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Background: Early detection and risk mitigation efforts are essential for averting large 
outbreaks of SARS-CoV-2. Active surveillance for SARS-CoV-2 can aid in early detection of 
outbreaks, but the testing frequency required to identify an outbreak at its earliest stage is 
unknown. We assess what testing frequency is required to detect an outbreak before there are 
10 detectable infections.  
 
Methods: A dynamic compartmental transmission model of SARS-CoV-2 was developed to 
simulate spread among a university community. After introducing a single infection into a fully 
susceptible population, we calculate the probability of detecting at least one case on each 
succeeding day with various NAT testing frequencies (daily testing achieving 25%, 50%, 75%, 
and 100% of the population tested per month) assuming an 85% test sensitivity. A proportion of 
infected individuals (varied from 1-60%) are assumed to present to health services (HS) for 
symptomatic testing.  We ascertain the expected number of detectable infections in the 
community when there is a >90% probability of detecting at least 1 case. Sensitivity analyses 
examine impact of transmission rates (Rt=0=2, 2.5,3), presentation to HS (1%/5%/30%/60%), and 
pre-existing immunity (0%/10%) 
 
Results: Assuming an 85% test sensitivity, identifying an outbreak with 90% probability when 
the expected number of detectable infections is 9 or fewer requires NAT testing of 100% of the 
population per month; this result holds for all transmission rates and all levels of presentation 
at health services we considered. .  If 1% of infected people present at HS and Rt=0=3, testing 
75%/50%/25% per month could identify an outbreak when the expected numbers of detectable 
infections are 12/17/30 respectively; these numbers decline to 9/11/12 if 30% of infected 
people present at HS .  As proportion of infected individuals present at health services 
increases, the marginal impact of active surveillance is reduced. Higher transmission rates result 
in shorter time to detection but also rapidly escalating cases without intervention. Little 
differences were observed with 10% pre-existing immunity. 
 
Conclusions: Widespread testing of 100% of the campus population every month is required to 
detect an outbreak when there are fewer than 9 detectable infections for the scenarios 
examined, but high presentation of symptomatic people at HS can compensate in part for lower 
levels of testing. Early detection is necessary, but not sufficient, to curtail disease outbreaks; 
the proposed testing rates would need to be accompanied by case isolation, contact tracing, 
quarantine, and other risk mitigation and social distancing interventions.  
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BACKGROUND: 

 

SARS-CoV-2 continues to circulate in all states of the US and most foreign countries.  In the 

absence of immunity in the vast majority of the population, even if the epidemic is effectively 

controlled over the coming summer, conditions are ripe for a return of the virus in the fall in 

winter.  

 

Universities are struggling to determine whether and how to fully or partially reopen campus 

activities, particularly as universities and other high-density communities are at particular risk 

of explosive growth after viral introduction.  Once transmission is established in a semi-closed 

university community with its dormitories, classrooms, student activities and multidisciplinary 

team-based research programs, growth of the epidemic would be expected to be rapid and 

control extremely difficult.   

 

Widespread SARS-CoV-2 testing of active infection combined with case isolation of detected 

cases, comprehensive contact tracing and quarantine of contacts are critical tools for outbreak 

suppression.  However, the level of NAT testing required to detect a SARS-CoV-2 outbreak at an 

early stage (below a threshold number of infections) is uncertain. 

  

We conducted an epidemic modeling exercise to investigate the intensity of NAT testing 

required to achieve at least a 90% probability of detecting the presence of viral activity under 

different conditions for spread of virus from a single case within a university community. After 

detection of an outbreak, epidemiological measures including contact tracing and isolation of 

infected and exposed individuals might be able terminate the spread from this particular viral 

introduction within the community provided that the size of the outbreak is sufficiently small—

but the conditions under which this could be achieved would require further investigation. 

 

 

METHODS: 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.06.01.20118885doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.01.20118885


Model: We developed a dynamic transmission model of SARS-CoV-2 infection and assessed the 

likelihood of detecting an infection on each successive day after the introduction of a single 

viral infection, given differing NAT testing volumes. The dynamic, deterministic, compartmental 

model was based on a susceptible-exposed-infected-recovered (SEIR) structure, with additional 

stratification of individuals by whether they were detectable and infectious (Figure 1, 

parameters and references in Table 1). Susceptible individuals (compartment S) can become 

infected through a dynamic process. Infected individuals were assumed to enter an exposed 

but not detectable or infectious stage (compartment E) for an average of 3 days. A proportion 

of individuals have disease that is either asymptomatic or sufficiently mild that they remain 

undiagnosed in the absence of active screening (compartment A); we assume they are 

infectious and detectable 3 days after infection and remain so for 14 days until recovery.  The 

remaining proportion  experience a short period of pre-symptomatic disease (compartment P), 

during which they are detectable and capable of transmission for 2 days prior to onset of 

symptoms.  Upon developing symptoms (compartment I), individuals remain symptomatic and 

infectious for an average 2 days before presentation to health services (compartment H). Due 

to uncertainty regarding the proportion of students who are asymptomatic or mild enough 

disease such that they would not seek care, we explore several scenarios for this parameter in 

our analysis (1, 5%, 30%). Upon presentation to health services, we assume individuals are 

diagnosed and isolated, so no longer transmit infection.  We assume that upon recovery 

individuals (compartment R), individuals were immune to further infection. We neglect 

mortality associated with COVID infection as this would not be expected to affect transmission 

dynamics at the earliest stage of the epidemic. The equations for the model are below: 

𝑑𝑆
𝑑𝑡 = −𝛽𝑆(𝐴 + 𝑃 + 𝐼)/𝑁 

𝑑𝐸
𝑑𝑡 = 𝛽𝑆(𝐴 + 𝑃 + 𝐼)/𝑁 − 𝛾𝐸 

𝑑𝐴
𝑑𝑡 =

(1 − 𝛼)𝛾𝐸 − 	𝜎𝐴 
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𝑑𝑃
𝑑𝑡 = 𝛼𝛾𝐸 − 𝛿𝑃 

𝑑𝐼
𝑑𝑡 = 	𝛿𝑃 − 𝜑𝐼 

𝑑𝐻
𝑑𝑡 = 	𝜑𝐼 − 𝜌𝐻 

𝑑𝑅
𝑑𝑡 = 	𝜎𝐴 + 	𝜌𝐻 

Where N= total population. The initial conditions are E(0)=1, S(0)=65000*(1-propImmune), 

R(0)=65000*propImmune, A(0)=P(0)=I(0)=H(0)=0. For our baseline analysis, propImmune=0, 

but this is varied in the sensitivity analyses. 

 

Using the epidemic model, we simulate outbreaks with the introduction of 1 infectious case to 

the university community assuming various transmission rates.  The simulations predict: 

detectable cases (A+P+I+H), detectable cases not in contact with health services (A+P+I), and 

cumulative cases which have presented to health services for testing over time.  

 

Outbreak probability detection scenarios and calculations: We calculate the probability of 

detection of at least one case on each succeeding day after viral introduction with the following 

scenarios: 

1) HS: Only passive testing upon presentation of symptomatic cases to health services 

2) 25%/month: 25% of the population tested per month (on an ongoing daily basis) plus 

passive testing upon presentation of symptomatic cases to health services 

3) 50%/month: 50% of the population tested per month (on an ongoing daily basis) plus 

passive testing upon presentation of symptomatic cases to health services 

4) 75%/month: 75% of the population tested per month (on an ongoing daily basis) plus 

passive testing upon presentation of symptomatic cases to health services 
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5) 100%/month: Daily NAT testing resulting in 100% of the population tested per month 

plus passive testing upon presentation of symptomatic cases to health services 

 

We calculate the probability of detection of at least one case on each succeeding day by 

assuming that the number of subjects who test positive is Poisson distributed—as is the 

number of symptomatic subjects who arrive at the clinic. The probability of detection of at least 

once case on each succeeding day, x, is: 

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑑𝑎𝑦	𝒙) = 1 − 𝑃(𝑛𝑜𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑑𝑎𝑦	𝒙). 

 

The probability of not detecting at least one case by each successive day, x, is the joint 

probability of not detecting an infection through presentation to HS by day x, and not detecting 

an infection through active testing by day x: 

𝑃(𝑛𝑜𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑑𝑎𝑦	𝑥)

= 𝑃	(𝑛𝑜𝑡	𝑎𝑟𝑟𝑖𝑣𝑒𝑑	𝑖𝑛	𝐻𝑆	𝑏𝑦	𝑑𝑎𝑦	𝑥) ∗ 	𝑃(𝑛𝑜𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑏𝑦	𝑑𝑎𝑦	𝑥) 

= 𝑒!"∗$! ∗ 	JK𝑃(𝑛𝑜𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑜𝑛	𝑑𝑎𝑦	𝑘)
%

&'(

M 

where cx=expected number cumulative clinic arrivals by day x, and s= test sensitivity. The 

probability of not detecting an infection on each day by active testing is: 

𝑃(𝑛𝑜𝑡	𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑	𝑏𝑦	𝑡𝑒𝑠𝑡𝑖𝑛𝑔	𝑜𝑛	𝑑𝑎𝑦	𝑘) = 𝑒)
!"∗*∗+"

, -. 

 

Where d= the number of daily tests, nk= expected number detectable cases not in contact with 

health services on day k, and N= total population size. Hence, the overall probability of 

detection of at least one case on each successive day x is given by the expression: 

𝑃(𝑑𝑒𝑡𝑒𝑐𝑡	𝑏𝑦	𝑑𝑎𝑦	𝒙) = 1 − N𝑒!"∗$! ∗ 	JK𝑒)
!"∗*∗+"

, -
%

&'(

MO 

We vary the proportion of individuals who are symptomatic and seek care (1%, 5%, 30%,60%), 

and assume that the test sensitivity is 85% based on data from self-collected nasal or oral 

swabs[1]. We then determine the number of detectable infections present in the community on 

the day when there is a >90% probability of detecting at least 1 case.  
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Sensitivity analyses 

We perform one-way sensitivity analyses to assess the impact of health services presentation 

rate (1%, 5%, 30%, 60%), transmission rate (Rt=0=2, 2.5,3), and pre-existing immunity (0%, 10%). 

 

RESULTS 

The minimum number of detectable cases in the community when there is a >90% probability 

of detecting at least 1 case is found in Table 2 for various background health services (HS) 

presentation and transmission rates. With 100% testing of the community  at a constant rate 

over each month and an 85% test sensitivity, the expected number of detectable cases in the 

community would be 6-9 (across scenarios) by the time we had at least 90% probability of 

detecting at least 1 case, regardless of background presentation rate to HS. If 75% of the 

community were tested each month, this expected number would be 7-12 detectable 

infections. If 50% of the community were tested each month, the expected number of 

detectable cases would be 9-15 if 5% present to HS, with more infections if 1% present to HS 

(10-17 detectable cases), and fewer if 30% or 60% present to HS (7-11 or 7-9 detectable cases, 

respectively). More infections were observed if only 25% of the community were tested each 

month (14-23 detectable infections for 5% presentation to HS).  

 

 

Simulations showing the epidemic trajectory and day of detection are shown in Figure 2.  The 

day of detection varied depending on transmission rate, with higher transmission rates 

resulting in shorter time to detection but also rapidly escalating numbers of cases in the 

absence of intervention. Higher background presentation rates to health services reduced the 

day of outbreak detection across all scenarios. 
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Active testing conferred important marginal benefits in the 1% and 5% presentation to HS 

scenarios (Table 2, Figure 2a&b). Without any active testing, the expected number of 

detectable cases in the community by the time we had at least 90% probability of detecting 1 

case was the expected number of detectable cases was 149-229 (1% presentation to HS) and 

34-54 (5% presentation to HS). Less marginal benefit was observed with 30% presentation to 

HS, where passive screening alone identified an outbreak with 10-14 detectable cases, 4-5 

cases later than when combined with 100% active testing (Table 2, Figure 2c). Minimal marginal 

benefit was observed with 60% presentation to HS, where passive screening alone identified an 

outbreak with only 1-2 more cases than with 100% active testing (Table 2). 

 

Higher levels of pre-existing immunity (Table 3) and higher test sensitivities (not shown) also 

reduced the number of detectable cases on the day of outbreak detection. 

 

DISCUSSION 

Early detection of viral outbreaks is essential to ensuring available resources for notification and 

isolation of cases, contact tracing, and quarantine. We find that monthly testing of 100% of the 

campus community is required to detect an outbreak when there are less than 9 or fewer 

detectable cases in the community, unless at least 30% of infected people develop symptoms 

that lead them to be tested HS. Even for the latter case, detection of outbreak when there are 9 

or fewer detectable cases requires that 75% of the population be tested. As the percent tested 

declines, the size of the detectable populations increases fairly rapidly as testing levels decrease 

if the proportion of infected people is only 1 or 5%.  But the increase is much slower if 30% or 

60% do so; hence, monitoring of the university population for COVID-19 symptoms should be 

encouraged—especially if it is not feasible to implement high levels of testing. 

 

Our study is the first to examine what NAT testing rates are required to detect a SARS-CoV-2 

outbreak at an early stage. Other studies have examined what testing and isolation is required 

to prevent an outbreak or reduce the reproduction number to below 1, indicating that to 
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prevent an outbreak with testing and case isolation alone testing of the entire population twice 

weekly is required[2]. Importantly, our analysis does not examine what is required to curtail the 

outbreak, only what is required to detect it at an early stage. At this point, epidemiological 

measures including contact tracing and isolation of infected and exposed individuals might be 

able terminate the spread of this particular viral introduction within the community—but 

investigation of the conditions under which this can be achieved is warranted. Previous 

mathematical models indicate that contact tracing and isolation of symptomatic contacts would 

likely require a very high rate of contacts traced in order to reduce the reproduction number to 

below 1, and could still result in very large outbreak sizes[3]. However, this same study 

indicates that contact tracing efficacy could be lower if initial outbreak sizes are smaller, 

supporting efforts to identify outbreaks at an earlier stage. Additionally, we did not examine 

the impact of isolation of asymptomatic contacts which is possible in a university setting and 

could provide additional risk mitigation benefit. Further, social distancing interventions could 

be implemented after the point of outbreak detection which could further reduce 

transmission[4]. 

 

 

Limitations 

Our study has a number of limitations. 

 

First, it is highly uncertain whether our proposed testing strategy is feasible and affordable. On 

a campus the size of UC San Diego, testing the entire campus community would require 65,000 

individuals to be tested per month. We are currently implementing a campus testing program 

to assess feasibility of high-volume campus testing. This program is providing voluntary, free, 

NAT testing to resident undergraduate and graduate students on campus. Students drop into a 

testing site near to their residence hall and self-administer a nasal swab, which is collected by 

study staff and processed at an in-house CLIA-certified EUA compliant lab within 24-48 hours. 

Ongoing work is examining the logistics of expanding this program to the scale we propose. 

Saliva testing would likely increase willingness to participate.  In addition to logistical scalability, 
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cost is an important barrier. At the commercial price of $100 per test, this would equate to $6.5 

million/month in testing alone. Our in-house lab charges substantially lower than commercial 

prices, but testing innovations are still needed to reduce this cost further.  

 

 

Second, we assume that all individuals would be willing and available for testing.  If those 

unwilling were not different in their patterns of transmissions than those who were willing, 

then we would expect the infection to fairly quickly cross over into our testing population. 

However, if the infection seeds within a highly connected network of individuals who all were 

unwilling to be tested then the outbreak size could be larger than we predict before detection. 

 

Third, there is uncertainty in underlying parameters which we explore through sensitivity 

analyses, but still note that more robust data, particularly on the proportion accessing health 

services in the absence of active testing, would reduce uncertainty.  

 

Fourth, we examine random testing strategies, but if high-risk sub-populations of students 

could be ascertained, then targeted testing strategies could be developed which could improve 

testing efficiency (requiring fewer tests to identify outbreaks). A key question is what subgroups 

are higher-risk, and whether and how these risks are associated with clusters in the contact 

network. For example, do students coming from high-risk areas tend to share more classes 

together?  Collection of routine testing data combined with information on risk and contact 

networks would allow us to better target testing, possibly through an adaptive approach as 

these networks change over time. 

 

 

Conclusion 

Early SARS-CoV-2 outbreak detection is achievable with high rates of NAT testing (100%/month) 

or possibly with lower rates of testing but a high proportion of infected people—even those 

with mild symptoms-- presenting at HS for testing.  Testing needs to be combined with 
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intensive case isolation, contact tracing and quarantine, and social distancing recommendations 

to curtail the observed outbreak and reduce risk of further transmission. 
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Figure 1. SARS-CoV-2 transmission model schematic. HS: health services.  
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Figure 2. Effect of transmission rate on date of outbreak detection with various testing rates. 
HS: health services 

(A) 1% presentation to health services 

 
(B) 5% presentation to health services 

 
 

(C) 30% presentation to health services 
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Table 1. Model parameters 

Parameter Symbol Value Reference 

Duration exposed but not detectable or infections 1/𝛾 3 days 5 days incubation 
period[5], less 2 days 

viral shedding[6] 

Duration detectable and infectious for 
asymptomatic or mild disease 

1/𝜎 14 days [6] 

Duration pre-symptomatic but infectious and 
detectable for severe disease 

1/	𝛿 2 days [6] 

Duration severe symptomatic until present to 
health services 

1/𝜑 2 days [7] 

Duration infection after presentation to health 
services 

1/𝜌 10 days Assumed 14 day total 
detection window[6] 

Proportion who will eventually present to health 
services 

𝛼 1%, 5%, 30%, 
60% 

Uncertain, varied 

Transmission rate 𝛽 Varied to 
produce Rt=0 = 

2, 2.5, 3 

Uncertain and varies [8] 

Test sensitivity s 85% [1] 

Total population N 65,000 UCSD community 

Daily number of tests d % monthly 
tests * N/30.5 

Varied, 25%, 50%, 75%, 
100% total population 

per month 
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Table 2. Minimum number of detectable cases in a community when there is a >90% 
probability of detecting at least 1 case for various testing rates per month. Assumes 85% test 
sensitivity.  *Combined with passive surveillance through presentation at health services. HS: 
health services. 

 Minimum number of detectable cases in a community 
when there is a >90% probability of detecting at least 1 case 

Percentage of UCSD community 
NAT tested per month* 

1% present 
to HS 

5% present 
to HS 

30% present 
to HS 

60% present 
to HS 

100%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
6 
7 
9 

 
6 
7 
9 

 
6 
7 
9 

 
6 
8 
9 

75%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
7 
9 

12 

 
7 
9 

11 

 
7 
8 
9 

 
7 
8 
9 

50%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
10 
13 
17 

 
9 

12 
15 

 
7 
9 

11 

 
7 
8 
9 

25%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
17 
24 
30 

 
14 
18 
23 

 
9 

10 
12 

 
8 
8 

11 
0%/month (only HS testing) 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
149 
198 
229 

 
34 
45 
54 

 
10 
13 
14 

 
8 
9 

11 
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Table 3. Sensitivity analysis assuming a 10% immune at baseline. Assumes 85% test sensitivity.  
*Combined with passive surveillance through presentation at health services. HS: health 
services. 

 Minimum number of detectable cases in a community 
when there is a >90% probability of detecting at least 1 

case 

Percentage of UCSD community 
NAT tested per month* 

1% present 
to HS 

5% present 
to HS 

30% present 
to HS 

60% present 
to HS 

100%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
6 
7 
9 

 
6 
7 
9 

 
6 
7 
9 

 
6 
8 
9 

75%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
7 
9 

12 

 
7 
9 

11 

 
7 
8 
9 

 
7 
8 
9 

50%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
10 
13 
17 

 
9 

12 
15 

 
7 
9 

11 

 
7 
8 
9 

25%/month* 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
17 
24 
30 

 
14 
18 
23 

 
9 

10 
12 

 
8 
9 

11 
0%/month (only HS testing) 
       Low transmission (Rt=0=2) 
       Mid transmission (Rt=0=2.5) 
       High transmission (Rt=0=3) 

 
149 
198 
228 

 
34 
45 
54 

 
10 
13 
14 

 
8 
9 

11 
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