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Abstract  

Gene expression signatures can stratify patients with heterogeneous diseases, such as 

Systemic Lupus Erythematosus (SLE), yet understanding the contributions of ancestral 

background to this heterogeneity is not well elucidated. We hypothesized that ancestry 

would significantly influence gene expression signatures and measured 34 gene 

modules in 1566 SLE patients of african (AA), european (EA) or native american (NAA) 

ancestry to determine the impact of ancestry on gene expression. Healthy subject 

ancestry-specific gene expression provided the transcriptomic background upon which 

the SLE patient signatures were built. Although standard therapy affected every gene 

signature, and significantly increased myeloid cell signatures, logistic regression 

analysis determined that ancestral background significantly changed 23/34 gene 

signatures. Additionally, the strongest association to gene expression changes was 

autoantibodies and this also had etiology in ancestry; the AA predisposition to have both 

RNP and dsDNA autoantibodies compared to EA predisposition to have only anti-

dsDNA.  A machine learning approach was used to determine a gene signature 

characteristic to distinguish AA SLE and was most influenced by genes characteristic of 

the perturbed B cell axis in AA SLE patients.  
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Introduction  

 

Systemic Lupus Erythematosus (SLE) is a complex, multigenic autoimmune disease 

affecting mostly women and characterized by autoantibodies to nucleic acids and 

nuclear proteins leading to immune complex formation, complement deposition and 

immune-mediated damage in multiple organ systems(1). The heterogeneity in ancestral 

prevalence, disease severity, organ involvement and response to treatment has been 

described, but the explanation has not been fully delineated(2). Therefore, the 

development of transcriptomic signatures to determine the basis of ancestral differences 

in lupus disease expression is of great interest. Whereas the disease is most prevalent 

in Asians and people of African-Ancestry(3–5) (AA), a disproportionate number of 

clinical trials have focused on the European Ancestry (EA) population(2, 6). Although 

not as extensively studied, native people of North American ancestry have also been 

shown to have earlier onset of disease and more organ involvement(7, 8). The Lupus in 

Minority populations: Nature vs Nurture (LUMINA) study and others have demonstrated 

increased active disease, organ involvement, and autoantibody levels for AA compared 

to EA patients(9, 10) and other studies have shown increased mortality for AA 

patients(11, 12). At the cellular level, the AA population has been shown to have more 

activated B cells, CD27-IgD- B cells, and B cell receptor signaling than the EA 

population(13). Several studies have demonstrated differences in responses of both 

innate immune cells as well as lymphocytes suggesting that ancestral differences in 

immune cells may contribute to the different disease course and incidence between 

populations(14, 15). Ancestry-related differences in response to therapy have also been 
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reported. AA SLE patients responded better to B cell depletion therapies than 

Caucasian patients(16), but they displayed lesser responses to anti-BAFF treatment in 

a Phase III clinical trial(17, 18). Higher serum levels of BAFF in AA SLE patients have 

led to the suggestion that higher doses of the biologic may be necessary in AA 

patients(19).  

 

Heterogeneity in SLE gene expression signatures were first reported for the IFN-

stimulated genes(20, 21) and an association of IFN signatures with autoantibodies has 

been reported(22–28). Kirou et al(22) previously showed a significant association with 

anti-RNP, -Sm, -SSA and dsDNA autoantibodies with an interferon gene signature 

(IGS) and that patients having multiple autoantibodies also were more likely to have an 

IGS. Further work to describe SLE patient gene expression differences has been 

carried out by creating modules of genes over-represented in 158 pediatric SLE 

patients. Increased plasmablast, cell-cycle and erythroblast modules were detected in 

AA SLE patients and increased myeloid signatures and inflammation were observed in 

EA and Hispanic SLE patients suggesting that there may be an ancestral basis to 

explain some of the heterogeneity in SLE gene expression signatures(27).   It is 

unknown whether adult SLE patients will have the same associations and whether other 

prominent gene expression signatures used to divide SLE patients into groups such as 

low density granulocytes, granulocytes, T cells, B cells, and platelets will also have 

gene expression differences based on ancestry(29).  
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Whole blood (WB) gene expression analysis provides a relatively straightforward means 

of assessing a subject’s transcriptomic fingerprint. We sought to determine the 

contribution of ancestry, sex, SoC therapy, serology and clinical manifestations to the 

WB gene expression profile of 1566 adult SLE subjects. This work provides strong 

evidence that much of the gene expression signature measured between SLE patients 

and healthy controls (HC) is related to patient ancestry resulting in alterations in the 

proportions of hematopoietic cells, cellular processes and signaling pathways detected. 

Importantly, the ancestry-related variance in gene expression in healthy persons 

contributes to the differences observed in subjects with SLE. 
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RESULTS 

 

There is significantly different ancestral gene expression in SLE patients 

 

In order to compare the ancestral contribution to gene expression, we made use of two 

large phase 3 clinical trial gene expression datasets (Illuminate (ILL) 1 and 2; GSE8884) 

with a minimum disease severity requirements of SLEDAI ≥ 6 and positive ANA that 

were well matched for average, median and range of SLEDAI and percentage of 

patients with anti-dsDNA between AA, EA and NAA SLE patients (Supplemental Table 

1). These ancestral groups were also well matched for SLE manifestations used to 

determine SLEDAI (Supplemental Table 2)(30–32).  Bulk differential expression (DE) 

analysis of ILL1 determined there were thousands of differentially expressed genes 

(DEGs) between 798 SLE patients of African, European and Native American (NAA) 

ancestry, but no differentially expressed transcripts when each ancestry was 

randomized into two groups and compared to itself. These differences were reproduced 

in a second cohort of 768 patients (ILL2), and then confirmed in another unrelated 

dataset (GSE45291) of 244 low disease activity AA and EA SLE patients that were also 

matched for mean, median and range of SLEDAI and ANA titer  (Supplemental Tables 

3,4; Supplemental Figure 1). We sought to determine how individual patient signatures 

contributed to these stable, reproducible group differences between ancestries. We 

employed gene set variation analysis (GSVA) with gene expression data from 1566 

female AA, EA or NAA SLE patients (GSE88884 Illuminate 1 (ILL1) and Illuminate 2 

(ILL2))(31) to compare enrichment of 34 gene modules corresponding to lymphocytes, 
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myeloid cells, and cellular processes (Figure 1A; Supplemental Table 5(33)). We have 

previously used GSVA modules representative of cellular types and processes to 

determine enrichment in SLE patients and mice(33, 34). GSVA is advantageous 

compared to gene set enrichment analysis because it does not require a priori 

designation of two groups on the basis of phenotype and is advantageous when 

disease samples are highly heterogeneous and there are low numbers of control 

samples(35). GSVA demonstrated that NAA had the highest percentage of patients with 

enrichment of low density granulocyte (LDG), granulocyte, IL-1 and inflammasome 

signatures followed by EA patients, and AA had the lowest. NAA also had significantly 

more patients with enrichment of monocyte cell surface and monocyte modules than AA 

patients, but, notably, signatures for myeloid secreted proteins, which included 

complement components, TNF, and CXCL10, were not different between the three 

ancestries. AA had significantly more patients with B cell, immunoglobulin (Ig), plasma 

cell and T-regulatory (T-reg) signatures compared to EA and NAA. NAA patients had 

significantly fewer patients with T cell associated signatures compared to both EA and 

AA, whereas EA had significantly fewer patients with decreased dendritic cell (DC) and 

plasmacytoid DC (pDC) signatures compared to controls. The percentage of AA 

patients with enrichment of the IGS was higher than EA. AA and NAA had significantly 

fewer patients with decreased erythrocyte and platelet GSVA scores compared to EA 

(Figures 1B,C Supplemental Table 6). GSVA scores for the 34 cell and process 

modules were also calculated for 14 AA, 93 EA, and 17 NAA male patients and male 

HC in SLE dataset GSE45291. The pattern of enrichment was similar to that observed 

for the 1566 females in Figure 1B with increased plasma cells, Ig and T-reg signatures 
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in AA SLE patients and increased LDG and myeloid signatures in and EA SLE patients, 

although statistical significance between the groups was noted only for the LDG, 

granulocyte, T-reg, TCRA, TCRB, and platelet signatures (Supplemental Figure 2A; 

Supplemental Table 7). 

 

Weighted gene co-expression network analysis (WGCNA) confirmed the association of 

ancestry with cellular signatures. WGCNA of female patients from the two cohorts of 

dataset GSE88884 was carried out separately and demonstrated a significant positive 

correlation of AA ancestry to plasma cell, T cell and T-reg gene modules and a 

significant negative correlation to granulocyte and myeloid cell modules. NAA ancestry 

exhibited positive correlations to IGS, granulocyte, platelet and erythrocyte modules and 

negative correlations to T cell and lymphocyte modules. EA ancestry was positively 

correlated to one myeloid cell module and negatively correlated to IGS, plasma cell, 

platelet and erythrocyte modules (Figure 1D, Supplemental Table 8). Thus, an 

orthogonal approach using co-expression defined gene clusters confirmed the 

ancestral-related gene expression differences. 

 

Ancestry provides the gene expression backbone for SLE gene expression 

abnormalities  

 

Analyses of DEGs detected between different ancestries showed that AA populations 

had decreased expression of the Duffy blood group antigen ACKR1, the platelet, 

dendritic, and monocyte receptor CD36, and G6PD in comparison to NAA and EA 
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populations (Supplemental Table 4) and these genes have previously been described 

as risk alleles resulting in decreased expression in AA(36–38). We hypothesized that 

ancestral-related gene expression differences detected between SLE patients may be 

related to heritable differences in expressed genes in hematopoietic cells of healthy 

subjects. In order to address this question, DE analysis was carried out between AA 

and EA healthy subjects from two separate datasets (Supplemental Table 9) and 

compared to the DEGs that differed between AA to EA SLE patients. There was a 

highly significant overlap in transcripts differentially expressed between healthy AA and 

EA subjects and transcripts differentially expressed between AA and EA SLE patients 

(Figure 2A). GSVA was carried out on the healthy AA and EA subjects and enrichment 

scores were compared for the 34 cell and process modules. Ten of the 34 signatures 

were significantly different between AA and EA healthy subjects. Healthy EA subjects 

had significantly increased granulocyte, inflammasome, monocyte cell surface, 

monocyte, inflammatory secreted and dendritic cell GSVA enrichment scores compared 

to AA healthy subjects, and AA healthy subjects demonstrated significantly increased T 

activated, B cell, erythrocyte and platelet GSVA enrichment scores compared to healthy 

EA subjects. No differences in LDG, plasma cell, T cell, IGS or the other signatures 

were determined (Figure 2B).  Thus, in the absence of disease, significant and 

reproducible gene expression differences exist between AA and EA and appear to be 

contributing to the molecular heterogeneity in gene expression.  

 

Autoantibodies and complement levels, but not other clinical features of lupus 

were associated with significant changes in gene expression profiles. 
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Variation in SLE disease manifestations has been reported as a potential cause for 

gene expression heterogeneity in SLE WB(27, 28, 39). However, the presence of 

arthritis, rash, alopecia, mucosal ulcers or vasculitis had no consistent effect on cellular 

and process gene enrichment scores. Patients of all ancestries with both anti-dsDNA 

and low C had significantly higher GSVA scores for anti-inflammation, IGS, plasma cell, 

Ig, monocyte cell surface and LDGs compared to patients without anti-dsDNA and low 

C. (Figure 3).   

 

Notably, the significant increase in plasma cell signatures detected in AA patients could 

not be explained by AA SLE patients having an increased incidence of anti-dsDNA and 

low C; AA had the lowest number and percentage of patients with both anti-dsDNA and 

low C (23%), whereas 29% of EA and 37% of NAA had anti-dsDNA and low C. Anti-

RNP and anti-Sm autoantibodies have been demonstrated to be increased in SLE 

patients of African ancestry(13, 40–42) and these autoantibodies could also be related 

to plasma cell, IFN and other gene expression signatures. To understand how multiple 

autoantibodies change the transcriptome, we first determined the combinations of the 

five autoantibodies measured in this study for 1535 of the female SLE patients from 

ILL1 and ILL2: anti-dsDNA, anti-ribonucleoprotein (RNP), anti-Sm, anti-SSA, and anti-

SSB. AA and NAA SLE patients had significantly higher frequencies of autoantibodies 

that are not dsDNA. Significantly fewer AA and NAA SLE patients were negative for all 

five autoantibodies compared to EA SLE patients. AA SLE patients had a significantly 

higher percentage with three or four autoantibodies and a significantly lower percentage 
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of patients with only one autoantibody compared to EA, but there were no significant 

differences between AA and NAA. NAA SLE patients had significantly higher 

percentages of patients with four or five autoantibodies compared to EA (Figure 4A, 

Supplemental Table 10). Importantly, the presence of multiple autoantibodies was 

associated with significantly higher frequencies of the IGS and the plasma cell signature 

(Figure 4B). 

 

For all three ancestries, patients positive for both anti-RNP and anti-dsDNA plus any of 

the other three autoantibodies had significantly increased enrichment scores for plasma 

cells, IGS, Ig, cell cycle, T-reg, myeloid secreted and anti-inflammation signatures 

compared to SLE patients negative for all five autoantibodies. (Figure 4C). Additionally, 

patients positive for anti-RNP plus any of the other autoantibodies except anti-dsDNA 

had significantly increased plasma cell and IGS GSVA scores compared to patients 

positive for anti-dsDNA plus any other autoantibody, and patients with any combination 

of anti-Sm, SSA and SSB (Figure 4D). This data explained the significantly increased 

plasma cell and IFN enrichment scores for AA SLE patients. AA SLE patients had 

significantly higher percentages of patients with anti-RNP autoantibodies (62%) 

compared to EA (30%) and NAA (51%), and significantly higher percentages of patients 

with anti-Sm (24%) compared to EA (12%), (Supplemental Table 11). AA also had 

significantly increased numbers of patients with both anti-RNP and anti-dsDNA 

compared to EA, and significantly increased numbers of patients with anti-RNP+anti-

dsDNA- plus anti-Sm, SSA or SSB autoantibodies compared to EA and NAA. AA and 

NAA also exhibited more frequent SM, SSA, or SSB autoantibodies compared to EA. 
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(Supplemental Table 12).  This data confirms in a large cohort of AA, EA and NAA 

SLE patients ancestrally-related disparities in autoantibody profiles and extends those 

findings to indicate that there is a significant association between autoantibody profiles 

and differences in gene expression between ancestries.  

 

Autoantibody patterns in male SLE patients were similar to those determined in 

females, although statistical significance was not determined because of low patient 

numbers (Supplemental Table 13). Similar to female SLE patients, significantly 

increased IGS GSVA scores were determined for males with anti-RNP and anti-dsDNA 

plus any of the other three autoantibodies, and with RNP+dsDNA- versus anti-dsDNA+ 

plus any of the other three autoantibodies, and all of these groups were significantly 

different from patients with none of these five autoantibodies (Supplemental Figure 

2B).  

 

Standard of Care (SoC) therapy is associated with significant changes in gene 

expression profiles   

 

SoC therapy has been demonstrated to significantly affect SLE gene expression 

signatures(27, 43) and significantly more NAA SLE patients  were receiving 

corticosteroids (92%) and taking immunosuppressives (IS) (58%) compared to 70% and 

39% of AA and 70% and 39% of EA patients, respectively (Fisher’s exact p < .0001). It 

was, therefore, important to consider therapy affects on gene expression and determine 

whether ancestry or SoC drugs or both were contributing the differences in gene 
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expression profiles. Corticosteroids significantly increased LDG and anti-inflammation 

GSVA scores compared to patients of the same ancestry not taking the drugs. 

Additionally, both AA and EA receiving corticosteroids had significant enrichment for 

granulocytes, myeloid secreted, monocyte cell surface, monocytes, cell cycle and the 

IGS. The effect of corticosteroids on myeloid signatures was further amplified at 

corticosteroid doses > 15 mg/day. When IS therapy was restricted to just MMF and 

MTX, there was a consistent decrease across all three ancestries in plasma cell and Ig 

GSVA scores. AZA significantly decreased NK cell GSVA scores in all three ancestries 

and also significantly decreased T cytotoxic and B cell scores in NAA and EA 

ancestries. EA patients receiving NSAIDs compared to all other treatments had 

decreased LDG and anti-inflammation signatures, whereas anti-malarials had no 

significant effect on GSVA enrichment scores (Figure 5). Two separate cohorts of SLE 

patients with low disease activity from dataset GSE45921 also had SoC drug 

information and were analyzed to confirm the findings. Corticosteroids increased LDG, 

monocyte and anti-inflammation GSVA scores; MTX and MMF decreased plasma cell 

GSVA scores; and AZA decreased NK and B cell GSVA scores (Supplemental Figure 

3) in support of the data generated with the first dataset composed of 1566 female SLE 

patients.  

 

Sex has a less important effect than ancestry on gene expression differences 

Because of the large number of EA females, we were able to balance the percentage of 

female and male patients on corticosteroids and IS in order to determine gene 

expression differences between male and female EA SLE patients (Supplemental 
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Table 15). We also divided the females into two age groups, 25 – 49 years and > 50 

years, because of the reported effects of estrogen on immune responses(44).  There 

were very few differences between male and female SLE patients in gene expression 

(Supplemental Figure 4, Supplemental Table 16) suggesting that ancestral 

differences are a more important factor in gene expression than sex differences. 

 

Logistic regression modeling demonstrated that ancestry is the major influence 

on SLE gene expression differences 

To determine the relative importance of ancestry, SLE manifestations, serology and 

SoC drugs on gene expression signatures, we performed stepwise logistic regression 

on data from 1535 female SLE patients with all five autoantibody measurements for 

each of the 34 cell type and process signatures using the variables of ancestry, SoC 

drugs, SLE serologic abnormalities, SLE manifestations, age, and time from onset of 

disease. Co-linearity was excluded by carrying out Spearman correlations between all 

variables and the ethnic term Hispanic was removed from modeling because of an rs of 

0.54 to NAA (Supplemental Table 17). Figure 6 shows CIRCOS visualizations of the 

odds ratios (OR) for each variable significantly contributing to each GSVA score. 

Ancestry was associated with changes in 23 cell or process signatures. AA ancestry 

was positively associated with T-reg, plasma cell, Ig, and low pDC signatures and 

negatively associated with granulocyte, monocyte, IL1, anti-inflammation, and low B cell 

signatures. NAA ancestry had the highest positive association to the inflammasome and 

a negative association to T-reg signatures. NAA was also positively associated with 

erythrocyte, low T cell and low MHC II, and negatively associated with the IGS and 
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unfolded protein response signatures. EA was positively associated with high myeloid 

secreted, inflammasome, and low platelet, and negatively with low NK and T-reg 

signatures (Figure 6A, Supplemental Table 18). SLE serologic profiles are interrelated 

to ancestral background and had the highest OR to significant changes in GSVA 

scores. Autoantibody groups RNP+dsDNA+, RNP+dsDNA-, RNP-dsDNA+, and any 

combination of Sm, SSA and SSB resulted in significant OR of 31.6, 25.6, 5.5 and 13.1, 

respectively, for the relationship to the IGS; OR of 7.9, 4.7, 4.0, and 2.3 respectively for 

the relationship to the cell cycle signature; OR of 8.7, 3.9, 3.5, and 2.4 respectively to 

the plasma cell signature; OR of 4.8, 3.0, 2.4 and 2.2 respectively to the T-reg 

signature; OR of 3.6, 2.4, 2.4 and 2.1 to the TNF signature, and OR of 9.0, 3.5, 2.6 and 

3.4 to the myeloid secrete signature. In total, autoantibodies and low C were related to 

changes in 23 cell and process signatures (Figure 6B, Supplemental Table 19). SoC 

drugs influenced every cell and process module GSVA score. Corticosteroids were 

significantly associated with increases in 14 cell and process signatures; the highest OR 

was 3.8 to the LDG signature. AZA was significantly associated with 9 signatures and 

had an OR of 4.8 to low NK cell signatures. Both MTX and MMF were associated with 

decreased lymphocyte signatures, especially plasma cells with OR of .394 and .211 

respectively. (Figure 6C, Supplemental Table 20). Time, age and clinical 

manifestations were associated with the fewest changes and the lowest ORs. Age > 50 

was related to changes in 12, and the time from onset of disease (TMONSET) was 

related to changes in nine of the 34 cell type and process modules. Notably, a time of 

onset of < one year was negatively associated with low B cells and age greater than 50 

was negatively associated with the plasma cell signature. Clinical manifestations were 
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related to changes in 17 cell type and process modules with mucosal ulcers related to 

changes in 13 modules; predominantly those associated with low T cell signatures. 

(Figure 6D, Supplemental Table 21).   

 

Machine Learning Identifies the Perturbed B Cell Axis in AA SLE 

Ancestry was associated with significant changes in 23 of 34 gene expression modules 

and, additionally, the high OR for association of gene expression signatures with 

serologic components suggested that one aspect of ancestry was to bias the tendency 

to form multiple  autoantibodies, including anti-RNPs. Comparison of GSVA enrichment 

scores of patients with and without specific therapies confirmed the logistic regression 

results, indicating that while therapy had an important influence, ancestry was still a 

major contributor to gene expression profiles. To confirm this conclusion we carried out 

a machine learning approach to determine whether gene expression could predict 

African ancestry in SLE and also to determine the major predictors of ancestry. 

Because NAA signatures in this study were biased by substantial drug therapy, they 

were not used, whereas AA and EA had similar drug therapy profiles (Supplemental 

Table 22)  

Logistic regression and two different machine learning algorithms were used to 

distinguish AA SLE patients from EA SLE patients using the gene expression values for 

the list of 752 genes comprising the modules used for GSVA (Supplemental Table 5). 

Logistic regression analysis, an elastic generalized linear model (GLM), and Support 

Vector Machine (SVM) were deployed to predict the ancestry status of SLE samples 

and determine the top 25 predictors using the gene importance score. All three models 
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showed good performance with minor differences in their highest and lowest accuracies 

in each dataset. The SVM classifier was the strongest performer with 97 and 96 percent 

accuracy in Illuminate1 and Illuminate2, respectively. To ensure that models were not 

picking the noise, while learning the details in the training data, 10-fold cross validation 

was performed on each dataset separately and also combining the two datasets 

together. In both cases, the SVM outperformed the other classifiers with accuracy of 96 

percent accuracy (Figure 7A, Table 1). The genes used to classify AA SLE compared 

to EA SLE reflect the perturbed B cells axis in AA SLE (Figure 7B). In a separate 

analysis, the same approach was used with the entire Illuminate data sets including the 

NAA subjects and very similar results were obtained (Supplemental Figure 6).  
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Discussion 

 

This work demonstrated the significant impact of ancestry on gene expression patterns 

in SLE and by implication on the biologic pathways driving disease in patients of each 

ancestry. The increased plasma cell, IFN, Treg and inflammatory cytokine signatures 

were most strongly related to the AA ancestral bias of having increased anti-RNP/SM 

autoantibodies and multiple autoantibodies. Additionally, AA was independently 

associated with plasma cells and Ig transcripts when modeled alongside autoantibodies 

suggesting that AA SLE patients may have higher background levels of plasma cells.  

Furthermore, machine learning algorithms accurately identified AA SLE patients from 

their gene expression data and identified genes associated with B cells as important for 

distinguishing AA SLE. This is further evidence of the perturbed B cell lineage described 

in AA SLE patients(13, 19, 25, 45), and related to the increase in the B cell axis that 

was detected in healthy AA and might translate into a greater tendency for epitope 

spreading of the autoantibody repertoire.  

 

AA SLE patients had decreased granulocyte, monocyte, pDC, and IL1 signatures and 

this is likely related to the ancestry associated benign neutropenia, as healthy AA also 

had these signatures decreased compared to healthy EA. Many AA SLE patients had 

increased B cells compared to HC, and this suggests some dysregulation in the B cell 

compartment as there were no increased T cells associated with AA ancestry, and T 

cells would be just as likely to be affected by the proportional decrease in myeloid cells 

as a result of benign neutropenia. Whereas all of the increased LDG and monocyte 
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signatures initially detected in NAA turned out to be associated with corticosteroid 

usage, NAA was positively associated with increased inflammasome, erythrocytes, and 

the unfolded protein response and negatively associated with IFN, T cells and MHC 

class II. The NAA association with erythrocytes is of note as an association of SLE and 

erythrocyte transcripts has been reported but could be related to ancestral 

background(27). EA was positively associated with low platelets, myeloid secreted, 

inflammasome, NK cells and the SNOR low down signature, a set of genes 

overexpressed to SLE patients in the ILL1 and ILL2 clinical trials that initially grouped by 

the first principal component analysis with HC, but could distinguish this group from HC 

if compared without the other SLE patients.  

 

Previous work has suggested a strong association between the IGS and 

autoantibodies(22), and the association of dsDNA with increased plasma cells(46) and 

T-regs(47) by flow cytometry. Our finding demonstrated that it is not the IGS that is 

ancestry dependent per se as previously reported(26), but the presence of 

autoantibodies to RNP/Sm and the increased combination of autoantibodies that is 

associated with ancestry. Our findings demonstrated that AA patients are likely to have 

multiple autoantibodies in combination with anti-RNP autoantibodies, and in patients of 

any ancestry, more autoantibodies and anti-RNP autoantibodies were associated not 

only with an increased IGS and plasma cell signatures, but also T-reg, cell cycle, and 

myeloid inflammation signatures. Previous work that did not find an increased 

association of anti-RNP with the IGS in AA SLE patients(40) is likely related to 

considering the autoantibodies one at a time instead of in combination.  In addition to 
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increasing our understanding of AA SLE, this work has strong implications for using 

anti-dsDNA to balance cohorts for clinical trial enrollment. The AA SLE patients entered 

into ILL1 and ILL2 looked similar by anti-dsDNA autoantibodies, but our work showed 

that this served to severely underestimate the contribution to the transcriptome, and 

potentially to the disease severity of AA SLE patients. Because being single positive (for 

the five autoantibodies measured) was the most common finding for the 1100 EA SLE 

patients in the ILL1 and ILL2 phase 3 clinical trials, it suggests that anti-ds DNA is a 

good metric for EA autoantibodies, but not AA or NAA autoantibodies.  

 

Importantly, this work considered the combinations of the five autoantibodies to 

determine the effect of multiple autoantibodies on transcriptomic signatures.The 

significantly increased IGS in SLE patients of all ancestries with multiple autoantibodies 

and the almost complete lack of the IGS in the 273 SLE patients without anti-RNP, -

dsDNA, -Sm, -SSA or -SSB provides support for the hypothesis that the IGS arises from 

downstream pattern recognition receptor signaling induced by endosomal TLR7, TLR8 

and TLR9 binding to single and double stranded RNA and dsDNA containing immune 

complexes as previously suggested(48). Autoantibody profiles may be heritable and 

autoantibody associations for AA SLE patients have been demonstrated for alleles of 

LRRC20, LPAR1, EFNA5 and VSIG2 to anti-SSB, anti-SSA/Sm, anti-RNP and anti-

RNP/Sm negative, respectively(49). IFN appears to positively regulate TLR7 signaling 

and negatively regulate TLR9 signaling suggesting that in the case of chronic 

stimulation, RNA ligands for TLR7 will augment the IGS and dsDNA ligands will dampen 

the IGS (50, 51). Another potential contribution to the increased IFN signatures in 
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patients with anti-RNP autoantibodies may be the extrusion of interferonogenic, 

oxidized mitochondrial DNA by neutrophils in response to anti-Sm/RNP 

autoantibodies(52, 53). Anti-RNP, -SSA, -Sm and -SSB autoantibodies were also found 

more commonly in circulating immune complexes compared to anti-dsDNA 

autoantibodies and immune complex endocytosis by Fc receptors may lead to efficient 

engagement of TLRs in endosomes and downstream IFN production(54).  

 

Despite the impact of SoC drugs and serologic abnormalities, a clear role for ancestry 

could be discerned. By stepwise logistic regression analysis, AA was independently 

associated with increased plasma cell, Ig, and B cell transcripts when modeled 

alongside autoantibodies, and this, combined with the data from healthy AA subjects, 

suggests that AA SLE patients have higher background levels of these transcripts. 

Increased B cell counts and platelets previously were demonstrated (55),(56) to be 

increased in AA compared to EA SLE subjects. B cell hyperactivity has been proposed 

as a reason that AA SLE patients have more plasma cells and reactivities to 

autoantigens, but further work to understand the mechanisms underlying the 

relationship between the increased B cell signatures and autoantibodies is 

necessary(40). Reticulocytosis, which may account for the erythrocyte gene transcripts 

detected in our study, may be augmented in AA SLE patients because the ancestral 

G6PD deficiency may lead to induced hemolysis secondary to infection and leukocyte 

phagocytosis(57). AA was also associated with decreased granulocyte, monocyte, pDC, 

anti-inflammation and IL1 signatures and this is likely related to the well described Duffy 

Null Polymorphism (ACRK1) in AA(36, 58). Whereas the increased LDG, granulocyte 
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and monocyte signatures initially detected in NAA turned out to be associated with 

corticosteroid usage, NAA was positively associated with increased inflammasome and 

erythrocyte, and with low T cell and MHC class II signatures. The NAA and AA 

association with erythrocyte transcripts is of note as an association of SLE and 

erythrocyte transcripts has been reported but could be related to ancestral 

background(27). NAA SLE patients in this study were receiving more corticosteroids 

and IS therapy than EA and AA SLE patients and the potent effect of SoC drugs was 

noted in the high number of discrepant DEGs between NAA and AA or EA. EA was 

positively associated with low platelets, myeloid secreted, inflammasome, NK cells and 

the SNOR low down signature. Several published ancestral related genes divergent 

between AA and EA that are also involved in immune responses were differentially 

expressed between HC of different ancestries, including IL8, CXCL1, CXCL5, STAT1, 

CEPBP, ITGAM and CD58,(15) providing evidence that ancestral SNPs contribute to 

the gene expression profile.  

 

This study highlights the importance of appropriate controls for gene expression studies, 

as the ancestral transcriptomic backbone may be emphasized depending on HC 

comparators.  DEGs might be inappropriately attributed to the disease instead of the 

ancestry whether or not the allelic differences play an actual role in the pathogenesis of 

SLE.  The ancestral differences between males also appeared similar to the ancestral 

differences between females suggesting the ancestral component to gene expression 

will be much more important to take into consideration than male/female differences. 

Major differences were reported in one lupus cohort between male and female SLE 
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patients with respect to renal involvement and serological manifestations(59), but we 

detected few gene expression differences between males and females of EA ancestry 

when matched for SoC drugs. 

 

SoC therapies affected every gene expression signature and accounting for these 

effects is necessary to interpret blood transcriptomic signatures. SoC drug effects on 

the transcriptome were confirmed by reports in the literature for the elimination of 

circulating plasma cells by MTX and MMF (60, 61), elimination of NK cells by AZA(62), 

and an increase in circulating neutrophils by corticosteroids (63). In what may seem to 

contrast with previous reports(64, 65) we detected no association between the IGS and 

anti-malarials; however, previous work looked at IFN protein and not the downstream 

signature which may be retained in monocytes after the removal of IFN(33). NSAIDs 

have also been shown to block caspases and inflammation(66) and although the 

change in GSVA score was not greater than .2, there did appear to be a significant 

decrease in LDGs and the anti-inflammation signature, at least in EA SLE patients. 

Corticosteroid usage had a significant effect on most myeloid-related gene signatures 

and the most potent effect was on the LDG signature with an OR of 3.8. This finding is 

in contrast to the proposed inflammatory role of LDGs in autoimmunity obtained from in 

vitro experiments(39, 52, 67). The relationship of corticosteroids to LDGs has strong 

implications against using this signature as a measure of disease severity or in 

interpreting LDGs as playing a role in worsening disease as worsening disease might 

prompt an increase in corticosteroid doses.  
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It is important to emphasize that common signatures specific for SLE were detected and 

included genes associated with plasma cell, Ig, IGS, anti-inflammation, cell cycle, T-reg 

cell, dendritic cell, TNF and myeloid secreted signatures. The balance of these SLE-

related abnormalities was different in the various ancestral groups and their prominence 

was clearly influenced by SoC medications. Despite this, when these influences were 

considered and mitigated, a set of molecular abnormalities consistent with SLE was 

discerned, as has been previously suggested(27, 33, 68). However, the interpretation of 

perturbations in gene expression profiles in subjects with SLE requires that all the 

individual influences, including ancestry, drug therapy and serological manifestations be 

considered, as each can have complex and often contradictory effects. Results from 

single cell technology will also be affected by ancestry and SoC therapy and it will be 

important to separate out cell populations prominent in ancestries and induced or 

repressed by concomitant drugs, from cells actively participating in disease processes. 

Deconvolution of transcriptome data using ancestral, SoC drug, serologic impact and 

SLE specific signatures has the potential to stratify patients more effectively for therapy 

or entrance into clinical trials.  
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Methods 
 

SLE Patients 

Two large phase 3 clinical trial databases with baseline microarray analysis were 

analyzed (GSE88884(31)). The ILL1 and ILL2 clinical trials had microarray expression 

data for 1566 female patients of self-described ancestry: AA (n = 216), EA (n = 1118) 

and NAA (mostly from South America (n = 232); top three countries of origin Peru (n = 

81), Ecuador (n = 30), and Guatemala (n = 27)) and 124 male patients of self-described 

ancestry: AA (14), EA (93), NAA (17).  Patients of other ancestries were removed to 

avoid low numbers of patients. Ancestral backgrounds were split evenly between the 

ILL1 and ILL2 datasets, allowing for a training and test set to determine gene 

expression differences. All patients had a positive anti-nuclear autoantibody (ANA) test, 

similar disease activity and percentage of patients with anti-dsDNA(30, 32) 

(Supplemental Table 1). The trials excluded patients with progressive lupus nephritis. 

Most patients recruited had a mixture of six SLE manifestations: arthritis (86.4%), anti-

dsDNA (57.5%), low C (40.0%), alopecia (58.9%), rash (68.3%), and mucosal ulcers 

(31.7%) (Supplemental Table 2). The clinical trial database was made available by 

M.D. Linnick from Eli Lilly. SLE dataset GSE45291 was also analyzed as two cohorts 

separated by SLEDAI. The first cohort was 73 AA and 71 EA SLE patients with the 

same range of SLEDAI scores (2 – 11), similar mean SLEDAI (AA 3.78 +/- 2.46; EA 

3.53 +/- 2.08) and mode of SLEDAI (2) (Supplemental Table 3).  The second cohort 

were 25 AA and 75 EA, all with SLEDAI values of zero. M.A. Petri provided clinical and 

SoC drug information for dataset GSE45291.  
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Gene Expression Datasets 

 

Data were derived from publicly available datasets on Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Raw data sources are as follows: 

GSE88884 female whole blood ILL1 (10 female HC, 798 SLE (540 EA, 101 AA, 157 

NAA); all with SLEDAI ≥ 6), GSE88884 female whole blood Illuminate 2 (ILL2; 7 female 

HC, 768 female SLE (578 EA, 115 AA, 75 NAA) all with SLEDAI ≥ 6), GSE88884 male 

whole blood ILL1 SLE (5 male HC, 59 male SLE (6 AA, 42 EA, 11 NAA), GSE88884 

male whole blood ILL2 (4 male HC, 65 male SLE (8 AA, 51 EA, 6 NAA); (GSE45291 

whole blood (9 female HC, female SLE: 73 AA, 71 EA with SLEDAI 2 - 11), GSE45291 

whole blood (9 female HC, female SLE: 25 AA, 75 EA; all with SLEDAI equal to zero), 

GSE35846 whole blood from healthy females (55 EA, 22 AA), and GSE111368 whole 

blood from healthy females (10 AA, 57 EA).  

 

Quality Control and Normalization of Raw Data Files 

 

Statistical analysis was conducted using R and relevant Bioconductor packages. For 

datasets GSE88884 (Affymetrix Human Transcriptome Array 2.0) and GSE45291 

(Affymetrix HT HG-U133+ PM), non-normalized arrays were inspected for visual 

artifacts or poor RNA hybridization using Affy QC plots. To increase the probability of 

identifying differentially expressed genes (DEGs), analysis was conducted using 

normalized datasets prepared using both the native Affy chip definition files, followed by 

custom Brain Array Entrez CDFs maintained by the University of Michigan Molecular 
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and Behavioral Neuroscience Institute. The Affy CDFs include multiple probes per gene 

and almost twice as many probes as BA CDFs. Whereas Affy chip definition files can 

provide the greatest amount of variance information for Bayesian fitting, the Brain Array 

chip definition files are used to exclude probes with known non-specific binding and 

those shown by quarterly BLASTs to no longer fall within the target gene. Illumina CDFs 

were used for the two Illumina HumanHT-12 V4.0 datasets (GSE35846, GSE111368). 

 

Differential Gene Expression (DE)  

 

GCRMA normalized expression values were variance corrected using local empirical 

Bayesian shrinkage before calculation of DE using the ebayes function in the open 

source BioConductor LIMMA package(69) 

(https://www.bioconductor.org/packages/release/bioc/html/limma.html). Resulting p-

values were adjusted for multiple hypothesis testing and filtered to retain DE probes 

with an FDR < 0.05(70).  

 

Determination of Female and Male Patients and Controls 

 

Log2 expression values were used to determine sex of unknown healthy controls and to 

compute sex module scores using the formula sex module = XISTlog2expression + 

TSIXlog2expression – (UTYlog2expression + RPS4Y1log2expression + 

USP9Ylog2expression).  Female controls scored above zero and male controls scored 

below zero.  Five SLE patients (three male and two female) with reported sex in 
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GSE88884 ILL1 clinical trial database were found to have expression of genes 

consistent with the opposite sex (Supplemental Figure 7).  For all analyses shown in 

this paper, patients were analyzed with their reported sex in the Illuminate clinical trial 

database. For Supplemental Figure 4 analysis of the gene expression differences 

between males and females, three males with inconsistent sex chromosome gene 

expression were removed and did not change the results.  

 

 

Gene Set Variation Analysis (GSVA) 

 

GSVA(35) (V1.25.0) is an open source software package available from R/Bioconductor 

and was used as a non-parametric, unsupervised method for estimating the 

variation of pre-defined gene sets in samples of microarray expression data sets 

(www.bioconductor.org/packages/release/bioc/html/GSVA.html). The inputs for the 

GSVA algorithm were a gene expression matrix of log2 microarray expression values 

for pre-defined gene sets co-expressed in SLE datasets (Supplemental Table 5). 

Enrichment scores (GSVA scores) were calculated non-parametrically using a 

Kolmogorov Smirnoff (KS)-like random walk statistic and a negative value for a 

particular sample and gene set, meaning that the gene set has a lower expression than 

the same gene set with a positive value. The enrichment scores were the largest 

positive and negative random walk deviations from zero, respectively, for a specific 

sample and gene set. The positive and negative enrichment score for a particular gene 

set depend on the expression levels of the genes that form the pre-defined gene set. 
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GSVA calculates enrichment scores using the log2 expression values for a group of 

genes in each SLE patient and healthy control and normalizes these scores between -1 

(no enrichment) and +1 (enriched). 

 

Enrichment modules containing cell type and process specific genes were created 

through an iterative process of identifying DE transcripts pertaining to a restricted profile 

of hematopoietic cells in 13 SLE microarray datasets and checked for expression in 

purified T cells, B cells and monocytes to remove transcripts indicative of multiple cell 

types as previously described. Genes were identified through literature mining, GO 

biological pathways, and STRING interactome analysis as belonging to specific 

categories(33). The TCRA, TCRB, TCRAJ, TCRD, TCRG, and Ig gene lists were taken 

from the Affymetrix HTA2.0 chip definition. SNOR down low were the seven most 

decreased transcripts and SNOR up low were the seven most increased transcripts 

compared to HC for 348 female patients from ILL1 and ILL2 SLE patients that did not 

separate from HC by principal component analysis (PCA) (FDR < .05) The LDG 

signature was taken from purified LDGs DE to HC and SLE neutrophils(67) and consists 

mainly of neutrophil granule proteins from Module B as described in Kegerreis et al(43). 

The overlap in genes between some signatures was intentional and used to check that 

signatures were behaving cohesively in patients.  

 

Weighted Gene Co-expression Network Analysis 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   30	  

Weighted Gene Co-expression Network Analysis (WGCNA)(71) is an open source R 

package 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/. 

Log2 normalized microarray expression values for the GSE88884 dataset ILL1 and ILL2 

cohorts were filtered using an IQR to remove saturated probes with low variability 

between samples and used as inputs to WGCNA (V1.51). Adjacency co-expression 

matrices for all probes in a given set were calculated by Pearson’s correlation using 

signed network type specific formulae. Blockwise network construction was performed 

using soft threshold power values that were manually selected and specific to each 

dataset in order to preserve maximal scale free topology of the networks. Resultant 

dendrograms of correlation networks were trimmed to isolate individual modular groups 

of probes, labeled using semi-random color assignments, based on a detection cut 

height of 1, with a merging cut height of 0.2, with the additional use of a partitioning 

around medoids function. Final membership of probes representing the same gene into 

modules was based on selection of greatest scale within module correlation against 

module eigengene (ME) values. Correlation to ancestry was performed using Pearson’s 

r against MEs, defining modules as either positively or negatively correlated with those 

traits as a whole. 

 

Gene Overlap  

 

Gene Overlap is an open source R bioconductor package 

(www.bioconductor.org/packages/release/bioc/html/GeneOverlap.html) used to test the 
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significance of overlap between two sets of gene lists. It uses the Fisher's exact test to 

compute both an OR and overlap p value.  For comparison of datasets on different 

array platforms (Illuminate versus Affymetrix), an FDR < 0.2 was used. 

 

Stepwise Logistic Regression Modeling 

 

SAS 9.4 (Cary, NC) was used for stepwise logistic regression. GSVA enrichment scores 

greater or less than healthy control averages plus or minus one standard deviation were 

determined and SLE patients were assigned a 1 or 0 based on having a signature 

greater or less (Low) than HC. These scores were used as 34 dependent binary 

variables to be modeled individually as the outcome variable to 26 independent binary 

variables: ancestry (AA, EA, NAA), drugs (corticosteroids, anti-malarials, NSAIDs, AZA, 

MTX, MMF, Cyclophosphamide), SLE manifestations (rash, arthritis, mucosal ulcers, 

vasculitis, alopecia) autoantibodies and complement (anti-RNP+dsDNA+ plus any of 

SSA, SSB or Sm, anti-RNP+dsDNA- plus any of SSA, SSB or Sm, anti-RNP-dsDNA+ 

plus any of SSA, SSB, or Sm, and SSA, SSB or Sm, low C3, low C4) and time (Age > 

50, time from onset of disease (≤1 year, >1 year ≤ 5 years, > 5 years ≤ 10 years, > 10 

years). Spearman correlation coefficients were determined between variables before 

stepwise logistic regression in order to determine whether groups were too similar to 

give independent information to the model (co-linearity). The ethnic term Hispanic as a 

general category was removed since it had an rs > .5 compared to NAA (Supplemental 

Table 17). The stepwise approach was used to produce the statistically significant 
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model. The results of any model that violated the Hosmer Lemeshow test were 

discarded. The p values, OR, and CI are listed in Supplemental Tables 18 - 21.  

 

CIRCOS 

 

CIRCOS (V0.69.3) software was used to visualize the OR determined by stepwise 

logistic regression analysis. OR do not go below zero and a change from an OR of 0.5 

to .25 is the same relative change as that between 2.0 and 4.0.  For representative 

visualization, OR between 0 and 1 were converted to the 1/X value where X is an OR 

between 0 and 1.  An interval graph was used to assign thickness of the lines where OR 

< 2 = 1pt; 2 ≥ OR < 3 = 5pt; 3 ≥ OR < 10 = 10pt; OR ≥ 10 = 20pt. 

 

Machine Learning Analysis 

Logistic regression and two distinct machine learning algorithms to predict the AA SLE 

patients from EA SLE patients were employed. Logistic regression, an elastic 

generalized linear model (GLM) and Support Vector Machine (SVM) were deployed to 

predict the ancestry status of SLE samples and determine the top 25 predictors using 

the gene importance score. R was used for implementation, as it is an open source 

statistical language with access to machine learning algorithms. Logistic regression, 

GLM, and SVM were implemented using glmnet, nnet, e1071 R packages, respectively. 

The performance of the machine learning models was evaluated by 10-fold cross 

validation technique. This methodology avoids the problem of over-fitting by using all 

the observations for both training and validation by randomly assigning each patient to 
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one of 10 groups which results in a less biased model. The model was fit using the first 

9 folds for training and validated using the remaining 10th fold for testing. Similarly, 

each fold was validated. Performance metrics such as sensitivity and specificity were 

determined by averaging class probabilities from each fold. Receiver Operating 

Characteristic (ROC) curves and area under curve were plotted and measured for each 

machine learning model using R.   

 

 

Statistics 

 

GraphPad PRISM 8 version 8.2.1 was used to perform mean, median, mode, standard 

deviation, ANOVA, Tukey’s multiple comparisons test, Sedak’s multiple comparisons 

test, linear regression analysis and unpaired t-test with Welch’s correction. The Fisher’s 

exact test was performed in R.  

 

Data Availability 

 

All microarray datasets in this publication are available on the NCBI’s database Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). 

 

Code Availability 
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All bioinformatic software used in this publication is open source, freely available for R.  

Additionally, example code used in this paper for LIMMA, GSVA and WGCNA are 

available at figshare, www.figshare.com. File names are “AMPEL BioSolutions LIMMA 

Differential Expression Analysis Code”, “AMPEL BioSolutions Gene Set Variation 

Analysis Code”, and “AMPEL BioSolutions Weighted Correlation Network Analysis 

WGCNA Code”. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   35	  

Author Contributions 

M.D.C. performed data analysis, generated figures, and wrote the manuscript. P.B. 

and N.S.G. performed data analysis and generated figures. A.C.G. and M.A.P. 

supervised data analysis. A.E.Y. carried out statistical analysis. M.A.P. provided 

clinical data for GSE45291 and reviewed the manuscript. P.E.L. supervised data 

analysis, directed the study and wrote the manuscript. 

 

Competing Interests 

 

No competing interests 

 

Acknowledgments 

 

We thank M.D. Linnik at Lilly for the clinical information for dataset GSE88884. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   36	  

References 

1. Ferretti C, La Cava A. Overview of the Pathogenesis of Systemic Lupus 

Erythematosus [Internet]. In: Systemic Lupus Erythematosus. Elsevier; 2016:55–62 

2. Anjorin A, Lipsky P. Engaging African ancestry participants in SLE clinical trials 

[Internet]. Lupus Sci. Med. 2018;5(1):e000297. 

3. Osio-Salido E, Manapat-Reyes H. Epidemiology of systemic lupus erythematosus in 

Asia [Internet]. Lupus 2010;19(12):1365–1373. 

4. Lim SS et al. The Incidence and Prevalence of Systemic Lupus Erythematosus, 

2002-2004: The Georgia Lupus Registry [Internet]. Arthritis Rheumatol. 

2014;66(2):357–368. 

5. Somers EC et al. Population-based incidence and prevalence of systemic lupus 

erythematosus: The Michigan lupus epidemiology and surveillance program. Arthritis 

Rheumatol. 2014;66(2):369–378. 

6. Falasinnu T, Chaichian Y, Bass MB, Simard JF. The Representation of Gender and 

Race/Ethnic Groups in Randomized Clinical Trials of Individuals with Systemic Lupus 

Erythematosus [Internet]. Curr. Rheumatol. Rep. 2018;20(4):20. 

7. Kheir JM et al. Unique clinical characteristics, autoantibodies and medication use in 

Native American patients with systemic lupus erythematosus [Internet]. Lupus Sci. Med. 

2018;5(1):e000247. 

8. Ferucci ED et al. Prevalence and Incidence of Systemic Lupus Erythematosus in a 

Population-Based Registry of American Indian and Alaska Native People, 2007-2009 

[Internet]. Arthritis Rheumatol. 2014;66(9):2494–2502. 

9. Alarcon GS. Systemic lupus erythematosus in a multiethnic cohort: LUMINA XXXV. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   37	  

Predictive factors of high disease activity over time [Internet]. Ann. Rheum. Dis. 

2006;65(9):1168–1174. 

10. Cooper GS et al. Differences by race, sex and age in the clinical and immunologic 

features of recently diagnosed systemic lupus erythematosus patients in the 

southeastern United States [Internet]. Lupus 2002;11(3):161–167. 

11. Ward MM, Pyun E, Studenski S. Long-term survival in systemic lupus 

erythematosus patient characteristics associated with poorer outcomes [Internet]. 

Arthritis Rheum. 1995;38(2):274–283. 

12. Krishnan E, Hubert HB. Ethnicity and mortality from systemic lupus erythematosus 

in the US [Internet]. Ann. Rheum. Dis. 2006;65(11):1500–1505. 

13. Menard LC et al. B cells from African American lupus patients exhibit an activated 

phenotype [Internet]. JCI Insight 2016;1(9):1–14. 

14. Nédélec Y et al. Genetic Ancestry and Natural Selection Drive Population 

Differences in Immune Responses to Pathogens [Internet]. Cell 2016;167(3):657-

669.e21. 

15. Brinkworth JF, Barreiro LB. The contribution of natural selection to present-day 

susceptibility to chronic inflammatory and autoimmune disease [Internet]. Curr. Opin. 

Immunol. 2014;31:66–78. 

16. Merrill JT et al. Efficacy and safety of rituximab in moderately-to-severely active 

systemic lupus erythematosus: The randomized, double-blind, phase ii/iii systemic lupus 

erythematosus evaluation of rituximab trial [Internet]. Arthritis Rheum. 2010;62(1):222–

233. 

17. Navarra S V et al. Efficacy and safety of belimumab in patients with active systemic 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   38	  

lupus erythematosus: a randomised, placebo-controlled, phase 3 trial [Internet]. Lancet 

2011;377(9767):721–731. 

18. Furie R et al. A phase III, randomized, placebo-controlled study of belimumab, a 

monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic 

lupus erythematosus [Internet]. Arthritis Rheum. 2011;63(12):3918–3930. 

19. Ritterhouse LL et al. B lymphocyte stimulator levels in systemic lupus 

erythematosus: Higher circulating levels in African American patients and increased 

production after influenza vaccination in patients with low baseline levels [Internet]. 

Arthritis Rheum. 2011;63(12):3931–3941. 

20. Bennett L et al. Interferon and granulopoiesis signatures in systemic lupus 

erythematosus blood. J. Exp. Med. 2003;197(6):711–723. 

21. Baechler EC et al. Interferon-inducible gene expression signature in peripheral 

blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A. 

2003;100(5):2610–2615. 

22. Kirou KA et al. Activation of the interferon-α pathway identifies a subgroup of 

systemic lupus erythematosus patients with distinct serologic features and active 

disease. Arthritis Rheum. 2005;52(5):1491–1503. 

23. Niewold TB, Hua J, Lehman TJA, Harley JB, Crow MK. High serum IFN-α activity is 

a heritable risk factor for systemic lupus erythematosus [Internet]. Genes Immun. 

2007;8(6):492–502. 

24. Li Q-Z et al. Interferon signature gene expression is correlated with autoantibody 

profiles in patients with incomplete lupus syndromes [Internet]. Clin. Exp. Immunol. 

2010;159(3):281–291. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   39	  

25. Weckerle CE et al. Network analysis of associations between serum interferon-α 

activity, autoantibodies, and clinical features in systemic lupus erythematosus [Internet]. 

Arthritis Rheum. 2011;63(4):1044–1053. 

26. Ko K, Koldobskaya Y, Rosenzweig E, Niewold TB. Activation of the Interferon 

Pathway is Dependent Upon Autoantibodies in African-American SLE Patients, but Not 

in European-American SLE Patients [Internet]. Front. Immunol. 2013;4(OCT):1–9. 

27. Banchereau R et al. Personalized Immunomonitoring Uncovers Molecular Networks 

that Stratify Lupus Patients. Cell 2016;165(3):551–565. 

28. Petri M et al. Association between changes in gene signatures expression and 

disease activity among patients with systemic lupus erythematosus [Internet]. BMC 

Med. Genomics 2019;12(1):4. 

29. Guthridge JM et al. Adults with systemic lupus exhibit distinct molecular phenotypes 

in a cross-sectional study. EClinicalMedicine 2020;20:1–7. 

30. Isenberg DA et al. Efficacy and safety of subcutaneous tabalumab in patients with 

systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, 

multicentre, randomised, double-blind, placebo-controlled study [Internet]. Ann. Rheum. 

Dis. 2016;75(2):323–331. 

31. Hoffman RW et al. Gene Expression and Pharmacodynamic Changes in 1,760 

Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade 

With Tabalumab. Arthritis Rheumatol. 2017;69(3):643–654. 

32. Merrill JT et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal 

antibody to B-cell activating factor, in patients with systemic lupus erythematosus: 

Results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   40	  

blind, placebo-controlled stu. Ann. Rheum. Dis. 2016;75(2):332–340. 

33. Catalina MD, Bachali P, Geraci NS, Grammer AC, Lipsky PE. Gene expression 

analysis delineates the potential roles of multiple interferons in systemic lupus 

erythematosus [Internet]. Commun. Biol. 2019;2(1):140. 

34. Ren J et al. Selective Histone Deacetylase 6 Inhibition Normalizes B Cell Activation 

and Germinal Center Formation in a Model of Systemic Lupus Erythematosus [Internet]. 

Front. Immunol. 2019;10. doi:10.3389/fimmu.2019.02512 

35. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 

microarray and RNA-Seq data [Internet]. BMC Bioinformatics 2013;14(1):7. 

36. Reich D et al. Reduced Neutrophil Count in People of African Descent Is Due To a 

Regulatory Variant in the Duffy Antigen Receptor for Chemokines Gene [Internet]. PLoS 

Genet. 2009;5(1):e1000360. 

37. Lee K et al. CD36 deficiency is frequent and can cause platelet immunization in 

Africans [Internet]. Transfusion 1999;39(8):873–879. 

38. Chinevere TD et al. Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency 

in U.S. Army Personnel [Internet]. Mil. Med. 2006;171(9):905–907. 

39. Denny MF et al. A distinct subset of proinflammatory neutrophils isolated from 

patients with systemic lupus erythematosus induces vascual damage and synthesizes 

type I interferons. J. Immunol. Immunol. 2010;184(6):3284–3297. 

40. Iwamoto T, Dorschner J, Jolly M, Huang X, Niewold TB. Associations between type 

I interferon and antiphospholipid antibody status differ between ancestral backgrounds 

[Internet]. Lupus Sci. Med. 2018;5(1):e000246. 

41. Ching KH et al. Two Major Autoantibody Clusters in Systemic Lupus Erythematosus 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   41	  

[Internet]. PLoS One 2012;7(2):e32001. 

42. Tikly M, Burgin S, Mohanlal P, Bellingan A, George J. Autoantibodies in black South 

Africans with systemic lupus erythematosus: Spectrum and clinical associations 

[Internet]. Clin. Rheumatol. 1996;15(3):261–265. 

43. Kegerreis BJ et al. Genomic Identification of Low-Density Granulocytes and 

Analysis of Their Role in the Pathogenesis of Systemic Lupus Erythematosus [Internet]. 

J. Immunol. 2019;202(11):3309–3317. 

44. Khan D, Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen 

Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases 

[Internet]. Front. Immunol. 2016;6(JAN):1–8. 

45. Crowe SR et al. Influenza vaccination responses in human systemic lupus 

erythematosus: Impact of clinical and demographic features [Internet]. Arthritis Rheum. 

2011;63(8):2396–2406. 

46. Jacobi AM et al. Correlation between circulating CD27high plasma cells and disease 

activity in patients with systemic lupus erythematosus. Arthritis Rheum. 

2003;48(5):1332–1342. 

47. Baglaenko Y et al. The presence of anti-nuclear antibodies alone is associated with 

changes in B cell activation and T follicular helper cells similar to those in systemic 

autoimmune rheumatic disease [Internet]. Arthritis Res. Ther. 2018;20(1):264. 

48. Crow MK. Type I Interferon in the Pathogenesis of Lupus [Internet]. J. Immunol. 

2014;192(12):5459–5468. 

49. Kariuki SN et al. Trait-stratified genome-wide association study identifies novel and 

diverse genetic associations with serologic and cytokine phenotypes in systemic lupus 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   42	  

erythematosus [Internet]. Arthritis Res. Ther. 2010;12(4):R151. 

50. Kwok S-K et al. Dysfunctional interferon-α production by peripheral plasmacytoid 

dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus 

erythematosus [Internet]. Arthritis Res. Ther. 2008;10(2):R29. 

51. Sakata K et al. Up-Regulation of TLR7-Mediated IFN-α Production by Plasmacytoid 

Dendritic Cells in Patients With Systemic Lupus Erythematosus [Internet]. Front. 

Immunol. 2018;9(August):1957. 

52. Garcia-Romo GS et al. Netting Neutrophils Are Major Inducers of Type I IFN 

Production in Pediatric Systemic Lupus Erythematosus [Internet]. Sci. Transl. Med. 

2011;3(73):73ra20-73ra20. 

53. Caielli S et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I 

interferon production in human lupus [Internet]. J. Exp. Med. 2016;213(5):697–713. 

54. Åhlin E et al. Autoantibodies associated with RNA are more enriched than anti-

dsDNA antibodies in circulating immune complexes in SLE [Internet]. Lupus 

2012;21(6):586–595. 

55. Segal JB, Moliterno AR. Platelet Counts Differ by Sex, Ethnicity, and Age in the 

United States [Internet]. Ann. Epidemiol. 2006;16(2):123–130. 

56. Tollerud DJ et al. The influence of age, race, and gender on peripheral blood 

mononuclear-cell subsets in healthy nonsmokers [Internet]. J. Clin. Immunol. 

1989;9(3):214–222. 

57. Frank JE. Diagnosis and management of G6PD deficiency. [Internet]. Am. Fam. 

Physician 2005;72(7):1277–82. 

58. Miller LH, Mason SJ, Clyde DF, McGinniss MH. The Resistance Factor to 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   43	  

Plasmodium vivax in Blacks [Internet]. N. Engl. J. Med. 1976;295(6):302–304. 

59. Tan TC, Fang H, Magder LS, Petri MA. Differences between Male and Female 

Systemic Lupus Erythematosus in a Multiethnic Population [Internet]. J. Rheumatol. 

2012;39(4):759–769. 

60. Eickenberg S et al. Mycophenolic acid counteracts B cell proliferation and 

plasmablast formation in patients with systemic lupus erythematosus [Internet]. Arthritis 

Res. Ther. 2012;14(3):R110. 

61. Karnell JL et al. Mycophenolic Acid Differentially Impacts B Cell Function Depending 

on the Stage of Differentiation [Internet]. J. Immunol. 2011;187(7):3603–3612. 

62. Winkelstein A. The Effects of Azathioprine and 6 mp on Immunity [Internet]. J. 

Immunopharmacol. 1979;1(4):429–454. 

63. Fauci AS, Dale DC. The Effect of In Vivo Hydrocortisone on Subpopulations of 

Human Lymphocytes [Internet]. J. Clin. Invest. 1974;53(1):240–246. 

64. Lee S-J, Silverman E, Bargman JM. The role of antimalarial agents in the treatment 

of SLE and lupus nephritis [Internet]. Nat. Rev. Nephrol. 2011;7(12):718–729. 

65. Sacre K, Criswell LA, McCune JM. Hydroxychloroquine is associated with impaired 

interferon-alpha and tumor necrosis factor-alpha production by plasmacytoid dendritic 

cells in systemic lupus erythematosus [Internet]. Arthritis Res. Ther. 2012;14(3):R155. 

66. Smith CE et al. Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors 

[Internet]. Cell Chem. Biol. 2017;24(3):281–292. 

67. Villanueva E et al. Netting Neutrophils Induce Endothelial Damage, Infiltrate 

Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. 

J. Immunol. 2011;187(1):538–552. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   44	  

68. Labonte AC et al. Identification of alterations in macrophage activation associated 

with disease activity in systemic lupus erythematosus [Internet]. PLoS One 

2018;13(12):e0208132. 

69. Ritchie ME et al. limma powers differential expression analyses for RNA-sequencing 

and microarray studies [Internet]. Nucleic Acids Res. 2015;43(7):e47–e47. 

70. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing [Internet]. J. R. Stat. Soc. Ser. B 1995;57(1):289–

300. 

71. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 

analysis [Internet]. BMC Bioinformatics 2008;9(1):559. 

  

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.05.31.20114660doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.31.20114660


	   45	  

Figures and Figure Legends 
Figure 1. Ancestral bias is manifested by varied patterns of signatures for 34 cell and process 
modules. (A) Gene Set Variation Analysis (GSVA) was carried out on 17 female HC subjects to 
determine the mean and standard deviation (SD) of control GSVA scores for 34 cell type and process 
modules. HC mean scores plus or minus one standard deviation (SD) were used to determine a normal 
range for GSVA cell type scores. SLE female patient (GSE88884, ILL1 and ILL2 datasets; n = 1566) 
GSVA scores were determined and compared to HC values to determine whether patients had 
increased (+1), decreased (-1), or normal (zero) values. GSVA enrichment module gene symbols are in 
Supplemental Table 5. Percentage of patients within each ancestry (AA: n = 216, NAA: n = 232, EA: n 
= 1118) with (B) > or (C) < than 1 SD GSVA enrichment scores for each cell type and process module. 
Fisher’s exact p values < .05 are indicated by different color *: black * for comparisons to the two other 
ancestries, red * between NAA and AA/EA, orange * between NAA and EA, light blue * between AA 
and EA, dark blue * between AA and NAA/EA. Exact p values and percentages are listed in 
Supplemental Table 6.  (D) WGCNA was carried out on dataset GSE88884 ILL1 and ILL2 cohorts 
separately. Pearson correlation r values to ancestry were determined for each module and listed if the p 
value was below 0. 
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Figure 2. Gene expression differences in SLE patients are similar to ancestral gene expression 
differences in healthy controls.  (A) Limma DE analysis was carried out between HC AA and EA for 
two separate datasets. Increased (Up in AA) and decreased (Up in EA) transcripts were compared to four 
SLE datasets of AA DE to EA. Overlap p values were all below 10E-22 for OR above 1. (B) GSVA for the 
34 cell and process modules (Supplemental Table 5) was carried out on healthy AA and EA subjects 
from two separate datasets.  Welch’s t-test was used to determine significant differences between 
ancestral GSVA scores and the mean and confidence intervals for the 10 GSVA scores significantly 
different (p < .05) between ancestries are shown.  
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Figure 3. Autoantibodies and complement levels were associated with gene expression profiles.  
Number of patients with each SLEDAI component manifestation are shown in parentheses. Sedak’s 
multiple comparisons test was used to determine whether differences exist in gene expression 
signature GSVA scores for SLE patients with specific manifestations compared to all other 
manifestations. The mean difference in GSVA enrichment scores is shown for manifestations with 
significant (p < .05) differences in enrichment scores as compared to all other manifestations.  *For anti-
dsDNA autoantibodies and low C, patients were compared to patients without either anti-dsDNA (IU < 
30) or low C (C3 > .8 g per L and C4 > 0.1 g per L). All patients in these analyses were positive for 
ANA.  
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Figure 4. The higher number and different types of autoantibodies in AA SLE patients led to 
higher plasma cell, IGS, cell cycle, T-regulatory and myeloid secreted signatures.  (A) Percentage 
of patients with different numbers of autoantibodies (RNP, Sm, SSA, SSB, and dsDNA) by ancestry. 
Borderline titers were considered negative for these analyses. (B) Comparison of plasma cell and IGS 
GSVA scores by patient number of autoantibodies. Patient n values are given in parentheses. Tukey’s 
multiple comparisons test was used to determine significant differences between GSVA scores for 
plasma cells and IGS for each group; p values < .05 are shown on the graph. (C) GSVA enrichment 
scores for all 34 cell and process modules were compared for each autoantibody group to patients of the 
same ancestry with 0/5 autoantibodies. Tukey’s multiple comparisons test was used to determine 
significant differences; eight cell and process module signatures with significant differences (p < .05) in 
GSVA scores are shown. (D) GSVA enrichment scores for plasma cells and IGS for AA, NAA and EA 
SLE patients combined into five autoantibody groups (1) 0/5 autoantibodies, (2) RNP+dsDNA+ plus any 
other, (3) RNP+dsDNA- plus any other, (4) RNP-dsDNA+ plus any other, (5) RNP-dsDNA- plus Sm, SSA 
or SSB. (B,D) Dots represent single patient scores and the error bars are mean and standard deviation. 
Numbers of patients in each group of autoantibodies are shown in parentheses. The black dotted lines 
represent the mean plus or minus 1 SD of the HC for GSVA scores. 
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Figure 5. Association of corticosteroid use and immunosuppressive therapy with changes in gene 
expression profiles. 1566 female SLE patients (GSE88884) were separated by ancestry and GSVA 
scores for each cell type or process module in patients receiving each therapy were compared to GSVA 
scores for each cell type or process module in patients taking all other therapies. The patient numbers are 
in parentheses. Sidek’s multiple comparisons test was used to determine significant differences for the 
mean difference in GSVA scores between therapies. The mean difference in GSVA score related to the 
treatment is shown for therapies with p values < .05. Two EA patients were receiving cyclophosphamide 
and are included in the immunosuppressive (IS) calculation for EA category.  
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Figure 6. Stepwise logistic regression analysis determined the importance of ancestry, SoC drugs 
and SLEDAI components to the whole blood gene expression profile. Circos visualization of OR 
generated using stepwise logistic regression and showing the contributions of 26 variables to each of the 
34 GSVA enrichment scores for cell type and process modules. The thickness of the lines connecting the 
26 variables to the GSVA scores represent the magnitude of the odds ratios and an interval graph was 
used to assign thickness of the lines where OR < 2 = 1pt; 2 ≥ OR < 3 = 5pt; 3 ≥ OR < 10 = 10pt; OR ≥ 10 
= 20pt. Red lines indicate odds ratios above 1 and blue lines indicate odds ratios below 1. OR between 0 
and 1 are represented as 1/odds ratio to accurately reflect the magnitude of the negative relationship to 
the GSVA enrichment score. (A) Ancestral relationships to cell and process modules GSVA scores with p 
values < .05 (p values, OR, and CI in Supplemental Table 18). (B) Serology (autoantibody and 
complement) relationships to cell and process module GSVA scores with p values < .05 (p values, OR, 
and CI in Supplemental Table 19). (C) SoC drug relationships to cell and process module GSVA scores 
with values < .05 (p values, OR, and CI in Supplemental Table 20). (D) Time from onset of disease 
(TMONSET), age > 50, and SLE manifestation relationships to cell and process module GSVA scores 
with p values < .05 (p values, OR, and CI in Supplemental Table 21).  
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Figure 7. A machine learning approach predicted AA from EA SLE patients and demonstrated the 
perturbed B cell axis in AA SLE. (A) SLE patients were classified as African American (AA) using 
logistic regression, generalized linear models (GLM), and support vector machine (SVM) classifiers. ROC 
curve for logistic regression and the two different machine learning models in GSE88884 (ILL1 and ILL2 
combined).  (B) Top 25 predictors determined by SVM model.  
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Table 1. Classification metrics of machine learning classifiers 

Model  AUC Accuracy  Sensitivity Specificity Kappa 

Logistic 
Regression 

0.94 0.92 0.84 0.93 0.70 

GLM 0.97 0.95 0.78 0.98 0.80 

SVM 0.91 0.96 0.82 0.98 0.83 
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