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ABSTRACT 

Background:  

Amyloid pathology, which is one of the characteristics of Alzheimer's disease (AD), results from 

altered metabolism of the beta-amyloid peptide (Aβ) in terms of synthesis, clearance or 

aggregation. A decrease in cerebrospinal fluid (CSF) level Aβ1-42 is evident in AD, and the CSF 

ratio Aβ40 /Aβ40 has recently been identified as one of the most reliable diagnostic biomarkers 

of amyloid pathology. Variations in inter-individual levels of Aβ1-40 in the CSF have been 

observed in the past, but their origins remain unclear. In addition, the variation of Aβ40 in the 

context of AD studied in several studies has yielded conflicting results. 

Methods:  

Here, we analyzed the levels of Aβ1-40 using multicenter data obtained on 2466 samples from 

six different cohorts in which CSF was collected under standardized protocols, centrifugation and 

storage conditions. Tau and p-tau(181) concentrations were measured using commercially 

available in vitro diagnostic immunoassays. Concentrations of CSF Aβ1-42 and Aβ1-40 were 

measured by ELISA, xMAP technology, chemiluminescence immunoassay (CLIA) and mass 

spectrometry. Statistical analyses were calculated for parametric and non-parametric 

comparisons, linear regression, correlation and odds ratios. The statistical tests were adjusted for 

the effects of covariates (age, in particular). 

Results:  

Regardless of the analysis method used and the cohorts, a slight but significant age-independent 

increase in the levels of Aβ40 in CSF was observed in AD. We also found a strong positive 

correlation between the levels of Aβ40 and p-tau(181) in CSF, particularly in control patients. 
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Conclusions: 

These results indicate that an increase in the baseline level of amyloid peptides, which are 

associated with an increase in p-tau(181), may be a biological characteristic of AD. This 

confirms the potential therapeutic value of lowering the baseline levels of Aβ40 which, being 

elevated, can be considered a risk factor for the disease. 

 

Keywords: Alzheimer’s disease, amyloid peptides, cerebrospinal fluid. 
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Background 

Alzheimer’s disease (AD) neuropathological brain lesions consist of aggregates of hyper-

phosphorylated tau proteins, which have also been called neurofibrillary tangles (NFTs), and 

extracellular deposits of amyloid precursor protein (APP) derived amyloid-beta peptides (Aβ), 

which are known as amyloid plaques. Much research has been focusing recently on the molecular 

mechanisms underlying these pathological events as it has become essential to develop 

preventive and therapeutic strategies for AD. For a long time, the main explanation for the 

pathogenesis of AD was that amyloidogenesis was the primum movens of the affection, which 

led to the concept of the amyloid cascade [1]. According to this picture of the disease, the 

alteration of APP metabolism (increasing amyloid production, decreasing clearance rates..), the 

aggregation of Aβ peptides and the formation of amyloid plaques, might result in microglial and 

astrocyte activation, local inflammatory responses, oxidative stress and eventually in the hyper-

phosphorylation of tau proteins and secondarily, in the formation of NFTs [2]. 

The idea that amyloid peptides contribute importantly to the etiology of AD is supported by cases 

of AD who carry presenilins (1 or 2) or APP mutations [3]. These gene mutations trigger the 

overproduction of Aβ peptides or the preferential production of Aβ42, which is the most 

amyloidogenic of all the peptides. An APP gene dose effect triggering AD development, as 

occurs in Down syndrome [4] and in gene duplication processes [5], is a further/an additional 

potential factor contributing to amyloid pathogenesis. Other genetic factors have been described, 

such as apolipoprotein E4 allele, in particular [6]. 

Studies on cerebrospinal fluid (CSF) biomarkers in AD have greatly improved our understanding 

of the pathophysiology of this disease. The production of amyloid peptides following the 

neuronal processing of APP has been involved in the response to physiological challenge with 

neurotrophic, anti-microbial, tumor suppression or synaptic function regulation activities [7]. 
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Regarding tau proteins which are associated to microtubules, their physiological secretion by 

neuronal cells is a recent discovery which physiological relevance and benefit is still matter of 

debate [8]. A decrease in CSF Aβ42 is especially indicative of an amyloidogenic process, while 

an increase in tau proteins (total tau and its phosphorylated form p-tau(181)) is known to be 

associated with axonal loss and tau pathology in AD [9, 10]. Tests on these two biomarkers are 

being included nowadays in the international clinical research guidelines  [11, 12], and many 

centers [11-15], and ourselves [13-15] have integrated them into daily clinical practice. 

Importantly, these biochemical CSF measurements are concordant with the results of the PET 

imaging approaches which were initially developed to determine the brain amyloid load [16], and 

now also serve to measure tau accumulation [17]. These data are in line with hypotheses put 

forward by Jack et al, [18] about the chronology of the evolution of biomarkers during the 

pathophysiological process, and the relevance of amyloid markers in particular at a very early 

stage, probably as early as 10 to 15 years before the onset of clinical symptoms. 

Under non-pathological conditions, Aβ40 is highly correlated with Aβ42 [19]. The computation 

of the ratio Aβ42/40 is now being used in routine clinical practice on AD patients in some centers 

[20-22]. This is a useful approach for reducing pre-analytical Aβ42 biases [23-25] and improving 

the diagnostic performances of CSF biomarkers [26], especially in discordant cases [27]. This 

ratio can also be used to account for interindividual amyloid variations in the baseline CSF level 

[28]. Low CSF Aβ40 levels might also be indicative of frontotemporal dementia (FTD) [29, 30], 

cerebral amyloid angiopathy (CAA) [31], HIV [32], multiple sclerosis [33] or normal pressure 

hydrocephalus [34]. 

In their meta-analysis of AD biomarkers, Olsson et al. [35] observed the existence of a negligible 

difference in CSF Aβ40 between AD and control patients. Most of the 32 studies considered had 

a limited number of patients included in each group (the median number of subjects per group 
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was less than 30, and the maximum number of subjects was 137 and 328 in AD and non-AD 

groups, respectively). The focus of these studies were also quite different, looking at the 

diagnostic interest of Aβ42/40 in AD, of Aβ peptides in other neurodegenerative diseases, or 

being more interested in pathophysiological mechanisms. In the present study, we revisited the 

issue of the Aβ40 levels using large series of multicentre data. The results show the occurrence of  

a significant age-independent increase in CSF Aβ40 in AD. Another noteworthy finding was the 

existence of a strong positive correlation between CSF Aβ40 and the p-tau(181) concentration, 

even in patients without Alzheimer’s disease (NAD). These findings suggest that the baseline 

amyloid peptide level may constitute a risk factor contributing to sporadic AD, which is 

associated with p-tau(181) production. 

 

Methods 

Study design and subjects 

Patients with cognitive impairments were recruited and followed at the Montpellier and Paris 

Memory Resources Center (CMRR). The Montpellier participants were subdivided into two 

cohorts which were recruited during different periods: Montpellier 1 (Mtp-1) (recruited from 

07/2015 to 05/2017) and Montpellier 2 (Mtp-2) (recruited from 09/2009 to 06/2015). These two 

periods corresponded to the use of different ELISA kits (SupTable 1). The cohort Mtp-1 

consisted of 400 patients (126 AD, 274 NAD), the cohort Mtp-2 consisted of 504 patients (220 

AD, 284 NAD). The Paris cohort consisted of 624 patients (299 AD, 325 NAD) from the Centre 

de Neurologie Cognitive, Groupe Hospitalier Lariboisière Fernand-Widal (recruited from 

03/2012 to 05/2017). The Barcelona SPIN (Sant Pau Initiative on Neurodegeneration) cohort (79 

AD, 148 NAD) consisted of  patients who had undergone lumbar puncture for CSF AD 

biomarkers at the Sant Pau Memory Unit [36, 37] (recruited from 05/2009 to 12/2017). All the 
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patients underwent a thorough clinical examination including biological lab tests, 

neuropsychological assessments and brain imaging. The same diagnostic procedure [27] and AD 

diagnostic criteria [38] were used at all the clinical centres which participated. The NAD 

diagnosis included FTD based on relevant criteria [39], dementia with Lewy bodies based on the 

McKeith criteria [40]), corticobasal degeneration (based on the criteria defined by Boeve et al 

[41]), progressive supranuclear palsy, amyotrophic lateral sclerosis, chronic hydrocephalus, 

vascular dementia and psychiatric disorders (based on the usual consensus diagnostic criteria). 

All the patients at each clinical centre gave their written informed consent to participating in 

clinical research on CSF biomarkers, which was approved by the respective Ethics Committees. 

The committee responsible in Montpellier was the regional Ethics Committee of the Montpellier 

University Hospital and Montpellier CSF-Neurobank #DC-2008-417 at the certified NFS 96-900 

CHU resource center BB-0033-00031, www.biobanques.eu. Authorization to handle personal 

data was granted by the French Data Protection Authority (CNIL) under the number 1709743 v0. 

Two sets of data originating from the analysis of CSF samples at the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI) were used after the 

agreement of the scientific committee. ADNI UPEN-RESULTS, UPEN-ELYCYS (n=311) and 

MS UPENNMSMSABETA (n=400) data were also used. In the ADNI cohorts, which included 

many patients with mild cognitive impairments (MCI), we had to rely on the biological PLM 

(Paris-Lille-Montpellier) scale [42] to define populations with a low (ADNI(-)) and high 

(ADNI(+)) prevalence of AD. This scale combines the concentration of the three CSF 

biomarkers [Aβ42, tau, ptau(181)] into a probability scale for AD. The score ranges from 0 to 3 

based on the number of abnormal CSF biomarkers. ADNI(-) population corresponded to PLM 

scale of 0 or 1 with less than 25% of AD, while ADNI(+) corresponded to PLM scale of 2 and 3 

with more than 75% of AD. Importantly the PLM score used was not based on the Aβ40 values 
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so as to prevent circular reasoning. This way of stratifying patients in the ADNI cohort represents 

anyway a limitation of our study. 

CSF samples and assays 

CSF was collected using standard conditions of collection, centrifugation and storage [43, 44]. 

CSF tau and p-tau(181) concentrations were measured using the standardized commercially 

available INNOTESTR sandwich ELISA, Luminex® xMAP technology (x = analyte, MAP = 

Multi-Analyte Profiling) assays in line with the manufacturer’s instructions (Fujirebio-Europe). 

The consistency of the p-tau(181) detection using the ELISA assays is ensured by its comparison 

with the mass spectrometry detection performed in this fluid [45]. In the Mtp-1 cohort, CSF Aβ1-

42 and Aβ1-40 (denoted here by Aβ42 and Aβ40) were measured with Euroimmun kits (EQ-

6511-9601 (Aβ1-40); EQ-6521-9601 (Aβ1-42)). In the Mtp-2 and Paris cohorts, CSF Aβ42 and 

Aβ40 were measured using INNOTESTR sandwich ELISA from IBL and Fujirebio, respectively, 

as recommended by the manufacturer. Roche Elecsys automated chemiluminescence 

immunoassay (CLIA) and mass spectrometry were used on the ADNI cohorts to measure CSF 

Aβ1-42 and Aβ1-40 as previously described [46, 47]. Detection limits of these kits are 

compatible with CSF clinical ranges. Average concentration of analytes may differs between kits 

in relation with standard value assignments by the vendors in the absence of certified reference 

materials. 

The pre-analytical procedure was standardized [44] but differed, depending on the type of 

collection tubes used [36, 48]). This explains the differences observed between cohorts in the 

mean Aβ40 and Aβ42 values measured with the same detection kit (SupTable 1). The quality of 

the results was ensured by using validated standard operating procedures and internal quality 

controls (QCs). The QC coefficient of variation obtained on the CSF analytes in each batch and 

between batches ranged consistently below 15%. In addition, external QC procedures were used 
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to confirm the quality/accuracy of the results [43]. In the case of the ADNI cohorts, CSF samples 

were deep frozen after the lumbar puncture without performing any centrifugation or aliquoting, 

and shipped to the UPENN ADNI Biomarker Laboratory in Philadelphia on dry ice, where they 

were thawed, aliquoted, and re-frozen. 

 

Statistical analysis 

Statistical analyses were computed with the MedCalc software program (18.11.3). Data tested for 

normality are expressed as means ± SDs, and differences between groups were taken to be 

significant in the Student’s t-tests at P < 0.05. Linear regression was computed between 

continuous biomarkers, and the corresponding Pearson correlation coefficients and statistical 

significance have been specified in the tables. When indicated, statistical tests were adjusted to 

account for the effects of covariates (age, in particular). Odds ratios corresponded to the presence 

of AD in the various percentile groups, based on the distribution of Aβ40. The 95% confidence 

odds ratio intervals were computed along with the z-statistics and the associated P-values. 

 

Results 

CSF Aβ42 and Aβ40 in AD and NAD populations 

CSF data on 2466 samples originating from six different cohorts were included in the present 

study. The AD and NAD populations were defined based on clinical criteria in the Montpellier 1 

(Mtp-1), Montpellier 2 (Mtp-2), Paris and Barcelona cohorts, and on the PLM score for the 

ADNI cohorts. Differences were observed in terms of age and CSF biomarker profiles in the 

overall population, as well as in each clinical cohort (Table 1). As was to be expected, AD 

patients obtained lower MMSE scores and showed higher CSF tau and p-tau(181) levels than 

NAD patients/participants. A significant decrease in the CSF Aβ42 concentrations was observed 
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in the AD population (Figure 1A), regardless of the cohort tested. Noteworthy differences were 

also observed in the Aβ40 levels between all the cohorts (Figure 1B): the values recorded in the 

AD population were significantly higher than in the NAD group regardless of analytical method, 

the sex or the age as covariate. 

In the cohorts that combined AD, MCI, FTD, Control (subjective cognitive impairment) and 

other neurological diseases (OND) patients, the difference between AD and the other clinical 

groups was eventually confirmed (Figure 2A). The influence of APOE status, which was 

available in the case of 983 samples (524 NAD with 36.6% E4+; 459 AD with 58.4% E4+), was 

also assessed with respect to the Aβ levels (SupFigure 1A-F). As previously reported [49, 50], 

the presence of ApoE4 was significantly associated with lower Aβ42 levels, as well as lower 

Aβ40 levels. The difference in Aβ40 values between NAD and AD patients was also observed in 

both ApoE4 positive and negative populations (SupFigure 1G-I). 

To investigate more closely the relationship between Aβ40 and AD diagnosis, the total 

population was sorted into four percentile classes based on the value of this biomarker in the CSF 

(<25th, 25th-50th, 50th-75th and >75th percentiles). The percentage of AD patients in each cohort 

clearly increased along with the Aβ40 percentiles (SupTable2). To account for the differences in 

AD prevalence between the cohorts, the odds ratios for AD were plotted in the case of increasing 

Aβ40 percentile classes, and a significant increase ranging from 0.4 to 1.8 was observed (Figure 

2B). To establish whether the difference in age observed between NAD and AD patients 

(SupTable 1) might be a significant determinant here, the age distribution between percentile 

classes was also plotted (Figure 2B). A significant difference in age distribution was observed 

only between the 50th/75th and the >75th Aβ40 percentile classes (Figure 2C). Age cannot 

therefore account for the association between Aβ40 levels and AD prevalence. Nevertheless 

further statistical test were adjusted using age as covariate. 
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Correlations between Aβ40 and the other CSF biomarkers 

The correlation between Aβ40 and the other CSF biomarkers was computed in global, NAD and 

AD populations, for each cohort, and in the overall population (Table 2). As was to be expected 

[19], a correlation was found to exist between Aβ40 and Aβ42, especially in the NAD group. 

Aβ40 was also correlated with the tau levels, and it was striking that the highest correlation 

coefficients were obtained with p-tau (181) rather than with t-tau, especially in the Mtp-1 cohort 

(a significant difference was observed between the correlation coefficients at P = 0.02). The 

correlation was clearly visible when the mean-centred p-tau(181) values were plotted in the 

various Aβ40 percentile classes (Figure 2D), showing significant differences between classes. 

This correlation had to be put in perspective with the fact that both analytes increased in AD with 

the patients’age (SupTable 1), which justifies the adjustments made for age in our statistical 

analysis. We illustrated graphically the correlations in the NAD and the AD populations which 

had much higher and more widely distributed p-tau(181) values (Figure 3AB). Interestingly, the 

correlation coefficients were maintained and became even higher in the NAD population. To 

document the relationship between Aβ40 and p-tau(181) outside the context of AD, these 

correlation coefficients were tested in a series of clinically defined patients with multiple 

sclerosis [51] and FTD [52] (Figure 3CD). The corresponding correlation coefficients were both 

significantly higher in these groups than in the AD population (P<0.001). 

 

Discussion 

The decrease in Aβ42 observed in the CSF of AD patients has attracted considerable attention in 

clinical and research communities. This decrease is attributable to the accumulation of Aβ42 in 

the brain parenchyma, along with a decrease in the rates of CSF clearance and an increase in the 
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production of oligomeric/multimeric forms. Since determining the CSF Aβ42/Aβ40 ratio 

provides a useful means of improving AD diagnosis, many groups are now also measuring Aβ40 

in their patients. A meta-analysis was however not conclusive regarding its differential levels in 

AD [35]. Looking back in detail at various studies, Aβ40 was either lower or showed no 

significant changes [21, 29, 30, 53], or apparently increased in AD in comparison with other 

forms of dementia [54, 55]. In a recent report, the increase in Aβ40 was clearly identified as one 

of the reasons for the good performances of the Aβ42/Aβ40 ratio as an index [20], while another 

study on PET amyloid findings also established that CSF Aβ40 increased in the PIB+ population 

[56]. These discrepancies might be linked to differences in cohort composition, since the Aβ40 

levels may be affected by various pathological conditions [29-31]. The stage of AD, 

corresponding to various levels of cerebral atrophy probably reducing amyloid production [57], 

may also account for differences between studies. This is coherent with a recent study confirming 

the increase of Aβ40 in prodromal AD  [58]. Differences in the precision of the analytical 

methods used, combined with the size of the cohorts, might also explain why only a small, non-

significant difference between AD and NAD patients has been observed in some cases.  

The present study on Aβ40, which included the largest number of samples studied so far to our 

knowledge, gave us a sufficiently statistical power to identify small differences. We therefore 

confirmed the occurrence of an age- and ApoE- independent increase in CSF Aβ40 in AD in 

comparison with control cohorts consisting mostly of controls and patients with other 

neurodegenerative diseases and dementia. This observation is valid in different analytical 

contexts despite differences in the threshold or range for biomarker measurement. It is worth 

mentioning that in the blood, where the amyloid peptide 42/40 ratio could well indicate the 

presence of brain amyloidosis [59, 60], it has been established that high Aβ40 levels are 

associated with greater mortality rate in the elderly [61]. The fact that the CSF and blood amyloid 
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levels are poorly correlated, however, makes it difficult at this stage to extend the present 

conclusions to this fluid. 

The overlap in the CSF Aβ40 values between the AD and NAD populations is worth noting, and 

the area under the receiver operating characteristic curve (AUC) for AD diagnosis was under 0.8 

in all the cohorts tested (SupFigure2). CSF Aβ40 cannot therefore be used as a diagnostic 

biomarker but could be taken to be a feature "risk factor" in view of the odds ratio of almost 2 

recorded on the population having the highest CSF Aβ40 concentration. The increased Aβ40 

might be a consequences of a reduced clearance of amyloid peptides in sporadic cases and/or a 

higher production-lower degradation. This matches the fact that in autosomal dominant forms of 

AD linked to APP or presenilin mutations [3, 5] and in Down syndrome [4], an overproduction 

of amyloid peptides is thought to trigger the AD process, along with all its consequences, 

including tau protein hyperphosphorylation, in particular.  

In this context, baseline Aβ40 concentration could indicate subjects with risk of early AD 

development. The positive correlation found to exist in the present study between Aβ40 and p-

tau(181) in AD is an additional argument supporting this pathophysiological model. Tau has 

many phosphorylated isoforms [62, 63], some of them believed to be more specific for AD than 

p-tau(181), highlighting the pathophysiological role and therapeutic interest of kinases like PKA, 

CAMkII or Cdk5. This isoform is however one of the best indicator of AD pathology in the CSF 

where it begins to increase as two decades before the development of aggregated tau pathology 

[45]. In this work, we had to rely only on the correlation with p-tau(181) because it is the only 

isoform with in vitro diagnostic (IVD) certification and has been measured in large clinical 

cohorts. The fact that this correlation was also present in a control population including a 

subgroup of well-defined FTD [52] and multiple sclerosis patients [51] raises many questions, 

however. It is tempting to take this relationship to confirm that Aβ peptides may induce the 
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phosphorylation of tau, as observed both in vitro and in vivo [64]. Since the present study was 

based on a cross-sectional design, and without neuropathological confirmation, further studies 

involving a longitudinal design are now required to confirm the idea that high baseline CSF 

levels of Aβ peptides may have prejudicial effects, leading to AD. The results obtained here are 

certainly consistent with the idea that approaches making it possible to reduce amyloid beta 

production rates and levels in the CSF in particular Aβ40, will create valuable new opportunities 

for developing new curative and/or preventive interventions in AD. 
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Figures 

Figure 1: CSF Aβ42 and Aβ40 in Non-AD and AD populations 

CSF concentration of Aβ42 (panel A) and Aβ40 (panel B) in six independent cohorts 

(Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona, ADNI-MA, ADNI-

Elecsys) confirmed the significant difference between NAD and AD patients for both analytes (t-

test). Note that Aβ has been assess using five different detection methods (supTable 1). 

 

Figure 2: Aβ40 in different diagnosis; Representation in percentile; AD odd ratio, age and p-

tau(181) distribution 

The SPIN-Barcelona, Mtp-2 and Paris cohorts displayed a large range of pathological samples 

from patients with AD, Mild Cognitive Impairment (MCI), FTD, Control (subjective cognitive 

impairment) and other neurological diseases (OND). Mean-centred Aβ40 values in these cohorts 

were combined and compared in the different clinical groups confirming the significant increase 

of the peptides in AD (Panel A). The four cohorts (Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), 

Paris, SPIN-Barcelona) have been sorted in four classes based on their Aβ40 percentile values as 

follows; p25: <25th percentile, p25-50: 25th-50th percentile; p50-75: 50th-75th percentile; p75: 

>75th. The odd ratio for AD (panel B), the age of the patients (panel C) and the concentration of 

CSF p-tau(181) (panel D) were then plotted in each percentile class. Significant differences 

between classes are indicated. 

 

Figure 3: Correlation between Aβ40 and p-tau(181) in different clinical populations 

To illustrate the correlation between Aβ40 and p-tau(181) (table 2), the mean-centered 

concentrations of the two analytes in the total study population were plotted in NAD (panel A) 
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and AD populations (panel B). Aβ40 and p-tau(181) concentration were also plotted in a 

selection of multiple sclerosis (panel C) and FTD patients (panel D). 
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Table 1 
 

Demographical and cerebrospinal fluid (CSF) biomarkers characteristics of the six cohorts, 
Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona, ADNI-MS and ADNI-
Elecsys. Results are expressed as the mean +/- standard deviation (SD). Abbreviation: MMSE = 
mini mental state examination; AD=Alzheimer’s disease; NAD= Non Alzheimer’s disease; 
ADNI(-)= cognitive patients with non Alzheimer’s disease PLM profile; ADNI(+)= cognitive 
patients with Alzheimer’s disease PLM profile; P significance level of the Student’s t-test and * 
Chi-squared test for the comparison of two proportions. Values of Aβ40, Aβ42, tau and p-
tau(181) are in pg/mL. 
 Cohort / analyte NAD   AD   Cohort / analyte NAD   AD   

Mtp-1 Mean SD Mean SD P SPIN-Barcelona Mean SD Mean SD P 

Aß40 7035 2800 8579 3274 <0.0001 Aß40 6799 3633 7985 2891 0.0128 

Aß42 909 399 561 237 <0.0001 Aß42 793 288 440 81 <0.0001 

TAU 343 279 739 267 <0.0001 TAU 284 223 727 392 <0.0001 

PTAU 42 16 96 36 <0.0001 PTAU 47 22 103 47 <0.0001 

Age 67.0 11.4 70.7 9.2 0.0015 Age 66.1 10.1 70.8 8.3 0.0004 

MMSE 22.1 6.2 19.8 7.5 0.1392 MMSE 26.6 6.2 23.5 4.6 0.0097 

Sex (%M) 53.6% / 38.1% / 0.0040*  Sex (%M) 57.4% / 38.0% / 0.0055* 

ApoE (% E4) NA      ApoE (% E4) 63.3% / 49.4% / 0.1910* 

Cohort / analyte NAD   AD   Cohort / analyte ADNI(-)   ADNI(+)   

Mtp-2 Mean SD Mean SD P ADNI-MS Mean SD Mean SD P 

Aß40 12720 6046 16802 6473 <0.0001 Aß40 7387 2517 8101 2167 0.0032 

Aß42 821 369 700 334 0.0002 Aß42 1076 547 620 231 <0.0001 

TAU 321 248 655 302 <0.0001 TAU 66 24 140 58 <0.0001 

PTAU 42 18 89 37 <0.0001 PTAU 23 8 50 18 <0.0001 

Age 66.0 12.7 70.0 9.3 0.0001 Age 75.4 6.7 74.0 7.5 0.0430 

MMSE 21.9 7.3 19.6 5.4 0.0031 MMSE 27.3 2.4 25.9 2.6 <0.0001 

Sex (%M) 51.4% / 50.9% / 0.9114* Sex (%M) 61.0% / 58.6% / 0.6349* 

ApoE (% E4) ND      ApoE (% E4) 53.8% / 89.3% / <0.001* 

Cohort / analyte NAD   AD   Cohort / analyte ADNI(-)   ADNI(+)   

Paris Mean SD Mean SD P ADNI-Elecsys Mean SD Mean SD P 

Aß40 10767 4468 13149 5850 <0.0001 Aß40 15865 5265 19417 5224 <0.0001 

Aß42 925 277 574 200 <0.0001 Aß42 1039 610 673 269 <0.0001 

TAU 236 134 609 280 <0.0001 TAU 241 68 433 148 <0.0001 

PTAU 42 16 90 37 <0.0001 PTAU 21 6 45 18 <0.0001 

Age 65.2 9.4 70.7 8.1 <0.0001 Age 72.9 7.3 72.8 6.3 0.9155 

MMSE 23.0 5.2 21.8 5.8 0.0069 MMSE 27.1 2.4 25.4 3.6 <0.0001 

Sex (%M) 51.9% / 38.5% / 0.0008* Sex (%M) 59.8% / 49.7% / 0.0816* 

ApoE (% E4) NA      ApoE (% E4) 49.7% / 38.6% / 0.1538* 
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Table 2 

Age adjusted Pearson correlation between Aβ40 and Aβ42, tau or p-tau(181) values in the six 

cohorts (Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona, ADNI-MS, 

ADNI-Elecsys), in the overall population using mean-centred values to account for level 

differences between analytical methods. Computation has been done in the All population and in 

the NAD, AD, ADNI(-), ADNI(+) groups. Correlation coefficient statistical value P<0.001 for all 

but * P<0.01. 

 

 Aß40  All     NAD or ADNI(-) AD or ADNI(+) 

correlation pTau  Tau   Aß42  pTau  Tau   Aß42  pTau  Tau   Aß42  

Mtp-1 0.501 0.377 0.520 0.557 0.235* 0.764 0.504 0.443 0.613 

Mtp-2 0.514 0.443 0.407 0.430 0.244 0.533 0.304 0.213* 0.469 

Paris 0.419 0.36 0.188 0.421 0.145* 0.571 0.288 0.245 0.247 

SPIN-Barcelona 0.468 0.396 0.161 0.483 0.348 0.419 0.355 0.256* 0.308* 

ADNI_MS 0.254 0.413 0.505 0.257 0.496 0.705 0.223* 0.470 0.574 

ADNI_Elecsys 0.536 0.567 0.449 0.487 0.624 0.782 0.502 0.496 0.580 

Overall 0.445 0.418 0.368 0.455 0.318 0.615 0.339 0.318 0.426 
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Figure 1 Panel B
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