the previous studies, showing the inconsistent effects of relative humidity on COVID-19 cases in 427 

the regional case of China.27 The study also found a similar relationship for Hemorrhagic fever 428 

with renal syndrome (HFRS) in China, which was positively associated with cold days in 429 

China.56 The relationship between relative humidity and COVID-19 cases can be complicated in 430 

a country-level analysis as wet condition may block the viral replication.12,55 Deyle et al., (2016), 431 

signified that the effects of relative humidity on influenza disease depends on the temperature.57 432 

This could explicate our findings that the impact of humidity on COVID-19 transmission could 433 

be stronger in the temperate zone and weaker in the tropical zone as a procession of seasonal 434 

temperature change. 435 
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More detailed country-specific findings revealed similar results to those of the regional level, 436 

albeit with slight variations. In most of the temperate countries such as France, the USA, Turkey, 437 

the UK, and Germany, the cities having an average temperature in the range 5-10°C have a 438 

higher level of COVID-19 transmission rate than their counterparts (Figure 5). Besides, other 439 

climatic parameters like average relative humidity played an important role in some of the 440 

countries such as Italy, Spain, the UK, and Russia. In humid region with a favourable humidity 441 

60-70%, if infected people sneezes and coughs, the released tiny droplets into the surrounding 442 

environment, and it travels further into the air. The droplets in the air may not evaporate soon, 443 

and more likely to infect a new people.58 In summary, temperature and humidity can be used for 444 

predicting the COVID-19 transmission in these countries.  445 

Besides the climatic factors, our results showed that chloroquine distribution affects the COVID-446 

19 transmission, particularly in tropical countries such as Brazil and India. A non-randomized 447 

clinical trial shows that anti-malarial drugs such as Hydroxychloroquine and azithromycin 448 

weaken the symptoms of COVID-19.35 The API values slightly positively influenced the number 449 

of COVID-19 cases in these countries, and the rate of influence was very low because cities are 450 

less prone to malaria globally.38 Hence, in the areas where the prevalence of malaria was 451 

relatively high, the percentage of infected people might be less in the form of asymptomatic or 452 

mild symptomatic as compared to the areas where the prevalence of malaria is low (e.g., South 453 

Asian and African countries). The development of immunity against malaria perhaps lessens the 454 

probability of showing symptoms among the people in malaria-affected regions.35  455 

Other strains of coronavirus such as HCoV-HKU1, HCoV-229E, HCoV-OC43, and HCoV-456 

NL63 generally show symptoms like the common cold. The COVID-19 seemed to have a strong 457 

seasonality effect from December to April, although data for other months are not available for 458 
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the comparison. The transmission of the virus lessens during the summer season.59 In the coming 459 

months, in general, the temperature will be increasing in the countries from the northern 460 

hemisphere. At the same time, the temperature will be decreasing in the countries of the southern 461 

hemisphere. Hence, the findings from this study would have important implications in 462 

formulating strategies to deal with COVID-19-related in the near future. It should be noted that 463 

the present study does not predict the climatic parameter-based months with higher risk for the 464 

cities of different climatic zones. Future studies may emphasize on predicting the monthly 465 

climatic conditions and associated transmission risk of COVID-19 across the countries and 466 

regions. The present study does not include other factors, such as the human physiological 467 

response of a community to the virus and social and economic determinants of viral transmission 468 

due to data limitations.   469 

 470 

5. Conclusions: 471 

The present study used city level climatic, bioclimatic, travel, and chloroquine distribution data 472 

to identify the relationship between the climatic region-wide and country-wide variations and the 473 

number of COVID-19 cases by the marginal effects of predictors. The study concludes that 474 

climatic and bioclimatic predictors across three climatic zones significantly affects the spread of 475 

the number of COVID-19 cases. The findings of the present study are expected to improve the 476 

understanding of the relationships between the climatic variables and the number of COVID-19 477 

cases. It underlines the importance of meteorology-based early warning systems to facilitate 478 

timely response to COVID-19 community transmission. The finding from the present study are 479 

expected to add to the ongoing debates on the influence of climatic factors on the spread of 480 
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COVID-19 cases and could help researchers and policymakers to make appropriate decisions for 481 

preventing the spread. 482 

 483 
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Fig 1: Scatterplot matrix showing the relationship between preliminary predictors and the number of 

COVID-19 cases. The corresponding correlation value (r) to identify insignificant predictors for the 

model are shown on the subplots. 
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Fig. 2. The ROC curve for the BRT model. The AUC value 0.9462 indicates that the forecasting ability 

for the model is very good, showing a high level of accuracy. 
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Fig 3: Relationship between selected climatic variables, number of international travelers and number of 

COVID-19 cases in the tropical region. Fig (a) COVID-19, relative humidity, and temperature; (b) COVID-

19, diurnal range of temperature, and relative humidity; (c) COVID-19, temperature seasonality, and 

diurnal temperature change; (d) COVID-19, average temperature and API values. 

(a) (b) 

(c) (d) 
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Fig 4: Relationship between selected climatic variables, the number of international travelers, and the 

number of COVID-19 cases in the temperate region, and a similar relationship has been observed for the 

sub-tropical region. Fig (a) CoVID-19, relative humidity, and temperature; (b) COVID-19, diurnal range 

of temperature, and relative humidity; (c) COVID-19, temperature seasonality, and diurnal temperature 

change; (d) COVID-19, average temperature and API values. 
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Fig. 5: Marginal dependence graphs for the five most influential predictors in the model for COVID-19 in 

tropical (a), sub-tropical (b), and temperate (c) regions. For explanation of predictors and their units, see 

Table 3. Y-axes are showing number COVID-19 cases, and X-axes represent predictors. The predictor, the 

number of international travelers, was omitted as this is a primary source of infection, but it has no role in 

community transmission. The API values considered only for the tropical region, where most of the 

countries of this region are malaria-prone. The shaded line shows a 95% confidence interval from the mean. 
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Fig. 6: Marginal dependence graphs for the four most influential predictors in the model for COVID-19 

disease in the USA (a), Spain (b), Italy (c), France (d), Germany (e), UK (f), Turkey (g), Russia (h). For 

explanation of predictors and their units, see Table 3. Y-axes are showing the number of COVID-19 cases, 

and X-axes represent predictors. The predictor, the number of international travelers, was omitted as it is a 

primary source of infection, but it has no role in community transmission. The API was omitted for fewer 

malaria cases in the temperate region. The shaded line shows a 95% confidence interval from the mean. 

(e) 

(f) 

(g) 

(h) 
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Fig. 7: Marginal dependence graphs for the five most influential predictors in the model for COVID-19 in 

India (a), Brazil (b). For explanation of predictors and their units, see Table 3. Y-axes are showing COVID-

19 cases, and X-axes represent predictors. The predictor, the number of international travelers, was omitted, 

as it is a primary source of infection, but has no role in community transmission. The value of API was 

considered in the analysis as these countries are malaria-prone. Shaded line shows a 95% confidence 

interval from the mean. 
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Table 1: List of preliminary and final selected variable for the BRT model 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Meteorological quantiles (10th, 90th percentiles) of climatic, bioclimatic, and API values for COVID-19 cases in different climate zones 

and largest spillover countries in the World 

 

 

 

 

Sl. 

no. 

Predictors for the COVID-19 Preliminary 

selected 

variables 

Variable for the 

final model 

1. Average temperature (°C) * √ 

2. Monthly relative humidity (%) * √ 

3. Diurnal temperature change (°C) * √ 

4. Temperature Seasonality (%) * √ 

5. Mean temperature of the coldest 

month (°C) 

* - 

6. Mean temperature of the coldest 

Quarter (°C) 

* - 

7. No of Passengers * √ 

8. API values (per 1000 pops) * √ 

Countries Medians (10th, 90th percentiles) 

Avg. 

temperature 

(oC) 

Temperature 

seasonality 

(%) 

Avg. relative 

humidity (%) 

Mean 

diurnal range 

( oC) 

API values 

(per 1000 pops) 

The countries with the highest number of COVID-19 cases 

 

USA 10 (6,17) 84 (47,93) 65 (60,71) 8 (7,11) - 

Spain 12 (10,15) 57 (48,66) 70 (63,77) 9 (6,10) - 

Italy 11 (9,13) 70 (63,72) 63 (62,71) 8 (6,9) - 

Germany 8 (7,9) 58 (57,66) 66 (64,69) 7 (7,7) - 

UK 7 (6,9) 44 (41,45) 73 (67,76) 6 (5,6) - 

Russia 2 (0,4) 111 (102,115) 82 (75,89) 8 (7,8) - 

Turkey 11 (9,14) 68 (67,84) 69 (63,71) 8 (5,11) - 

France 10 (8,12) 59 (54,64) 68 (66,70) 7 (5,8) - 

Brazil 27 (25,28) 22 (20,23) 73 (67,77) 8 (7,9) 0.12 (0.06,0.18 

India 28 (27,30) 22 (20,55) 59 (43,72) 8 (5,10) 0.005 (0.001, 0.009) 

Climatic zones 

 

Tropical 25 (10,31) 27 (8,80) 65 (41,78) 7 (4,11) - 

Sub-tropical 17 (10,25) 58 (33,96) 64 (41,72) 8 (5,12) - 

Temperate 9 (4,17) 70 (46,97) 67 (57,77) 7 (5,11) - 
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Table 3: Relative importance of predictors (climatic, bioclimatic, travel passenger, and API 

variables) in percent (±SD) and goodness of fit of the model. 

 

 

 

 

 

 

 

 

 

 

 

  

  

Countries 

Predictors importance (%) to the COVID-19 cases 

 

Avg. 

Temperature 

(°C) 

Temperature 

seasonality 

(%) 

Avg. 

Relative 

Humidity 

(%) 

Mean 

Diurnal 

range 

(°C) 

No of 

Passengers 

API 

values 

(per 1000 

pops) 

R2 

The countries with the highest number of COVID-19 cases 

 

 

USA 75.1±3.1 21.5±0.6 2.40±0.3 0.80±0.01 0.20±0.01 - 0.834 

Spain 20.70±1.2 6.80±0.8 71.0±2.4 1.30±0.01 0.02±0.01 - 0.923 

Italy 4.00±0.3 64.3±1.8 32.2±1.1 0.30±0.01 0.01±0.01 - 0.893 

Germany 34.3±1.7 1.00±0.01 4.40±0.3 60.2±2.4 0.10±0.01 - 0.819 

UK 39.4±2.1 3.00±0.02 56.6±0.5 3.00±0.2 0.30±0.02 - 0.910 

Russia 2.70±0.1 92.3±3.06 4.30±0.1 0.40±0.01 0.30±0.02 - 0.798 

Turkey 82.8±3.5 3.70±0.6 7.40±0.1 5.10±0.7 1.00±0.04 - 0.823 

France 90.7±3.2 0.10±0.01 6.00±0.3 3.10±0.4 0.10±0.01 - 0.865 

Brazil 11.6±0.3 41.4±0.9 10.3±0.3 23.1±0.3 1.40±0.05 12.2±0.2 0.869 

India 13.0±0.4 1.40±0.01 2.00±0.01 80.7±0.9 0.90±0.3 2.00±0.1 0.908 

Climatic zones 

 

 

Tropical 4.00±0.3 33.3±1.1 6.70±0.3 54.7±2.1 1.70±0.1 10.0±0.2 0.875 

Sub-

tropical 

66.5±2.6 5.50±0.2 22.3±0.7 5.50±0.2 0.80±0.02 - 0.912 

Temperate 

 

47.7±1.6 12.0±0.3 30.5±0.9 9.20±0.1 0.90±0.01 - 0.863 
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Supplementary tables 

 

Table S1: The Pearson correlation test results for COVID-19 cases and selected variables (5% significance level). The cut-off threshold is 0.85. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables COVID-19 

cases 

Avg. 

temperatu

re 

Avg. 

relative 

humidity 

Mean 

diurnal 

range 

Temperatur

e 

seasonality 

Mean 

temperatu

re of the 

coldest 

month 

Mean 

temperature 

of the coldest 

quarter 

Number of 

passengers 

API 

values 

COVID-19 cases 1.0000 -0.3048 0.0894 -0.0417 0.2344 -0.2444 -0.2593 0.4080 0.0157 

Avg. temperature -0.3048 1.0000 -0.3295 -0.0734 -0.8002 0.9055 0.9437 -0.2049 0.0039 

Avg. relative humidity 0.0894 -0.3295 1.0000 -0.4666 -0.0260 -0.0872 -0.1754 -0.0249 0.0408 

Mean diurnal range -0.0417 -0.0734 -0.4666 1.0000 0.3800 -0.3451 -0.2276 0.0329 -0.1714 

Temperature seasonality 0.2344 -0.8002 -0.0260 0.3800 1.0000 -0.9046 -0.8877 0.2226 -0.0223 

Mean temperature of coldest 

month 

-0.2444 0.9055 -0.0872 -0.3451 -0.9046 1.0000 0.9878 -0.1884 0.0591 

Mean temperature of coldest 

quarter 

-0.2593 0.9437 -0.1754 -0.2276 -0.8877 0.9878 1.0000 -0.1881 0.0363 

Number of passengers 0.4080 -0.2049 -0.0249 0.0329 0.2226 -0.1884 -0.1881 1.0000 0.0174 

API values 0.0157 0.0039 0.0408 -0.1714 -0.0223 0.0591 0.0363 0.0174 1.0000 
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Table S2: Showing Variance Inflation factor (VIF) value to check significant variable from the primarily 

selected variables 

 

 

  

Term Estimate Std Error t Ratio Prob>|t| VIF 

Intercept 3597.3204 3698.796 0.97 0.3330 . 

Avg. temperature  -25.22334 113.3874  -0.22 0.8244 6.1392849 

Avg. relative humidity  -11.16929 23.89495  -0.47 0.6411 1.9539564 

Mean diurnal range  -199.7291 212.19  -0.94 0.3487 3.9149944 

Temperature seasonality 21.726566 24.70188 0.88 0.3811 6.1399372 

Mean temperature of the coldest month 148.30745 300.3049 0.49 0.6224 111.50138 

Mean temperature of the coldest quarter  -116.9129 336.9731  -0.35 0.7293 126.26264 

Number  of passengers 8.3254e-6 2.908e-6 2.86 0.0051* 1.04387 

API values  -31.63317 184.9953  -0.17 0.8646 1.0610794 
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Table 3. Model settings for the bag fraction (0.50 and 0.75) comparison for the relative importance of the selected predictors settings in the BRT 

models 

 

 

 

 

 

 

Countries 

& climatic 

regions 

Predictors importance (%) to the COVID-19 cases 

Bag 

fraction 
Avg. 

temperature 

(°C) 

Temperature 

seasonality 

(%) 

Avg. 

relative 

humidity 

(%) 

Mean 

diurnal 

range (°C) 

Number of 

Passengers 

API values 

(per 1000 

population) 

USA 
0.75 75.1 21.5 2.4 0.8 0.2 - 

0.50 74.4 20.9 2.3 0.7 0.2  

Spain 
0.75 0.70 0.21 99.0 0.07 0.02 - 

0.50 0.60 0.22 98.2 0.06 0.01  

Italy 
0.75 4.00 64.3 32.2 0.3 0.01 - 

0.50 3.80 63.1 31.1 0.2 0.01  

Germany 
0.75 34.3 1.0 4.4 60.2 0.1 - 

0.50 33.9 0.8 4.3 59.6 0.07  

UK 
0.75 39.4 3.0 56.6 3.0 0.3 - 

0.50 38.7 3.2 56.2 2.9 0.23  

Russia 
0.75 2.70 92.30 4.3 0.4 0.3 - 

0.50 2.50 90.43 4.1 0.3 0.33  

Turkey 
0.75 82.8 3.7 7.4 5.1 1.0 - 

0.50 82.6 3.8 7.2 4.9 0.8  

France 
0.75 90.7 0.1 6.0 3.1 0.1 - 

0.50 90.5 0.1 6.3 2.9 0.8  

Brazil 
0.75 11.6 41.4 10.3 23.1 1.4 12.2 

0.50 11.5 41.3 9.8 23.0 1.3 12.1 

India 
0.75 13.0 1.4 2.0 80.7 0.9 2.0 

0.50 12.6 1.3 1.7 79.4 0.6 1.8 

Tropical 
0.75 4.00 33.3 6.7 54.7 1.7 10.0 

0.50 4.10 33.4 5.8 53.4 1.3 10.2 

Sub-

tropical 

0.75 66.5 5.5 22.3 5.5 0.8 - 

0.50 66.1 5.6 21.3 5.3 0.6  

Temperate 
0.75 47.7 12.0 30.5 9.2 0.9 - 

0.50 47.1 12.3 31.3 9.3 0.6  
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