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23
Abstract24
Background: PM2.5 concentrations vary between countries with similar CO2 emissions, possibly due to25
differences in air pollution control efficacy. However, no indicator of the level of air pollution control26
efficacy has yet been developed. We aimed to develop such an indicator, and to evaluate its global and27
temporal distribution and its association with country-level health metrics.28
Method: A novel indicator, ground level population-weighted average PM2.5 concentration per unit29
CO2 emission per capita (��2.5 ��2,written as PC in abbreviation ), was developed to assess country-30
specific air pollution control efficacy. We estimated and mapped the global average distribution of PC31
and PC changes during 2000-2016 across 196 countries. Pearson correlation coefficients and32
Generalized Additive Mixed Model (GAMM) were used to evaluate the relationship between PC and33
health metrics.34
Results: PC varied by country with an inverse association with the economic development. PC showed35
an almost stable trend globally from 2000 to 2016 with the low income groups increased. The Pearson36
correlation coefficients between PC and life expectancy at birth (LE), Infant-mortality rate (IMR),37
Under-five mortality rate (U5MR) and logarithm of GDP per capita (LPGDP) were -0.566, 0.646,38
0.659, -0.585 respectively (all P-values <0.001). Compared with PM2.5 or CO2 , PC could explain more39
variation of LE, IMR and U5MR. The association between PC and health metrics was independent of40
GDP per capita.41
Conclusions: PC might be a good indicator for air pollution control efficacy and was related to42
important health indicators. Our findings provide a new way to interpret health inequity across the43
globe from the point of air pollution control efficacy.44
Keywords:air pollution, climate change, health inequity, air pollution control efficacy45
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1. Introduction51

Ambient air pollution is a major public health concern. Among all ambient air pollutants, the52
particulate matter with aerodynamic diameter ≤2.5um (PM2.5) is the most important one that poses53
significant adverse health impacts in both short-term and long-term[1,2]. At the same time, carbon54
dioxide (CO2) emissions have increased rapidly along with the rapid growth of economic development55
requiring more energy for transportation and energy consumption. As both ground level PM2.5 and CO256
are mainly caused by fossil-fuel combustion [3], there might be a relationship between CO2 emission57
and ground level PM2.5 concentration [4]. Studies conclude that actions to reduce greenhouse gas58
emissions often lead to co-benefits for air quality [5]. But interestingly, ground level PM2.559
concentrations are quite different across countries with similar CO2 emissions [4]. Many low- and60
middle-income countries (LMICs) face the dual pressure of reducing both ground level PM2.561
concentrations and CO2 emissions[5], while high income countries (HICs) have much lower ground62
level PM2.5 concentrations despite their high greenhouse gas emissions[6]. In other words,63
economically developed countries generally have lower ground level PM2.5 concentrations and64
relatively good air quality compared with economically developing countries, despite their similar or65
even higher CO2 emissions[7]. This fact suggests that different countries have different abilities to66
control ambient air pollution, even with similar CO2 emissions. An indicator to reflect the air pollution67
control efficacy may provide important information for policymakers, in order to achieve climate and68
air quality co-benefits and help guide environmental policy development and implementation [8].69

70
The combustion sources of ground level PM2.5 concentrations are different across countries.71

Ground level PM2.5 concentrations are substantially from residential energy use such as heating and72
cooking in China, India, Bangladesh, Indonesia, Vietnam and Nepal; from traffic in Germany, the UK73
and the USA; from power generation in the USA, Russia, Korea, Turkey and the Middle East; from74
agriculture in Europe, Russia, Turkey, Korea, Japan and the Eastern USA[9]. Energy structure and75
environmental technology are both determinants of air pollution control efficacy. Environmental76
technological progress can enhance energy efficiency, thereby leading to reductions in ground level77
PM2.5 concentrations [4,10]. Developed countries may have more economic foundation to promote and78
apply technological innovation to reduce both CO2 emission and ground level PM2.5 concentration79
compared with developing countries. In developed countries such as North America and Europe,80
technological improvements in scrubbers on power plants, catalytic converters on motor vehicles, and81
increased development of non-fossil fuel based energy sources have reduced ground level PM2.582
concentrations [11]. Although emission reduction technologies play a role in improving air quality in83
economically developing countries like China [12], not all effective strategies are adopted due to the84
high cost[13].85

86
Cleaner air due to air pollution reduction will improve human health[13]. Correspondingly,87

inequality in air pollution control efficacy contributes to human health inequality between88
countries[14]. An indicator of air pollution control efficacy could help identify the ground level air89
pollution concentration co-benefits of reducing emissions of CO2 [15]. The quantitative relationship90
between the air pollution control efficacy indicator and human health might provide important91
guidance for policymakers to reduce the disease burden due to ambient air pollution globally [4].92

Currently, there is no indicator to reflect country level air pollution control efficacy. To fill the93
research gap, we aim to evaluate a potential novel indicator of air pollution control efficacy, by94
quantifying its global distribution and long-term trend, and by examining its relationship with health95
indicators. Monitoring such an indicator may assist policy makers to better manage climate change and96
air pollution problems simultaneously [5].97

2. Materials and methods98

2.1 Indicator99

To capture air pollution control efficacy with CO2 emission, we proposed a novel indicator,100
ground level population weighted PM2.5 concentration per unit CO2 emission per capita (PC). A lower101
PC value generally indicates a higher air pollution control efficiency, meaning lower concentration of102
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ground level PM2.5 with per unit of CO2 emission. The unit of PC is µg/m3 per tonne. PC is103
calculated as follows:104

�� �,� = ��2.5 �,�/��2 �,�
Here, i means the ith country or region, t means the tth year.105

2.2. Data collection106

The spatial and temporal domain of our study included 196 countries from 2000 and 2016. Some107
regions like Greenland, Antarctica and some countries in Middle Africa were not included in the spatial108
map because of the missing data.109

110
To develop the novel indicator of air pollution control efficacy, population-weighted ground level111

PM2.5 (PM2.5, µg/m3）and annual emissions of carbon dioxide per capita (CO2, tonne) for individual112
countries based on territorial CO2 emissions were sourced from the atmospheric composition analysis113
group, Global Carbon Project, Carbon Dioxide Information Analysis Centre (CDIAC), Gapminder and114
UN population estimates(see supplement for more details). PM2.5 in each country was represented by115
the population density weighted average value of all grids within the boundary of the country[16]. We116
transformed the original spatial resolution of this population density dataset into 0.1◦×0.1◦ resolution117
according to the method described by Brauer et al[17].118

119
To evaluate the association between PC and health, we collected data on several health outcomes.120

The first one is life expectancy at birth (LE, years), defined as the average number of years that a121
newborn could expect to live if he or she were to pass through life subject to the age-specific mortality122
rates of a given period. Children are more affected by air pollution and climate change [3,18]. It was123
reported that per 10 μg/m3 increases in PM2.5 concentration was related to 3.4% (95% CI: 1.7%–5.4%)124
infant and child under-five mortality[19]. Therefore,we included the health outcomes of infant-125
mortality rate (IMR, ‰) and under-five mortality rate (U5MR, ‰),which mean the number of infants126
dying before reaching one year of age and the number of babies that died before reaching age five per127
1,000 live births in a given year. We obtained data of LE, IMR, U5MR from various sources including128
the United Nations (UN) Population Division, World Bank(WB), UN Inter-agency Group for Child129
Mortality Estimation, World Health Organization (WHO) (see supplement for more details).130

Temperature and humidity are related to health [20] and country-level annual average131
Temperature at 2 meters (T2M,°C) and Specific Humidity at 2 Meters (QV2M, g water/kg dry air, g132
kg-1) were obtained from the National Aeronautics and Space Administration (NASA) (see supplement133
in details). GDP per capita (PGDP, U.S.$) in constant 2010 U.S. dollars came from WB and the134
Organization for Economic Co-operation and Development (OECD) (see supplement for more details).135

2.3 Statistical Methods136

Correlations between each two independent variables were examined by Pearson correlation137
coefficient. The Generalized Additive Mixed Model (GAMM) with a penalized spline smoothing138
function, a random intercept of country and spatial covariance structure, and a Gaussian link function,139
was used to evaluate the potential non-linear relationship between PC and health outcomes [21,22].140

141
To ensure the results’ robustness, we excluded 5% observations with extreme large and small PC142

and kept the remaining 95% data in the middle for analyses. The model performance was expressed as143
adjusted R2. The GAMM was as following:144

��,� = �0+�(���,�) + � ��,� + ��
145

Here H represents the health outcome, which could be LE, IMR, or U5MR; i,t means the ith146
country(i=1 to 196) in the tth (t=2000 to 2016) year. β0 denotes the constant intercept; s(.) is the147
smoothing function realized by cubic spline with 4 degrees of freedom(df) in this study. �� is a148
random intercept for country i. D represents the covariates including PGDP, T2M, QV2M, PM2.5, CO2.149
The degrees of freedom (df) of the cubic spline function (CS) for each predictor was selected by150
minimizing the Akaike information criterion (AIC) of the model [23-25].151
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152
PC showed nonlinear correlation with health metrics as estimated in this paper, so here PC was153

modelled by a non-linear function. PGDP, T2M, QV2M were added to the models in the form of a154
natural cubic smooth function as their relationship with heath is often non-linear [26-28]. PM2.5 and155
CO2 were also included as covariates.156

157
All statistical tests were two-sided, with a p-value of 0.05 as the indicator of the statistical158

significance. All analyses were performed using the R statistical software (version 3.2.2), including the159
R packages “ggplot2”, “dplyr”, “reldist” and “gamm4”.160

3. Results161

3.1 Descriptive results162

The means of PM2.5 and CO2 were 21.52 (µg/m3) and 4.60 (tonne) respectively. PC was 74.24163
(µg/m3 per tonne) on average with the considerable international variance from 0.14 (µg/m3 per tonne)164
in Australia (2010) to 2659.75 (µg/m3 per tonne) in Chad (2002). The average LE, IMR and U5MR165
were 68.94 years, 2.97 ‰ and 4.27‰, respectively. PGDP was 15541.76 (U.S.$) on average with a166
large range of 155795.00 (U.S.$). As for average temperature and humidity, T2M was18.33 (°C) and167
QV2M10.03 (g kg-1) (see Table 1). Generally, PC was lowest in high income groups, and then upper-168
middle income groups, lower-middle income groups, and highest in low income groups[29]. The mean,169
median, standard deviation and range of PC were increasing as the GDP per capita decreased (Table170
S1).171

172
Table 1 Summary statistics of all variables in 196 countries between 2000 and 2016173

Variable Unit Mean Sd Min P25 P50 P75 Max

PC µg/m3 per tonne 74.24 207.37 0.14 1.96 4.59 34.62 2659.75

LE years 68.94 9.30 38.70 62.97 71.47 75.62 83.80

IMR ‰ 2.97 2.72 0.16 0.79 1.95 4.62 14.20

U5MR ‰ 4.27 4.48 0.21 0.83 2.35 6.70 23.39

PM2.5 µg/m3 21.52 17.89 0.50 7.80 17.20 27.30 111.30

CO2 tonne 4.60 6.41 0.02 0.55 2.23 6.35 66.81

PGDP U.S.$ 15541.76 18191.91 349.00 2780.50 8651.00 22093.50 156144.00

T2M °C 18.33 8.63 -9.61 10.44 21.21 25.78 30.28

QV2M g kg-1 10.03 4.67 2.59 6.05 8.76 14.49 19.28

Notes: Sd: standard deviation; Min: minimum; P25,P50,P75:25th,50th,75th percentile respectively; Max:174
maximum; PC: PM2.5 concentration per unit per capita CO2 emission; LE: life expectancy at birth; IMR:175
Infant-mortality rate; U5MR: Under-five mortality rate; PM2.5: fine particulate matter with aero176
dynamic diameter ≤2.5um; CO2: carbon dioxide emission per capita; PGDP: GDP per capita; T2M:177
Temperatures at 2 meters; QV2M: Specific Humidity at 2 Meters.178

3.2 Spatial and temporal variation of PC179

The PC, PM2.5 and CO2 trends of the whole world, different income groups (high, upper-middle,180
lower-middle, and low-income countries) and selected countries are shown in Figure 1. We selected181
two countries of the largest population in each income group to represent the corresponding income182
group. So we got 8 countries including the United States and Japan to represent the high income group;183
China and Brazil to stand for the upper-middle income group; India, Indonesia and Bangladesh,184
Nigeria to represent the lower-middle and low income group respectively.185

186
Globally, the average PC remained almost stable from 2000 to 2016 worldwide. PC in low income187
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group showed an increased tendency while the upper-middle income group’s PC decreased. World-188
average PM2.5 increased with the most increment in lower-middle groups. PM2.5 in high income189
countries remained the least and kept almost flat. As for the annual average CO2 emission per capita190
trend, the world average increased by year. The high-income group took the largest part of CO2191
emission. However, we could see the decreasing trend of CO2 in the high-income group. Meanwhile192
the low income group emitted the least and stable CO2. CO2 emission of upper-middle and lower-193
middle income groups increased from 2000 to 2016, too.194

From 2000 to 2016, PC in Bangladesh decreased significantly (from 193.75 µg/m3 per tonne to195
106.08 µg/m3 per tonne) while Nigeria increased (from 112.24 µg/m3 per tonne to 157.84 µg/m3 per196
tonne). By contrast, PC kept almost stable during the study period in the United States (from 0.53µg/m3197
per tonne to 0.46 µg/m3 per tonne) and Japan (from 1.40 µg/m3 per tonne to 1.47 µg/m3 per tonne). The198
similar increasing trend of PM2.5 concentration could be seen in most selected countries. While the two199
high income countries like the United States (11.3 µg/m3 in 2000 and 7.6 µg/m3 in 2016) and Japan200
(13.9 µg/m3 in both 2000 and 2016) showed decreasing or stable trend. The United States（21.28 and201
16.48 tones per capita in 2000 and 2016）and Japan（9.90 and 9.43tones per capita in 2000 and 2016)202
are the largest two CO2 emission countries among the 8 countries while Bangladesh(from 0.21 to 0.52203
tones per capita ) and Nigeria(from 0.62 to 0.55 tones per capita ) the least.204

205
Figure1. PC trends of the whole world, different income groups and selected countries206

Notes: PC: PM2.5 concentration per unit per capita CO2 emission. We used population-weighted PC,207
PM2.5 and CO2 to show time tendencies of different income groups. The units of PC, PM2.5 and CO2 are208
µg/m3 per tonne, µg/m3 and tonne respectively.209

210
The spatial distributions of PC during 2000 and 2016 are presented in Figure 2. In 2000, PCs in211

the countries like America, Europe, Australia and most countries in South America were lower than 5212
(µg/m3 per tonne). In developing countries like China and India, PCs were higher than 10 (µg/m3 per213
tonne) but lower than 50 (µg/m3 per tonne). But in poor countries in Africa, most PCs were over 100214
(µg/m3 per tonne). Specifically, PCs in Niger, Democratic Republic of Congo were over than 1000215
(µg/m3 per tonne) and Chad over 2000 (µg/m3 per tonne). In 2016, PC almost showed the same spatial216
distribution globally. PC in China declined to 7.26 (µg/m3 per tonne) in 2016. PCs in Chad and Niger217
declined a lot but still over 1000 (µg/m3 per tonne). PCs in most countries of the world decreased in the218
past 17 years. The most remarkable decreases were observed for countries in Africa like Chad,219
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Democratic Republic of Congo and Niger, then China and India. Meanwhile, some African countries220
suffered the PC growth, such as Somalia, Eritrea and Nigeria.221

222

223

Figure 2. Country-level PC and annual average change in PC from 2000 to 2016224
Notes: PC: PM2.5 concentration per unit per capita CO2 emission.The unit of PC is µg/m3 per tonne.225

226

3.3 The relationship between PC and health metrics227

The Pearson correlation coefficients between PC and LE, IMR, U5MR and LPGDP were -0.566,228
0.646, 0.659, -0.585 respectively (Table S2), and all coefficients were statistically significant at the229
level of 0.001. Using GAMM, we investigated seven models to estimate the relation between PC and230
health (Table S3). In model with PC as the only independent variable, the adj.R2were 0.320, 0.417 and231
0.435 indicating PC independently explained 32.0%, 41.7% and 43.5% of the variation of LE, IMR and232
U5MR respectively. While in model with PM2.5 or CO2 as the only independent variable, PM2.5 and233
CO2 could only explain 3.45%, 7.81%, 10.49% and 22.11%, 22.39%, 19.84% of the respective234
variations of LE, IMR and U5MR. Therefore, PC seemed to be a better indicator to reflect health235
compared with PM2.5 and CO2. PGDP single could reflect variation of LE, IMR and U5MR by 58.0%,236
63.6%, 61.3% respectively.237

We examined the nonlinear associations of PC with LE, IMR, U5MR and LPGDP in Figure 3238
using GAMM. We got the reverse relation curves between PC and LE, LPGDP. Simultaneously, we239
found a positive relation between PC and IMR, U5MR. The non-linear relationships changed240
minimally when we altered the covariates of the model (Figure S1).241
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242

Figure 3. The modeled associations of PC with LE, IMR, U5MR and PGDP, by GAMM243
Notes: Black shadow indicates 95% confidence interval (CI). LE: life expectancy at birth, IMR: Infant-244
mortality rate, U5MR: Under-five mortality rate, PC: PM2.5 concentration per unit per capita CO2 emission,245
LPGDP: logarithm of GDP per capita. The GAMMs were (a): PC+PGDP+T2M+QV2M+PM2.5+CO2; (b):246
PC+PGDP+T2M+QV2M+PM2.5+CO2; (c): PC+PGDP+T2M+QV2M+PM2.5+CO2; (d): LPGDP.247

248

4. Discussion249

To the best of our knowledge, this is the first paper to evaluate PC as a potential new indicator of250
air quality control efficacy. This indicator almost kept stable over 2000-2016 in the world. There is251
great spatial variation or inequality of PC among countries. On average, PC was high in Africa and low252
in America, Europe and Australia, while Asia was in the middle range during 2000-2016.253

254
Generally, PC is decreasing as the GDP per capita grows. PC is smaller in high income or255

developed countries than in low income or developing countries, possibly because the use of clean-256
polluting production technologies increases with economic development [30]. For high income257
countries, they have the least PC with the highest CO2 emission but lowest PM2.5 concentration. Both258
PM2.5 concentration and CO2 emission showed decreasing tendency from 2000 to 2016, so there is a259
clear plateau for most high-income countries over the past years. Taking the United States as an260
example, since the 1970s the United States government has input $25 billion per year to the261
improvement of ambient air quality[31]. Over half of the coal-fired capacity in the United States will262
be equipped with the air pollution control technologies including selective catalytic reduction,263
electrostatic precipitators, sorbent injection and flue gas desulfurization or other scrubber technologies264
by 2020[32].265

266
PC in upper-middle income countries decreased with the increase of CO2 and relatively slow267

increase of PM2.5. From 2000 to 2016, the decreasing PC in upper-middle groups might be contributed268
by technological improvement and green production promotion[30]. As the largest population country269
in the world and the largest upper-middle income country, PC in China decreased significantly, from270
17.39 (µg/m3 per tonne) to 7.26 (µg/m3 per tonne). As the largest coal-consuming country in the271
world[12], the Chinese government has implemented many air quality plans such as “Air Pollution272
Prevention and Control Action Plan” [33] and “Reformation and Upgrading Action Plan with ultra-low273
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emissions (ULE) technologies” focusing on controlling emissions from coal consumption, which have274
dramatically reduced PM2.5 emissions from coalfired power plants [12]. Therefore, PM2.5 in China275
remained almost unchanged from 49.5 µg/m3 in 2000 to 50.2 µg/m3 in 2016, although CO2 emission in276
China increased a lot from 2.61 tones per capita to 6.91 tones per capita.277

278
Lower-middle income countries, most located in South Asia, PC remained almost no change from279

2000 to 2016 because of both increment of PM2.5 and CO2. PM2.5 concentrations in South Asia mainly280
due to combustion emissions(solid fuels, power plants, agricultural and other open burning, industry281
and transportation)[34]. Taking India, the largest population country of lower-middle income and one282
of the highest polluted countries globally as an example [35], the major source of ambient particulate283
matter pollution is coal burning [36]. Although Indian government has launched several initiatives284
including improving technologies of coal power plants, energy-intensive industries in the past few285
years to reduce air pollution [37], which reduced PC in India from 42.85 (µg/m3 per tonne) to 36.20286
(µg/m3 per tonne), PM2.5 increased from 44.9 µg/m3 to 65 µg/m3 with CO2 increased from 0.98 tones287
per capita to 1.80 tones per capita during 2000 and 2016.288

289
Low income countries are just on the contrary to the high income ones, which had the highest290

PM2.5 concentration but lowest CO2 emission. PM2.5 increased while CO2 almost unchanged during291
2000 to 2016, causing PC increased. The three largest PC located in the three African countries of292
Chad, Niger and the Democratic Republic of Congo. It is needed to mention that air pollution in Africa,293
such as countries in north (Niger, Egypt and Mauritania) and west (Cameroon, Nigeria and Burkina294
Faso) Africa and the Middle East (Saudi Arabia, Qatar and Kuwait), PM2.5 is typically composed of295
aeolian dust and vegetation fires[38,39]. Besides, 26% of 51 million people relied on biomass fuel, gas296
and paraffin for cooking and 41.2% for heating in the 2011 South African Census report, which will297
also cause the air pollution[40]. In South Africa, some policies have been promulgated such as the298
National Environmental Management Air Quality Act (2004) which defined the Minimum Emissions299
Standards for regulating gaseous and particulate emissions from industrial operations. In 2009, South300
Africa pledged a target of CO2 emissions reductions also reduced PM2.5 by switching away from an301
fossil fuels based economy[41]. PC in Chad decreased from 2286.39 µg/m3 per tonne in 2000 to302
1163.79 µg/m3 per tonne in 2016 and Niger from 1496.35 µg/m3 per tonne to 1029.71µg/m3 per tonne.303
But the PC reduction mainly depend on the increment of PM2.5 (from 48.2 µg/m3 to 58.7 µg/m3 in Chad304
and 91.3 µg/m3 to 111.3 µg/m3 in Niger) and more fast increasing speed of CO2 (from 0.02 tones per305
capita to 0.05 tones per capita, from 0.06 tones per capita to 0.11tones per capita respectively).306
However, it is needed to mention that some African countries suffered the PC growth, such as Somalia,307
Eritrea and Nigeria. There is still a long way to go for low income countries to improve the air308
pollution control efficiency as part of development of economy.309

310
PC might be a good indicator of health. PM2.5 attributed mortality of childhood in sub-Saharan311

Africa (such as Chad, Sudan, and Nigeria) and south Asia (such as India and Pakistan) contributes312
substantially to the global YLLs (Years of life lost) from ambient air pollution[38,39]. Meanwhile,313
most largest PC located in the above two areas. It was estimated that highest rate of childhood314
mortality due to air pollution especially PM2.5 was in Chad (located in sub-Saharan Africa) with the315
largest PC in the world (mean of PC from 2000 to 2016 was 1333.10 µg/m3 per tonne)[41]. In Chad,316
YLLs per capita due to exposure to PM2.5 in children younger than 5 years are 1000 times higher than317
in the United States(mean of PC from 2000 to 2016 was 0.48 µg/m3 per tonne)[39]. Meanwhile, PC318
might be a better indicator for monitoring national progress of addressing air pollution related health319
burden than PM2.5[2,42]or CO2 for the better explaining variation of LE, IMR and U5MR.320

321
Compared with previous literature about association between PM2.5, CO2 and health[4,7], our322

paper suggests that more attention should also be paid to the air quality control efficacy, in order to323
realize climate, air quality and health co-benefits. The air pollution control efficiency could be324
improved through change of energy structure (e.g., shift to cleaner energy) and technology innovations325
(e.g., electric vehicle) [43,44]. We found that the association between PC and health metrics was326
independent of GDP per capita. This suggests that clean air brought by reducing PC might generate327
health improvements independent of economic growth. This result also suggest that the global health328
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inequity is not merely explained by income inequality, but also by the inequality in the ability to329
control ambient air pollution.330

331
Our findings contribute to the area of air pollution, climate change and human health. Firstly, it is332

useful for policymakers to pay more attention to air pollution control efficacy when dealing with333
climate change by reducing carbon emission. Secondly, PC provides a new angle to understand the334
global health equity. The low health levels of low income countries might be partly because of the low335
efficacy to reduce the harm from ambient air pollution [37]. Thus for low income countries, the336
promotion of air pollution control efficacy should be included as an important part of economic337
development. Also, assistance from developed countries to undeveloped ones should include not only338
improving the economy but also technologies related to air pollution control efficacy. These suggest339
that we could improve health equity more effectively by paying more attention to air pollution control340
efficiency.341

342
The study has some limitations. Firstly, we did not obtain data from every country in the world343

like other global analysis[26]. Our study did not cover the Greenland, Antarctica and some Middle344
Africa because of the missing data. But as few people live in these areas, we could provide a reference345
for the majority of population in the world [26]. Secondly, due to data unavailability, we did not346
include data on factors that might contribute to PC such as energy structure and technologies of347
processing air pollution emissions. Future studies with relevant data could give a detailed evaluation on348
these contributing factors. There are some weaknesses of the PC index. Firstly, it couldn’t reflect the349
air pollution caused by the natural sources of aeolian dust and vegetation fires from the unpaved roads350
or deserts. Secondly, PC maybe not change while some improvements both happens in air pollution351
control and reducing CO2 per capita. That is why PC in high income countries keep stable from 2000 to352
2016 as decrease happened in both PM2.5 concentration and CO2 emission. Thirdly, in theory PC would353
reduce if CO2 emission increases without impacting on ground level PM2.5 exposure within country.354
This is clearly not a good outcome to climate change and health. Anyway, PC is really a good indicator355
to reflect air pollution control efficiency because it reduces with changing the energy structure from356
coal to clean energy[33,35], improving air cleaning technology[10]. There are many ways to develop357
the PC indicator in the next stages. Other detailed covariates needed to be included like fossil fuel358
combustion emission control technology, unusual events like bushfire, natural sources and social359
disruptions.360

5. Conclusions361

In summary, our study developed a novel air pollution control efficacy indicator, ground level362
PM2.5 concentration per unit CO2 emission per capita (PC), to assess population air pollution exposure363
level related to carbon emission. The results indicated that PC has kept almost stable from 2000 to364
2016 globally with the low income groups increased. PC is geographically different and getting lower365
with the economic development. PC is statistically associated with LE, IMR and U5MR, which366
provides a new way to promote global health equity from the angle air pollution control efficacy.367
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