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Abstract

We formulate a deterministic epidemic model to study the effects of medication on the transmission

dynamics of Corona Virus Disease (COVID-19). We are especially interested in how the availability

of medication could change the necessary quarantine measures for effective control of the disease.

We model the transmission by extending the SEIR model to include asymptomatic, quarantined,

isolated and medicated population compartments. We calculate the basic reproduction number R0

and show that for R0 < 1 the disease dies out and for R0 > 1 the disease is endemic. Using sensitivity

analysis we establish that R0 is most sensitive to the rates of quarantine and medication. We also

study how the effectiveness and the rate of medication along with the quarantine rate affect R0. We

devise optimal quarantine, medication and isolation strategies, noting that availability of medication

reduces the duration and severity of the lock-down needed for effective disease control. Our study

also reinforces the idea that with the availability of medication, while the severity of the lock downs

can be eased over time some social distancing protocols need to be observed, at least till a vaccine is

found. We also analyze the COVID-109 outbreak data for four different countries, in two of these,

India and Pakistan the curve is still rising, and in he other two, Italy and Spain, the epidemic curve

is now falling due to effective quarantine measures. We provide estimates of R0 and the proportion

of asymptomatic individuals in the population for these countries.

Keywords— COVID-19, Coronavirus, Medication, Quarantine, Asymptomatic, Control Strategies, Estimating
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1 Introduction

Originating in Wuhan, China, with the first reported cases in early December 2019[2], Coronavirus disease

(COVID-19) is a pandemic that has spread around the globe in the early months of 2020. The disease is prevalent

in at least 212 countries and territories, with more than 5.3 million cases reported and around 325,000 fatalities

at the time of writing on May 22, 2020 [3].
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The causative agent of COVID-19 is a coronavirus SARS-CoV-2 [2]. This belongs to a family of viruses that

are found in humans and different species of animals including cattle, camels and bats. These have in the past

caused serious disease outbreaks in human populations as happened in MERS (caused by MERS-CoV) and SARS

(caused by SARS-CoV) [1, 4, 5], it has been reported that both these viruses like SARS-CoV-2 have their origins

in bats.

The virus is mainly spread from person to person, through respiratory droplets, the spread is more likely when

people are within 6 feet of each other[1]. Symptoms of the disease may appear 2-14 days after exposure and

may include fever, cough shortness of breath, chills, muscle pain and loss of taste or smell[2, 6]. Many of these

are common with influenza, however high persistent fever, dry cough and difficulty in breathing [6] seem to

characterize COVID-19. The symptoms may range from very mild (in 80 % of the cases) to severe (in 15 % of the

cases) to critical (in 5 % of the cases)[2]. Those at higher risk for severe illness include the elderly (people ages

65 and above) and people with underlying medical conditions which may include chronic lung diseases, diabetes,

chronic kidney diseases, serious heart conditions and immunocompromised individuals[14].

At this time there is no available vaccine for COVID-19, and the available antiviral treatments are all in the trial

phase[1]. This prompted health authorities to stress upon social distancing as a means to control the spread of the

disease [2]. Lock downs were enforced in various countries, however these measures have resulted in substantial

economic and social cost [7]. As a consequence many countries have started to ease the lock downs, despite

concerns expressed by public health practitioners. There may be some positive news as in some recent studies

antiviral treatments have shown some promising results, reducing the infectious period and alleviating disease

symptoms [9, 8, 12, 13].

As the disease burden of COVID-19 continues to rise steeply, there is a rush to verify the benefits of different

treatment regimens for which there is any anecdotal evidence available. Initial clinical trials so far have produced

mixed results with some drug regimens showing encouraging outcomes, such as shortening of the duration of the

disease, while others showing no significant change in the outcomes due to medication. The anti malarial hydrox-

ychloroquine has been suggested as possible medication for COVID-19. While the National Institute of Health

(NIH) in the United States has began clinical trials for hydroxychloroquine taken together with azithromycin

[15], a recent study by Mehra et.al [10] has been unable to confirm any benefit of hydroxychloroquine when used

alone or with a macrolide (such as Azithromycin), on in-hospital outcomes for COVID-19, in fact, each of these

drug regimens was associated with decreased in-hospital survival. Another drug that has been suggested to have

beneficial effects in COVID-19 treatment is Remdesivir. Some initial studies on the effectiveness of Remdesivir

have been published; Wang et.al [11] reported no significant clinical improvement in COVID-19 symptoms using

the drug, they do recommend further clinical studies be done, however Grein et.al [13] have reported improvement

in 68% of the patients in a controlled trial using the drug, similarly Beigel et.al [9] have also reported shortening in

the time to recovery with Remdesivir use. Huang et.al [6] used a triple anti viral therapy in their study and have

reported alleviation of symptoms and shortening the duration of the disease. At the time of writing several studies

are being carried out for a variety of plausible treatments which have shown some positive results. Based on this

one can be cautiously optimistic about the possibility that medication that alleviates symptoms and shortens the

duration of the disease may be available soon.

Since the outbreak many mathematical models have been proposed to estimate the growth rates and understand

the transmission dynamics of COVID-19. These include phenomenological models[16, 17], stochastic models[18],

both of which are very useful in the early stages of the outbreak, and mechanistic models[19, 20, 22, 23, 30] that

incorporate our understanding of the transmission pathways. Imran et.al [24] and Perkins et.al [31] have used

optimal control techniques to propose efficient control strategies. The aim of such modeling is twofold, one to

provide estimates of the severity of the outbreak by calculating quantities like the growth trends of the epidemic,

estimates of the final outbreak size and duration of the outbreak and second to provide insights into efficacy of

various control measures.

In the literature a variety of mathematical models have been proposed to study the role of medication in controlling

different epidemics. Lee et.al [25] consider an extension of the SEIR model with isolation and treatment to study

various treatment and isolation strategies for controlling an influenza pandemic. Granich et.al [27] use an SIR

model with multiple infection and treatment stages to study the effects of antiretroviral therapy and universal
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voluntary reporting for HIV. Jia et.al [26] study the effectiveness of various control strategies including treatment

using an SEIR model with compartments for acute and chronic stages of infection and treatment. Sharomi et.al

[28] use an extension for the SEIR model to study HIV/TB co-infection and do a cost/benefit analysis of various

treatment strategies. Tufail et.al [29] study a model for the transmission ad control of the H1N1 Influenza (Swine

Flu) using an extended SEIR model with treatment, vaccination and hospitalization compartments.

This study is motivated by some promising reports about the success of various drug therapies in medical trials as

discussed above. We are interested in studying the effects of medication on the transmission dynamics of COVID-

19 and in particular the effects on quarantine and other control strategies. We extend an earlier model by Imran

et.al [24] to model the transmission dynamics of COVID-19. The model incorporates asymptomatic, isolation

and quarantine compartments, these are considered particularly relevant in the transmission of COVID-19, we

also include a compartment representing the medicated population group. We establish a threshold quantity, the

basic reproductive number R0, the disease dies out if R0 < 1 and is endemic in the population when R0 > 1. We

calculate the sensitivity of R0 on various model parameters, identifying the contact rate, the rates of entering and

leaving the quarantine and the rate and efficacy of the medication,as parameters to which R0 is most sensitive.

We also study the variation in R0 as the quarantine rate and the rate and the efficacy of the medication is varied,

leading to some interesting observations. Using techniques from optimal control theory, we propose efficient

quarantine, isolation and medication strategies. We also compare the quarantine and isolation strategies with and

without the availability of medication, which leads to some insights regarding easing of lock downs once medication

is available. Finally, we estimate R0 for different countries, which are at different phases of the epidemic. In India

and Pakistan the epidemic is still in the growth phase, the dynamics of the disease also seem to be different here

than in Europe and North America, with a much slower growth and mortality rate. We also fit the our model

to the outbreak data to estimate the proportion of asymptomatics in the population and the average quarantine

rate in these countries.

2 Model Formulation

The COVID-19 transmission model we consider is based upon the SEIR model and takes into account the effects

of quarantine, isolation, medication and asymptomatic individuals. The total population N(t) is divided into ten

mutually exclusive sub populations, susceptibles S, these are individuals who can fall ill by coming in contact with

an infected individual, quarantined susceptibles QS , these individuals are removed from the susceptible group at

rate ε, either through self quarantined or lock-down measures, they however go back to the susceptible group at

rate ξ. The susceptibles move to the exposed class by coming in contact with any infectious individual, at rate

ρλ, some exposed individuals will not show symptoms and are accounted for in the model by the movement to the

asymptomatic class at rate (1−ρ)λ. Due to lock down measures, the exposed and asymptomatic sub-populations

are also quarantined at rate κE and κA, respectively. The exposed and exposed quarantined individuals become

infected at rates σ and ν, while some of the quarantined exposed are also isolated at the rate of ωE . Infected

individuals can be isolated or given medication at a rate of τ and αI whereas a fraction of isolated are given

medication at rate αQ. The recovery time for infected, asymptomatic, asymptomatic quarantined, isolation and

medication is given by 1/γ,1/θA,1/ωA,1/θ and 1/θM respectively. The schematic of the transmission pathways is

given in Fig.1. The total population N(t) is given by the sum of the sub-populations.

N(t) = S(t) +QS(t) + E(t) +QE(t) + I(t) +A(t) +QA(t) +QI(t) +M(t) +R(t) (1)

The governing equations are given below (2).
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dS

dt
= Π + ξQS − (λ+ µ+ ε)S

dQS
dt

= εS − (ξ + µ)QS

dE

dt
= ρλS − (κE + σ + µ)E

dQE
dt

= κEE − (ωE + ν + µ)QE

dI

dt
= σE + νQE − (δI + τ + αI + µ+ γ)I (2)

dA

dt
= (1− ρ)λS − (κA + θA + µ)A

dQA
dt

= κAA− (ωA + µ)QA

dQI
dt

= τI + ωEQE − (θ + αQ + δQ + µ)QI

dM

dt
= αII + αQQI − (θM + µ)M

dR

dt
= θQI + γI + θAA+ ωAQA + θMM − µR

where λ is the force of infection

λ =
β

N
(I + η1QI + η2A+ η3QA + η4M) (3)

Here β is the effective contact rate, where as η1,η2 and η3 are the associated relative infectiousness parameters for

the QI ,A, QA and M sub-populations. Table.3 and Table.4 represent the description of variables and parameters

of the model, and are given in the appendix.
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Figure 1: Schematic diagram of the model (2)

3 Basic Properties

The described state variables in model (2) display non-negative solutions for all time t ≥ 0 for non-negative initial

conditions.

Lemma 3.1. For any given non-negative initial conditions, there exist a unique solution

S,QS , E,QE , I, A,QA, QI ,M,R respectively, for all t ≥ 0. Moreover, it satisfy the following inequality of bound-

edness.

lim sup
t→∞

N(t) ≤ Π

µ

Proof is presented in the appendix A.

Lemma 3.2. The closed set:

D = {(S,QS , E,QE , I, A,QA, QI ,M,R) ∈ R10
+ : S +QS + E +QE + I +A+QA +QI +M +R ≤ Π

µ
}

is positively invariant.

Proof is attached in the appendix A.
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4 Steady State Analysis

4.1 Disease Free Equilibrium

The transmission model (2) attains the Disease Free Equilibrium (DFE) whenever there is no infection induced

by the disease i.e. the force of infection is zero,λ = 0. Mathematically we can find this equilibrium state by

equating the right hand side of (2) to zero with zero force of infection. Let F0 represent the DFE of the model.

F0 = (S∗, Q∗S , E
∗, Q∗E , I

∗, A∗, Q∗A, Q
∗
I ,M

∗, R∗)

F0 =

(
π(µ+ ξ)

µ(µ+ ξ + ε)
,

πε

µ(µ+ ξ + ε)
, 0, 0, 0, 0, 0, 0, 0, 0

)
The local stability of this steady state is governed by the threshold quantity R0 which is obtained using the next

generation operator method [32].

4.2 The Basic Reproduction Number R0

The thresh hold quantityR represents the average number of secondary infections generated by the single infection

in the completely susceptible population. It is determined by the spectral radius of the FV −1 matrix. [32]. The

corresponding F and V matrices of model (2) are given as

F =



0 0 βρS∗

N∗
βρη2S

∗

N∗
βρη3S

∗

N∗
βρη1S

∗

N∗
βρη4S

∗

N∗

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 β(1−ρ)S∗

N∗
β(1−ρ)η2S∗

N∗
β(1−ρ)η3S∗

N∗
β(1−ρ)η1S∗

N∗
β(1−ρ)η4S∗

N∗

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



V =



k1 0 0 0 0 0 0

−κE k2 0 0 0 0 0

−σ −ν k3 0 0 0 0

0 0 0 k4 0 0 0

0 0 0 −κA k5 0 0

0 −ωE −τ 0 0 k6 0

0 0 −αI 0 0 −αQ k7


where k1 = κE + σ + µ, k2 = ωE + ν + µ, k3 = δI + τ + γ + αI + µ, k4 = κA + θA + µ, k5 = ωA + µ ,

k6 = θ + δQ + αQ + µ, k7 = θM + µ

R0 =
β(µ+ ξ)

µ+ ξ + ε

{
(1− ρ)

(
η3κA
k4k5

+
η2

k4

)
+ ρ

[(
νκE
k1k2k3

+
σ

k1k3

)(
η4αI
k7

+
η1τ

k6
+
η4ταQ
k6k7

+ 1

)
+
κeωE (η1k7 + η4αQ)

k1k2k6k7

]}
(4)

Stability of DFE

Lemma 4.1. The steady state (DFE) F0 of the model (2) is locally-asymptotically stable if R0 < 1, and unstable

if R0 > 1.

The basic interpretation of this lemma is that a small influx of the infected individuals will not cause large

outbreaks and disease will become extinct in long run.

To verify that the disease extinction is not dependent on the initially available sub-populations in model (2), it is

necessary to show that the steady state (DFE) is globally asymptotically stable (GAS).
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Lemma 4.2. The Steady state (DFE) F0 of model is globally asymptotically stable if R0 < 1 and unstable R0 > 1.

Proof is given in appendix A

4.3 Endemic Equilibrium

The steady state of the system (2) in presence of the infection i.e. λ 6= 0 is known as the endemic equilibrium.

Let F1 represents the arbitrary endemic equilibrium of the model (2).

F1 = (S∗∗, Q∗∗S , E
∗∗, Q∗∗E , I

∗∗, A∗∗, Q∗∗A , Q
∗∗
I ,M

∗∗, R∗∗) (5)

Further,The force of infection λ can be written in terms of the equilibrium as

λ∗∗ =
β

N∗∗
(I∗∗ + η1Q

∗∗
I + η2A

∗∗ + η3Q
∗∗
A + η4M

∗∗)

with N∗∗ = S∗∗ +Q∗∗S + E∗∗ +Q∗∗E + I∗∗ +A∗∗ +Q∗∗A +Q∗∗I +M∗∗ +R∗∗

Solving for the system (2) at this specific fixed point, the endemic equilibrium becomes

S∗∗ =
π(µ+ ξ)

((λ∗∗ + µ)(µ+ ξ) + µε)
; Q∗∗S =

πε

(λ∗∗ + µ)(µ+ ξ) + µε
;

E∗∗ =
πλ∗∗ρ(µ+ ξ)

k1((λ∗∗ + µ)(µ+ ξ) + µε)
; Q∗∗E =

πλ∗∗ρκe(µ+ ξ)

k1k2((λ∗∗ + µ)(µ+ ξ) + µε)

I∗∗ =
πλ∗∗ρ(µ+ ξ) (νκe + k2σ)

k1k2k3((λ∗∗ + µ)(µ+ ξ) + µε)
;A∗∗ =

πλ∗∗(1− ρ)(µ+ ξ)

k4((λ∗∗ + µ)(µ+ ξ) + µε)
; (6)

Q∗∗A =
πλ∗∗(1− ρ)κa(µ+ ξ)

k4k5((λ∗∗ + µ)(µ+ ξ) + µε)
; Q∗∗I =

πλ∗∗ρ(µ+ ξ) (κe (k3ωE + ντ) + k2στ)

k1k2k3k6((λ∗∗ + µ)(µ+ ξ) + µε)
;

M∗∗ =
πλ∗∗ρ(µ+ ξ) ((νκe + k2σ) (k6αI + ταQ) + k3κeωEαQ)

k1k2k3k6k7((λ∗∗ + µ)(µ+ ξ) + µε)

R∗∗ =
A∗∗θA + ωQ∗∗A + θQ∗∗I + γI∗∗ + θMM

∗∗

µ
;

Lemma 4.3. The model (2) achieves the unique positive endemic equilibrium whenever R0 > 1.

Final size of disease COVID-19

In this section, we formulate the final size of the COVID-19 is estimated using the model (2) transmission.

Applying the formulation by Arino et.al[34], define u ∈ Rn, u(t) = (E,QE , I, A,QA, QI ,M)T ∈ R10
+ represents

the set of infected compartments. Let v ∈ Rm, v(t) = (S) ∈ R+ and w ∈ Rk, w(t) = (R,QS)T ∈ R2
+ represents

the susceptible and set of recovered and susceptible quarantine respectively. The model (2) can be restructured

as

u′ = ΠDβ(u, v, w)bu− V u
v′ = g(u, v, w)−Dvβ(u, v, w)bu (7)

w′ = h(u, v, w) +Wu

here D is m ×m diagonal matrix with entries that are relative susceptibilities of v compartments. Π is n ×m
matrix with spacial property that (i, j)th entry represents the fraction of jth susceptible compartment goes to ith

infected compartment. b is a n dimensional row vector with relative horizontal transmission coefficients. g(u, v, w)

and h(u, v, w) are functions with uninfected individuals by means of birth, death, quarantine and recovery through

natural immunity.
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Theorem 4.4. The final size of the epidemic in model (2) is given by

ln

(
S(0)

S(∞)

)
≥ R0

(
S(0)− S(∞)

S(0)

)
+ g1E(0) + g2QE(0) + g3I(0) + g4A(0) + g5QA(0) + g6QI(0) + g7M(0). (8)

where

g1 =
β (νκE + k2σ) (η4k6αI + η1k7τ + k6k7 + η4ταQ)

k1k2k3k6k7

g2 = β

(
ωE (η1k7 + η4αQ)

k2k6k7
+
ν (η4k6αI + η1k7τ + k6k7 + η4ταQ)

k2k3k6k7

)
g3 = β

(
η4 (k6αI + ταQ)

k3k6k7
+
η1τ + k6

k3k6

)
, g4 = β

(
η3κA
k4k5

+
η2

k4

)
g5 =

βη3

k5
, g6 = β

(
η1

k6
+
η4αQ
k6k7

)
, g7 =

βη4

k7

4.3.1 Uniform Persistence

Let I = (E,QE , I, A,QA, QI ,M). Then (I)′(t) = A(x(t))I(t), where

A(x) =



−k1 0 βρ
N

βρη2
N

βρη3
N

βρη1
N

βρη4
N

κE −k2 0 0 0 0 0

σ ν −k3 0 0 0 0

0 0 β(1−ρ)
N

βη2(1−ρ)
N

− k4
βη3(1−ρ)

N
βη1(1−ρ)

N
βη4(1−ρ)

N

0 0 0 κA −k5 0 0

0 ωE τ 0 0 −k6 0

0 0 αI 0 0 αQ −k7


, and (9)

Denote by s(A) the spectral bound of matrix A. Let ρ : R10
+ → R+,

ρ(x) =
7

min
i=1
Ii. (10)

Theorem 4.5. If R0 > 1 then the disease is strongly uniformly ρ-persistent: ∃ ε > 0 such that

lim inf
t→∞

ρ(x(t)) > ε, (11)

whenever ρ(x(0)) > 0. Where x(t) = (S(t), QS(t), E(t), QE(t), I(t), A(t), QA(t), QI(t),M(t), R(t)) be a solution

of model (2).

The above persistence result shows that the disease will persist and there will be an endemic steady state if

the value of the basic reproductive number is greater than 1.

5 Numerical Simulations

Matlab(ODE 45) is used to perform the simulations with the parameter values given in the Tab.4. The time series

solutions are are shown in Fig. 2, it is apparent that model (2) achieves the Endemic equilibrium respectively

whenever the threshold quantity R0 is more than the unity and the DFE whenever R0 is less than the unity

authenticating the qualitative results.

We now investigate the effects of medication on the quarantined population, taking into account both the rate

and efficacy of medication in Fig.3(a) and (c). We also look into the effect of the medication rate and efficacy on

the number of days spent in quarantine in Fig.3(e) and (g).
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(a) Disease free equilibrium
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(b) Endemic equilibrium

Figure 2: Time Series Analysis

(a) Susceptible Quarantine vs Efficacy of Medication (b) Quarantine Time vs Rate of Medication

(c) Quarantine Time vs Efficacy of Medication (d) Rate of Quarantine vs Rate of Medication

Figure 3: Contour’s of R0

.
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Figure 4: Dependence of R0 on Medication

We observe that for a realistic recovery rate due to medication (based on the studies thus far), we would have

to maintain a quarantine rate of (20 %) or higher in order to have over thresh hold quantity R0 < 1, however

for high quarantine rates a less effective medication will suffice. This illustrates that fact that in order to ease

the lock down we need effective medication. Moreover,over a range of different realistic contact rates β,we need

certain level of effectiveness of the medication as is shown in Fig.3(b).

These observations point towards the fact that even with the availability of medication, while the social distancing

measures may be relaxed but they probably cannot be completely done away with until a vaccine is found.

6 Sensitivity Analysis

The source of sensitivity is due the variation found in the parameters. This section deals with the sensitive

parameters to R0 i.e. how much R0 changes upon small perturbations of the parameters . This will gives us

insights about the parameters that we can use in devising our control strategies. PRCC (Partial Rank Correlation

Coefficient) method is effective tool which compute the impact of parameters onR0. The positive(negative) PRCC

indicates the positive(negative) correlation parameters with the output variable.The parameters involved in R0

are studied which are µ, ν, β, σ, τ, κE , ωE , γ, θA, κA, ρ, ε, ξ, θ, θM , αI , αQ. Fig. 5 indicates that the most sensitive

parameter of model (2) are β, ε, τ and αI thus pointing towards the control strategies such as quarantine, isolation

and medication.
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Figure 5: Sensitivity of the Parameters

7 Estimation of Basic Reproduction Number R0

The thresh hold quantity R0, basic reproduction number is the expected number of the newly infected individuals

caused by the single infected individual. It is convenient to estimate the R0 from the data in order to have better

insights about COVID-19. The Estimates of R0 depend upon the estimation of critical parameters such as contact

rate β, incubation rate σ, the recovery γ, and other involving parameters. The estimation is performed by fitting

COVID-19 data of Italy, Spain, India, and Pakistan via nonlinear least square method. The underlying fitting

model is based upon an extension of SEIR by incorporating the effect of Quarantine, Isolation, and Asymptomatic

(the reduced model of Imran et al [24] ).

dS

dt
= Π + ξQS − (λ+ µ+ ε)S

dQS
dt

= εS − (ξ + µ)QS

dE

dt
= ρλS − (σ + µ)E

dI

dt
= σE − (δI + τ + µ+ γ)I (12)

dA

dt
= (1− ρ)λS − (κA + µ)A

dQI
dt

= τI − (θ + δQ + µ)QI

dR

dt
= γI + θAA+ θQI − µR

where λ is the force of infection

λ =
β

N
(I + η1QI + η2A) (13)
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Here Π is the recruitment rate, which depends upon the demographic area from the data is taken.
1

µ
is the

average life span of human life. The effective contact rate is the most crucial parameter, which describes the

average associated chance of getting infected by the interaction of the susceptible individuals with the infected

ones. The direct measure of beta is tricky unless an epidemic is completed. However, an indirect approach

indicated by Chávez et al. [42] can be adopted to estimate the β for R0.

R0 =
β(µ+ ξ)

µ+ ξ + ε

{
(1− ρ)

(
η2

k4

)
+ ρ

[(
σ

k1k3

)(
η1τ

k6
+ 1

)]}
(14)
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Figure 6: Parameter Estimation

The ordinary least squares (OLS) scheme is used to estimate the Tab 7 paramters. Since the observed data

values is assumed to have constant variance error distribution. So, we can write the estimation scheme as

Yi = f(ti,ΘOLS) + εi (15)

where Yi and ΘOLS are data observes and set of parameters involving fitting process respectively.

The optimized set of parameters can be obtained by minimizing the least squared sum over the set of estimated

parameters.

The Matlab tool is used to perform this optimization under the trust-region-reflective algorithm to find the

best fit of the selected parameters. The bootstrap method suggested by the Efron and Tibshirani [43] to use the
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associated 95 % confidence intervals.

Θ̂OLS = arg min
Θ∈Ω

n∑
i=1

[Yi − f(ti,Θ)]2 (16)

Table 1: Parameter Estimates for Different Countries
Parameters Italy Spain India Pakistan

β 1.4 (1.3-1.4) 2.2 (2.1-2.4) 0.87 (0.85-0.91) 0.68 (0.66-0.71)

σ 0.33 (0.31-0.35) 0.11 (0.11-0.12) 0.19 (0.19-0.2) 0.15 (0.15-0.16)

γ 0.099 (0.094-0.1) 0.15 (0.14-0.17) 0.12 (0.11-0.14) 0.11 (0.10-0.12)

ε 0.11 (0.10,0.12) 0.054 (0.05-0.066) 0.079 (0.074-0.082) 0.065 (0.062-0.068)

ρ 0.8 (0.79-0.81) 0.74 (0.73-0.75) 0.72 (0.71− 0.73) 0.66 (0.65-0.68)

R0 1.1408 2.6327 1.3144 1.2303

Table 2: Estimates of R0 for Different Epidemic Phases

R0 Italy Spain India Pakistan

Initial Phase 2.15 2.59 1.3144 1.2303

Up to Middle Phase 2.99 3.7 - -

Up to Now 1.1408 2.6327 1.3144 1.2303

We note that the values of R0 = 1.31 and 1.23 respectively for India and Pakistan are relatively small considering

that the outbreak there is still in the growth phase. There has been a lot of speculation regarding why the

outbreak in these countries has been less severe, but nothing conclusive can be said. The low value of the contact

rate could mean either an effective quarantine or the probability of infection being lower. We also note that the

proportion of asymptomatic individuals is 72% and 66% respectively in India and Pakistan, this is consistent with

other estimates for a wider population as well.

For Italy where the epidemic curve is falling due to the strict lock down, we note that the value of R0 comes

out to be 1.14, similarly for Spain R0 comes out to be 2.6, the values seems to be on the higher side and can be

attributed to a sharp increase in the number of cases around week 7.The asymptomatic population is estimated

to be 80% an 74% for Italy and Spain, again within the range of estimates in the literature.

8 Control Strategies for the Outbreak

The theory of optimal control developed by Lev Pontryagin and his collaborators is used for models where the

underlying dynamics are governed by systems of differential equations. The ’Pontryagin’s maximum principle’

algorithm allows us to minimize a ’cost functional’ subject to differential equation constraints. It has found wide

application in biological models including epidemic models [25, 26, 29]. The goal here is to reduce the infected

population by means of specific controls, which may appear as time dependent parameters in the model, while

minimizing the required resources. The algorithm is implemented by appending an adjoint system of differential

equations having a terminal conditions along with the original state system. Further details regarding Optimal

Control and adjoint system can be found in [36], [37]. In our study numerical results are produced using the

forward (state system) backward (adjoint system) sweep method with a fourth-order backward Runge-Kutta

method.

In this paper, we we devise optimal control strategies for quarantine of susceptibles and the isolation and medica-

tion of infected individuals that will reduce the infection while keeping the cost at a minimum. The cost includes

the costs associated with the disease burden, as well as the cost of implementing the control strategy.
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8.1 Optimal Medication with Isolation and Quarantine

In the recent COVID-19 pandemic, the most effective and widely used method to reduce the infection has been the

quarantine of the susceptible population, along with isolation of the confirmed infected individuals. We now have

the possibility of having medication available to help control the outbreak as mentioned in section 1 Introduction.

In this section, we determine time dependent strategies for the medication rate αI , isolation rate τ and the rate

of quarantine ε to effectively control the infected population and at the same time keeping the associated cost

low. Let U be the control set defined for the three parameters αI , τ, ε

U = {αI(t), τ(t), ε(t) : 0 ≤ αI(t), τ(t), ε(t) ≤ ζi, 0 ≤ t ≤ T, 0 < ζi ≤ 1, i = 1, 2, 3}

here αI(t), τ(t), ε(t) are Lebesgue measurable and ζi,∀i = 1, 2, 3 are positive numbers which are maximum val-

ues for the respective parameters. Our main objective to minimize the functional involving the infected sub

populations along with the described control parameters.

J [αI , τ(t), ε(t)] =

∫ T

0

(
I(t) +A(t) +

1

2
W1α

2
I(t) +

1

2
W2τ

2(t) +
1

2
W3ε

2(t)

)
dt (17)

where Wi for i = 1, 2, 3 are cost balancing coefficients assigned to the medication,isolation and susceptible quar-

antine parameters, these are needed as the parameters themselves have values between 0 and 1, while the infected

population is in the thousands, further they can be used to assign relative importance to the different control

parameters. Our focus is to find the optimal values for the control parameters α∗I(t), τ
∗(t), ε∗(t) such that

J [α∗I(t), τ
∗(t), ε∗(t)] = min

(αI ,τ,ε)∈U
J [αI(t), τ(t), ε(t)]

We are interested in studying the effects that medication may have on quarantine and isolation strategies. With the

rising socio economic cost of a strict quarantine and the burden on health facilities to isolate infected individuals

effective medication may alleviate some of the factors. We would also like to look into the costs associated with

using medication along with quarantine and isolation to control the epidemic.

Our main result for this section is given below. For the details of formulation of the Hamiltonian and the adjoint

system along with finding the optimality conditions the reader is referred to the Appendix.

Theorem 8.1. There exist unique optimal controls α∗I(t), τ
∗(t), ε∗(t), represented in (25), which minimize the

functional J over the control set U . Also, there exists an adjoint system of φ′is such that the optimal medica-

tion,isolation and quarantine (susceptible) are characterized as (24).Moreover, The adjoint system (24) satisfies

the transversality conditions {φi(T ) = 0, i = 1, 2, · · · , 10}.

8.2 Control Strategies and Comparison

We determine the optimal quarantine (ε(t) and isolation τ(t)) strategies when medication is available, we also

consider the case when no medication is available. We would like to compare the quarantine and isolation

strategies in both scenarios, this will help us understand the role medication may play in easing strict lock downs

and isolation. We also determine the optimal medication strategy αI and the costs associated with implementing

these strategies.
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Figure 7: Optimal control comparison

The Fig. 7(a) shows that there is a reduction in cost when medication is used in addition to quarantine and

isolation, this may appear counter intuitive at first, but we note that the cost includes the cost of disease burden

in addition to the cost associated with applying the control strategy itself.

This idea is made clearer by Fig7(b) in which the total optimal infected population over time is given under two

and three controls. We see that the addition of medication as a control mechanism reduces the infected population,

thereby reducing the cost which includes the disease burden. In Fig.7(c,d), isolation and quarantine strategies are

shown in the presence and absence of medication. These graphs clearly indicate that using medication significantly

reduces the quarantine and isolation rates needed to control the outbreak. This decrease is observed in both the

time of maximum quarantine and isolation and the faster decrease in the rates over time.

We now consider the quarantine strategies for a variety of realistic contact rates β and for different medication

efficacies θM . The efficacy of medication is defined in terms of reducing the time it takes to recover from the disease

once medication is started. As noted in the Introduction, several promising treatments are being evaluated, all

of these in initial trials have reduced the symptoms and infectiousness. We note that for a higher contact rates

and we require a more strict quarantine to be in place, this is reflected in the fact that the maximum rate of
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Figure 8: Optimal control comparison

quarantine has to be maintained for a longer time and the drop in the quarantine rate is slower for higher contact

rates. We also see that for lower medication efficacy, reflected in the average time for recovery after medication
1
θ
, a stricter quarantine must be put in place and and eased at a a slower rate over a longer period of time. Our

main finding is that the availability of medication will help in easing the strict quarantine in place, moreover the

cost of implementing the control strategies (which includes the cost of disease burden) is also reduced with the

availability and use of medication.

9 Conclusion

The study considered a compartmental model for the transmission dynamics and control of COVID-19. We

included quarantine, isolation as well as medication as possible control mechanisms for the disease. We look

into how the availability of medication may affect the control strategies in place, specially the strict quarantine

measures. We also studied how these measures depend on the rate and efficacy of the medication.

This model was an extension of an earlier model [24] incorporating a ’treatment’ compartment. We established

the existence of a threshold quantity R0 and showed that the disease dies out whenever R0 < 1 and is endemic in

the population if R0 > 1, which basically means that in order to control the disease measures should be taken to

reduce R0 to be less than 1. We also calculate the final size of the epidemic. We look at how R0 depends on the

quarantine rate and the rate and efficacy of the medication. Our results show that using realistic values for the

rate and efficacy of the treatment we still need to quarantine the susceptible population albeit at a smaller rate.

We further study how the rate and efficacy affect the average time needed to stay in quarantine, our results show

that with the availability of effective medication the average time in quarantine is significantly reduced. This

leads us to conclude that once medication is available to a wider population the lock down measures can be eased.

We estimated R0 for four different countries. India and Pakistan, where the curve is still rising, have shown very

different COVID-19 transmission dynamics. The initial growth rates have been much slower with a much lower

mortality rate as compared to China, Europe and North America. At this stage of the epidemic, R0 has been

estimated to be 1.35 and 1.2 respectively. In Spain and Italy where the epidemic curve is now falling, after a

strict lock down was imposed, R0 has been estimated to be 1.28 and 1, 12 respectively. We further provided an

estimate of the proportion of asymptomatic individuals in the population, this comes out to be around 25% which

is in agreement with other studies.

We next looked at effective control measures. Using sensitivity analysis we concluded that R0 was most sensitive

to the contact rate β, the rates of entering and leaving quarantine, ε and ξ respectively and the rate of medication
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of the infected population αI . Using this information we used optimal control theory to devise optimal quarantine,

isolation and medication strategies. We also compared the strategies in the availability and non availability of

medication. We observe that that quarantine is less severe when treatment is available. Moreover, we looked

at the required quarantine rate for effectively controlling the disease, in the presence of medication for different

realistic values of the contact rate and efficacy of the medication.

This study was motivated by the positive news regarding initial clinical trials of some plausible treatments for

COVID-19. Thus far the only effective control measures were non pharmaceutical interventions including social

distancing measures, quarantine and isolation, all of which have had a socio-economic cost. Many countries have

started to relax these measures despite serious reservations expressed by the health authorities due to economic

and political reasons. We have shown that with the availability of effective medication it may be possible to relax

some of the measures while keeping the outbreak under control. However, our study also shows that along with

treatment some level of social distancing will have to be maintained, at least until a vaccine is found. Quarantine

and Isolation measures have resulted in bring down the value of R0 in Spain and Italy significantly, while in

India and Pakistan where the outbreak is still in the growth phase, R0 values at the moment are low, however

any premature relaxation in the lock down, specially till medication is widely available may result in much more

severe outbreak.
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A Appendix

A.1 Proof of Lemma 3.1

Proof. Adding the equations of model (2),this results in change in total population as

dN

dt
= Π− µN − (δI + δQ) ≤ Π− µN

dN

dt
≤ Π− µN (18)

It follows that

N(t) ≤ N(0)e−µt +
π

µ

(
1− e−µt

)
(19)

Thus model (2) solutions exists for given initial conditions, and are eventually bounded on every finite time

interval.

A.2 Proof of Lemma 3.2

Proof. Using (18) and (19), it follows that as time approaches to infinity t → ∞, the population is bounded by

the positive number so the set D

N(t) ≤ Π

µ

therefore, the set D is positively invariant.

A.3 Proof of Lemma 4.2

Proof. Consider the Lyapunov function for model (2).

L = h1E + h2QE + h3I + h4A+ h5QA + h6QI + h7M (20)

where

h1 =
(νκE + k2σ) (η4k6αI + η1k7τ + k6k7 + η4ταQ)

k1k2k3k6k7
+
κEωE (η1k7 + η4αQ)

k1k2k6k7

h2 =
ωE (η1k7 + η4αQ)

k2k6k7
+
ν (η4k6αI + η1k7τ + k6k7 + η4ταQ)

k2k3k6k7

h3 =
η4 (k6αI + ταQ)

k3k6k7
+
η1τ + k6

k3k6
, h4 =

η3κa
k4k5

+
η2

k4
,

h4 =
η3

k5
, h5 =

η3

k5
, h6 =

η1

k6
+
η4αQ
k6k7

, h7 =
η4

k7

The Lyaponov derivative L̇ is given as

L̇ = h1Ė + h2Q̇E + h3İ + h4Ȧ+ h5Q̇A + h6Q̇I + h7Ṁ

= h1 (ρλS − k1E) + h2 (κEE − k2QE) + h3 (σE + νQE − k3I)

+ h4 ((1− ρ)λS − k4A) + h5 (κAA− k5QA) + h6 (τI + ωEQE − k6QI)

+ h7 (αII + αQQI − k7M)

L̇ = S (h1λρ− h4λ(ρ− 1)) + h5 (Aκa − k5Qa)− g4k4A+ h3 (νQE + σE − k3I)

+ h2 (κEE − k2QE) + h6 (ωEQE − k6QI + τI)− h1k1E + h7 (IαI +QIαQ − k7(M))
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Since S(t) ≤ N ∈ D, Thus

L̇ ≤ (I + η1QI +Aη2 + η3Qa + η4M) (R0 − 1) (21)

Thus, if L̇ ≤ 0 if R0 ≤ 1 with L̇ = 0 iff E = 0, QE = 0, I = 0, A = 0, QA = 0, QI = 0 and M = 0.

Additionally, the super compact set {(S,QS , E,QE , I, A,QA, QI ,M,R) ∈ D : L̇ = 0} is the singleton F0. Thus,

LaSalle Invariance Principle Theorem 6.4 [33] guaranties that every solution to the model (2) initial conditions

from D converge to DFE F0 as t→∞. Hence, (E,QE , I, A,QA, QI ,M)→ (0, 0, 0, 0, 0, 0, 0) as t→∞, It follows

that {(S,QS , E,QE , I, A,QA, QI ,M,R)} → (S∗, Q∗S as t→∞ for R0. Hence, F0 is GAS ∈ D for R0.

A.4 Proof of theorem 4.4

Proof. Since m = 1, n = 7 and k = 2, the above matrices can be written as

D = [1], Π =



ρ

0

0

1− ρ
0

0

0


, b =



0

0

1

η2

η3

η1

η4



T

, W =



0 0

0 0

γ 0

θA 0

ωA 0

θ 0

θM 0



T

(22)

g(u, v, w) = (π + ξQs − (µ+ ε)S) , h(u, v, w) =

[
−µR

εS − (ξ + µ)QS

]

Consider the formulation of the m-dimentional row vector

Γ = [Γ1,Γ2, · · · ,Γm] = βbV −1ΠD (23)

It follows from the theorem 2.1 from Arino et.al[34], R0 = Γy(0). Also, the final size can be computed as

ln

(
S(0)

S(∞)

)
= βbV −1ΠD(v(0)− v(∞)) + βbV −1u(0)

=⇒ ln

(
S(0)

S(∞)

)
= ΓD−1(v(0)− v(∞)) + βbV −1u(0)

=⇒ ln

(
S(0)

S(∞)

)
=
R0

v(0)
(v(0)− v(∞)) + βbV −1u(0)

Thus,with the given initial conditions u(0), v(0), the final size of epidemic is represented by (8).

A.5 Proof of Theorem 4.5

Proof. Let X = {x ∈ R10
+ | E = QE = I = A = QA = QI = M = 0} (that is, X is the disease-free subspace). Let

M = D∩X. Note that both X, as well as M , are positively invariant. F′ ∈M and it attracts all the trajectories

in X. F′ is asymptotically stable in X. Hence F′ is isolated in X. Corollary 4.7 in [39] (where M = B ∩ X,

Ω(M) = {F′}, T = 1, P (1, E0) is eA(E0)), together with Proposition 4.1 and Lemma 3.1 in [39], imply that {F′}
is uniformly weakly repelling. Then, from Theorem 8.17 in [40] we have that the semi-flow generated by (2.4) is

uniformly weakly ρ-persistent. From the positive invariant of D, we have that (2.4) is point dissipative. Then,

according to Theorem 2.28 in [40], there exists a compact attractor of points for the model (2). This, together

with uniformly weakly ρ-persistent imply (11).
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A.6 Proof of Theorem 8.1

Proof. The Hamiltonian can be written as

H =
1

2
W1α

2
I +

1

2
W2τ

2 +
1

2
W3ε

2 + I +A+ φ1

(
Π + ξQS − (λ+ µ+ ε)S

)
+ φ2

(
εS − (µ+ ξ)QS

)
+ φ3

(
ρλS − (κe + µ+ σ)E

)
+ φ4

(
κEE − (ωE + µ+ ν)QE

)
+ φ5

(
νQE + σE − (γ + δI + µ+ τ + αI) I

)
+ φ6

(
(1− ρ)λS − (θA + κA + µ)A

)
+ φ7

(
κAA− (ωA + µ)QA

)
+ φ8

(
ωEQE + τI − (δA + θ + αQ + µ)QI

)
+ φ9

(
αII + αQQI − (θM + µ)M

)
+ φ10

(
θAA+ ωAQA + θQI + γI + θMM − µR

)
One can find that the Integrand J(·) is convex with respect to the control variables αI , τ and ε. By lemma

(3.1) ,the state model (2) solutions are bound above N(t) ≤ Π
µ

, ∀t > 0.Moreover, The model follows Lipschitz

property to the state variables. The convexity of the integrand J , boundedness of solutions of the state model and

Lipschitz property guarantee us the optimal values of the control variables over the set U solutions [35]. Hence,

establishing the existence of the control variables. The adjoint system is a acquired by means of Pontryain’s

Maximum principle conditions

dφ1

dt
= −∂H

∗

∂S
, φ1(T ) = 0

dφ2

dt
= −∂H

∗

∂QS
, φ2(T ) = 0

...
...

...

dφ10

dt
= −∂H

∗

∂R
, φ10(T ) = 0

The adjoint system is given as

dφ1

dt
=(µ+ ε+ λ)φ1 − εφ2 − ρλφ3 − (1− ρ)λφ6

dφ2

dt
=(µ+ ξ)φ2 − ξφ1

dφ3

dt
=(µ+ σ + κE)φ3 − κEφ4 − σφ5

dφ4

dt
=(µ+ ν + ωE)φ4 − νφ5 − ωEφ8

dφ5

dt
=− 1 +

βSφ1

N
− βρSφ3

N
+ (µ+ γ + τ + δI + αI)φ5 −

β(1− ρ)Sφ6

N
− τφ8 − γφ10 − φ9αI (24)

dφ6

dt
=− 1 +

η1βSφ1

N
− η1βρSφ3

N
+ (µ+ θA + κA)φ6 −

η1β(1− ρ)Sφ6

N
− κAφ7 − θAφ10

dφ7

dt
=
η2βSφ1

N
− η2βρSφ3

N
− η2β(1− ρ)Sφ6

N
+ (µ+ ωA)φ7 − ωAφ10

dφ8

dt
=
η3βSφ1

N
− η3βρSφ3

N
− η3β(1− ρ)Sφ6

N
+ (µ+ θ + δQ + αQ)φ8 − θφ10

dφ9

dt
=
βη4Sφ1

N
− βη4ρSφ3

N
− βη4(1− ρ)Sφ6

N
+ (µ+ θm)φ9 − θmφ10

dφ10

dt
=µφ10
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The optimality condition gives:

∂H∗

∂αI
= 0 =⇒ αI =

(
I(φ5 − φ9)

W1

)
∂H∗

∂τ
= 0 =⇒ τ =

(
I(φ5 − φ8)

W2

)
∂H∗

∂ε
= 0 =⇒ ε =

(
S(φ1 − φ2)

W3

)
Since the control are bounded in set in U , setting the max limits to the controls αI ,τ and ε by ζ1,ζ2 and ζ3
respectively. The optimal controls becomes:

α∗I(t) = min

[
ζ1,max

(
0,
I(φ5 − φ9)

W1

)]
τ∗(t) = min

[
τmax,max

(
0,
I(φ5 − φ8)

W2

)]
(25)

ε∗(t) = min

[
εmax,max

(
0,
S(φ1 − φ2)

W3

)]

The uniqueness of optimal controls followed from the uniqueness of the optimal uniqueness of the optimality

systems ( state and adjoint).

B Tables

Variable Description

N Total population

S Susceptible individuals

E Individuals Exposed to corona virus

QS Individuals susceptible Quarantined

I Individuals Infected with corona virus

A Asymptomatic Individuals

QE Quarantine of Exposed individuals

QI Isolated individuals

QA Quarantine of Asymptomatic individuals

M Medication of individuals

R Recovered from corona virus

Table 3: Description of the variables of the model
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Parameters Description Values

Π Recruitment rate of humans 100 Assumed

µ Natural death rate of humans 60 years Assumed

δI Disease-induced death rate individuals 0.065 day−1 Estimated

δQ Disease-induced death rate of isolated individuals 0.04 day−1 Assumed

ν Rate of infectious of Exposed Quarantined individuals 0.4 Assumed
1
σ Incubation rate of susceptible individuals 3− 5 days [23, 38]
1
γ Recovery rate of infected individuals 10 days [23, 38]

β Effective contact rate 0.8− 1.5 [23]

ρ Probability of getting exposed to covid-19 40% = 0.4 [23]

τ Isolation rate of infected individuals 0.2 [23]

αI medication rate of infected individuals 0.2 Assumed

κE Quarantine rate of Exposed individuals 0.4 Assumed

κA Quarantine rate of Asymptomatic individuals 0.4 Assumed

ωE Isolation rate of Exposed Quarantined individuals 0.1 Assumed

ωA Recovery rate of Exposed Asymptomatic individuals 0.1 [23, 38]

θA Recovery rate of Asymptomatic individuals 0.3 [23, 38]

θ Recovery rate of Isolated individuals 0.3 [23, 38]

θM Recovery rate of medicated individuals 0.4 Assumed

ε susceptible Quarantine rate of Susceptible individuals 0.5 Assumed

ξ Waning rate of susceptible quarantined individuals 0.4 Assumed

to susceptible class

η1 Modification parameter for relative infectiousness 0.2 Assumed

of Isolated individuals

η2 Modification parameter for relative infectiousness 0.5 [23]

of asymptomatic individuals

η3 Modification parameter for relative infectiousness 0.2 Assumed

of asymptomatic quarantined

η4 Modification parameter for relative infectiousness 0.2 Assumed

of medication

Table 4: Description of the parameters of the model
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