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ABSTRACT 

 

In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan,             

People’s Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2)            

presumed to have jumped species from another mammal to humans. This virus has caused a               

rapidly spreading global pandemic. To date, thousands of cases of COVID-19 have been             

reported in England, and over 25,000 patients have died. While progress has been achieved in               

managing this disease, the factors in addition to age that affect the severity and mortality of                

COVID-19 have not been clearly identified. Recent studies of COVID-19 in several countries             

identified links between air pollution and death rates. Here, we explored potential links             

between major air pollutants related to fossil fuels and SARS-CoV-2 mortality in England.             

We compared current SARS-CoV-2 cases and deaths recorded in public databases to both             

regional and subregional air pollution data monitored at multiple sites across England. The             

levels of multiple markers of poor air quality, including nitrogen oxides and sulphur dioxide,              

are associated with increased numbers of COVID-19-related deaths across England, after           

adjusting for population density. We expanded our analysis using individual-level data from            

the UK Biobank and showed that particulate matter contributes to increased infectivity. We             

also analysed the relative contributions of individual fossil fuel sources on key air pollutant              

levels. The levels of some air pollutants are linked to COVID-19 cases and adverse outcomes.               

This study provides a useful framework to guide health policies in countries affected by this               

pandemic. 

 

Keywords: SARS-CoV-2, COVID-19, air pollution, nitrogen oxides, ozone, PM​2.5​, PM ​10​, 

SO ​2​, mortality. 
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ABBREVIATIONS 

AIC Akaike Information Criterion 

AQ Air quality  

BEIS Business, Energy and Industrial Strategy 

CI Confidence intervals 

CoV Coronavirus 

COVID-19 Coronavirus disease 19 

DEFRA Department for Environment, Food and Rural Affairs 

DfT Department for Transport 

GHGI Greenhouse Gas Inventory 

HGV Heavy goods vehicle 

LGV Light goods vehicle 

MPRN Meter point reference numbers 

NAEI National Atmospheric Emissions Inventory  

NHS National Health Service  

PCA Principal component analysis 

PM Particulate matter 

PM ​2.5 Particulate matter with an aerodynamic diameter < 2.5 µm 

PM ​10 Particulate matter with an aerodynamic diameter < 10.0 µm 

PHE Public Health England 

SARS Severe acute respiratory syndrome 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
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INTRODUCTION 

 

In December 2019, a high number of pneumonia cases with an unknown aetiology were              

detected in Wuhan, China. A molecular analysis of samples from affected patients revealed             

that their symptoms were caused by an infection with a novel coronavirus, later named severe               

acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), the pathogenic          

agent of coronavirus disease 19 (COVID-19) ​1​. Coronaviruses are a genus of enveloped,             

non-segmented, positive-sense RNA viruses belonging to the family Coronaviridae and          

classified within the Nidovirales order ​2​. Historically, illnesses caused by coronaviruses have            

ranged in severity, with some, including human coronaviruses-229E and -OC43, causing           

common cold symptoms, but SARS-CoV and Middle East respiratory syndrome coronavirus           

have initiated outbreaks of life-threatening pneumonia ​2​. While the initial symptoms of            

COVID-19 include fever with or without respiratory syndrome, a crescendo of pulmonary            

abnormalities may subsequently develop in patients ​3​. According to recent studies, most            

patients present with only a mild illness, but approximately 25% of hospital-admitted patients             

require intensive care because of viral pneumonia with respiratory complications ​4​. 

While extensive research into the pathogenesis of COVID-19 suggests that the severe disease             

likely stems from an excessive inflammatory response ​5​, the exact predisposing factors            

contributing to an increased clinical severity and death in patients remain unclear. Individuals             

over the age of 60 years or with underlying health conditions, including cardiovascular and              

chronic respiratory diseases, diabetes, and cancer, are at the highest risk of a severe disease               

and death ​6​. Long-term exposure to air pollutants has been shown to be a risk factor                

mediating the pathogenesis of these health conditions ​7​. In fact, prolonged exposure to             

common road transport pollutants, including nitrogen oxides, sulphur dioxide and          

ground-level ozone, significantly exacerbates cardiovascular morbidity, diabetes, airway        

oxidative stress and asthma ​8,9​. These pollutants also cause a persistent inflammatory response             

and increase the risk of infection with viruses that target the respiratory tract ​10-12​. In addition,                

airborne particulate matter (PM) was recently shown to increase the viability of            

SARS-CoV-2, suggesting direct microbial pathogenic transmission through the air and          

increased opportunity for infection in highly polluted areas ​13​. The geographical patterns of             

COVID-19 transmission and mortality among countries, and even among regions of single            

countries, closely align with local levels of air pollutants ​11​. For example, increased             
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contagiousness and COVID-19-related mortality in northern Italian regions, including         

Lombardia, Veneto and Emilia Romagna, have been correlated with high levels of air             

pollutants in these regions ​11​. Here, we explored the relationship between air pollution and              

COVID-19 using an approach that combines both population- and individual-level data. We            

first investigated potential links between regional and subregional variations in air pollution            

and COVID-19-related deaths and cases in England by employing coarse and fine resolution             

methods. Next, we addressed the associations between several air pollutants and the risk of              

COVID-19 infection at the individual scale by analysing UK Biobank data obtained from a              

cohort of 1450 subjects. Finally, we modelled the relationship between several fossil-fuel            

burning sources and annualised daily measurements for multiple air pollutants to identify the             

major sources of air pollutants contributing to increased deaths in England.   
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METHODS 

 

Data sources for COVID-19 deaths and cases  

The number of patients infected with SARS-CoV-2 in England was obtained from Public             

Health England (PHE) and analysed according to the following statistical regions: London,            

Midlands, Northwest, Northeast and Yorkshire, Southeast, East, and Southwest England.          

Region-level data on the cumulative number of SARS-CoV-2-related deaths in England was            

retrieved from the National Health Service (NHS) (Table 1). This source provides one of the               

most comprehensive region-specific records of COVID-19-related deaths in England. The          

daily death summary included the number of deaths of patients who died in hospitals in               

England and had tested positive for SARS-CoV-2 at the time of death. While this online               

repository is updated daily, figures are subject to change due to a ​post-mortem confirmation              

of the diagnosis. Local authority-level data on the cumulative number of COVID-19 deaths in              

England was provided by the Office for National Statistics (ONS) (Table 1). This repository              

includes deaths of patients who died in care homes or other places outside hospitals. All               

deaths are recorded as the date of death rather than the day on which the death was                 

announced. The cumulative number of local authority COVID-19 cases was provided by            

PHE (Table 1). Local authority-level data included the numbers of deaths and cases in              

England up to and including the 10th of April, approximately two weeks after the UK was                

placed into lockdown. 

 

Data sources for air pollution levels 

Air pollution data for 2018 were obtained from two sources. For the initial region-level              

analysis, we collected annual aggregated air quality (AQ) values determined by the European             

Environmental Agency based on direct observations obtained from multiple monitoring          

stations located across England. Due to incomplete or obsolete observations for several            

pollutants, we restricted our analysis to individual pollution indices for three major air             

pollutants, namely, nitrogen dioxide, nitrogen oxide and ozone, across the prespecified           

regions (Figure 2). Nitrogen dioxide, nitrogen oxide and ozone AQ values are reported in              

µg/m​3 and represent the annual average of daily measurements for each air pollutant from              

2018 to 2019 in each specified region. The identification of each monitoring station was              
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matched to each available city by accessing the Department for Environment, Food and Rural              

Affairs (DEFRA) website (Figure 1). This website contains a resource called the DEFRA’s             

Air Quality Spatial Object Register, which allows users to view and retrieve information on              

the air quality-related spatial and non-spatial data objects from the UK's Air Quality             

e-Reporting data holdings. The annual average values of daily measurements for each            

pollutant in each monitoring area were analysed to determine the effects of toxin exposure on               

the number of SARS-CoV-2 cases and deaths across England (Figure 1). 

 

For the analysis at the level of local authorities, we used the Pollution Climate Mapping data                

from the UK Air Information Resources (Table 1). This repository contains information from             

hundreds of air quality stations located across England for multiple pollutant molecules            

(ozone, nitrogen oxides, PM ​2.5​, PM ​10​, and sulphur dioxide). All data represent annual average             

values of daily measurements for 2018 and are reported in µg/m​3​, except for ozone, whose               

metric is the number of days on which the daily max 8-hr concentration is greater than 120                 

µg/m​3​. A detailed quality report regarding this data is available at the following website:              

https://uk-air.defra.gov.uk/assets/documents/reports/cat09/1903201606_AQ0650_2017_MA

AQ_technical_report.pdf ​. We obtained the longitude and latitude of each local authority           

using OpenCage Geocoder ( ​https://opencagedata.com/ ​). The air pollutant levels for each          

authority was approximated by averaging 10 values nearest the centre of authority. This area              

covers approximately 12 km​2​. Detailed descriptions of the methodology and analysis           

workflow are available in our GitHub repository. For the UK Biobank data, we matched the               

location coordinate each participant reported to their nearest modelled value. The level of             

each pollutant was measured less than 2 km away from the self-reported address.  

 

Subnational fossil fuel consumption data 

Subnational fossil fuel consumption statistics were derived from the Department for           

Business, Energy and Industrial Strategy (BEIS) online data repository, which represents the            

most authoritative and up-to-date source of fossil fuel emissions in the UK. Local             

authority-level fossil fuel consumption estimates are produced as part of the National            

Atmospheric Emissions Inventory (NAEI) work programme on fuel consumption from road           

transport, manufacturing industry and other sources. Fuel consumption data from road           

transport is determined using a bottom-up approach that combines fleet-weighted fuel           
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consumption factors (in g of fuel/km) for each main vehicle type (bus, cars, motorcycles,              

light-goods vehicles (LGV) and heavy-goods vehicles (HGV)) with traffic activity data           

provided by the Department for Transport (DfT). Estimates of road transport consumption are             

based on five vehicle types (buses, cars, motorcycles, HGV and LGV) and two fuel types               

(petrol and diesel). Road transport consumption is further categorised according to road class             

(motorways, A-roads and minor roads) to account for road-type variations in traffic volumes             

across the country.  

Residual fuel consumption by the consuming sector was calculated by Ricardo Energy &             

Environment using the NAEI distribution maps and energy consumption estimates for point            

sources at known locations    

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_dat

a/file/833214/UK_sub-national_residual_fuel_consumption_for_2005-2017_Estimates_of_no

n-gas_non-electricity_and_non-road_transport_energy.pdf). Residual fuels are defined as      

non-gas, non-electric and non-road transport fuels not used for the generation of electricity or              

road transport. This dataset is derived from the results of the NAEI and Greenhouse Gas               

Inventory (GHGI) survey conducted by Ricardo Energy & Environment on behalf of BEIS             

and excludes fuel used in aviation, shipping and power stations. Sources of fuel for this               

category included petroleum, coal, bioenergy and waste and the sectors considered included            

public administration, agriculture, industry, commercial, domestic and rail. Data for          

subnational fuel consumption statistics is reported in tonnes of oil equivalent (ToE), which is              

a unit of energy defined as the amount of energy released by burning one tonne of crude oil. 

Annualised and weather-corrected gas consumption data were obtained from Xoserve, which           

generates annualised consumption estimates for all meter point reference numbers (MPRN)           

or gas meters on behalf of BEIS. The classification of domestic and non-domestic             

(commercial and industrial) is based on the gas industry standard cut-off point of 73,200              

kWh. The weather correction factor used by Xoserve accounts for variations in regional             

temperature, domestic use and wind speed, enabling comparisons of gas use over time while              

controlling for changes in weather. Average domestic and industrial and commercial           

consumption are reported as sales per meter in kilowatt hours (kWh). Local authority-level             
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gas statistics were obtained based on the aggregation of MPRN readings throughout England,             

generated as part of BEIS’s annual meter point gas data exercise.  

UK Biobank data sources 
We used data from the UK Biobank under application #60124. Details regarding the             

geographical regions, recruitment processes, and other characteristics have been previously          

described ​14​, and are found on ukbiobank.co.uk. The UK Biobank has received ethical             

approval from the North West – Haydock Research Ethics Committee, 11/NW/0382 to gather             

data from participants. A detailed list of the variables analysed in the present study is               

presented in Supplementary Table 1. Notably, we defined hypertension using the criteria of a              

diastolic blood pressure ​≥​ 90 mmHg OR systolic blood pressure ​≥​140 mmHg. 

 

Regional heatmaps 

Heatmap legends were generated using GraphPad Prism 8 (www.graphpad.com), and regions           

are labelled with the mapped colour values. 

 

Statistical analysis 

In our regional exploratory analysis, we fitted generalised linear models to our data using              

COVID-19 deaths and cases as the outcomes and nitrogen oxide, nitrogen dioxide and ozone              

as the exposures of interest, adding the corresponding population density values as a             

confounding variable. Population density (person/km​2​) data correspond to subnational         

mid-year population estimates of the resident population in England for 2018 and excludes             

visitors or short-term immigrants (< 12 months). We modelled both the number of cases and               

deaths using negative binomial regression analyses since the response variables are           

overdispersed count data. We used the same model type for our subregional analysis, adding              

mean annual earnings and median age as confounding factors.  

For the UK Biobank models, we fitted a binomial regression model because the response              

variable, COVID-positive or -negative, is defined as either 0 or 1.  

For the analysis of fossil fuel consumption data, we employed multiple single pollutant             

models in which the dependent variables were the annual mean values of daily measurements              

of 4 air pollutants (nitrogen dioxide, nitrogen oxides, sulphur dioxide and ozone), and the              

independent variables included 21 sources of emissions from road transport, 9 from            
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commercial and industrial sites and 2 from gas consumption. As these variables represent             

distinct groups, we computed the principal components of each group to explore the potential              

contribution of each group to the increased concentration of individual air pollutants as             

previously described ​15,16​. We used an iterative variable selection procedure combining           

unsupervised stepwise forward and stepwise backward regression analyses to further          

determine the individual contribution of each pollution source. Stepwise regression is           

commonly used in air pollution studies ​17 and was therefore used to select the most suitable                

predictor or combination of predictors within each polluting category. Generalized linear           

models of the gamma family were utilized for positively skewed, non-negative continuous            

response variables (nitrogen dioxide, nitrogen oxide and sulphur dioxide) using the log link             

function. A generalized linear model of the Gaussian family was applied to ozone data.              

Methods for assessing the fit of the model included residual analyses, diagnostic tests, and              

information criterion fit statistics. The goodness of fit of each regression model was             

determined using the log-likelihood and Akaike Information Criterion (AIC) statistics.  

For all models, we calculated the odds or risk ratios and their 95% confidence intervals to                

quantify the effects of the independent variables on the response variables. The models were              

built using the MASS package ( ​www.stats.ox.ac.uk/pub/MASS4/ ​) in R. The comparison          

tables were generated using the Stargazer package ​18​. The analysis source code and detailed              

quality checks are available in GitHub ( ​https://m1gus.github.io/AirPollutionCOVID19/ ​).       

Statistical significance was defined as ​p​ ​≤​ 0.05. 
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RESULTS 

 

A link between regional nitrogen oxide and ozone levels and COVID-19 in England 

We analysed the associations between cumulative numbers of COVID-19 cases and deaths            

with the concentrations of three major air pollutants recorded between 2018 and 2019, when              

no COVID-19 cases were reported. Due to differences in data availability for each air              

pollutant, we only included annual mean values of daily measurements, which was the most              

consistent aggregation type reported for all air pollutants described in this analysis. We             

started by analysing publicly available data from seven regions in England (Table 1), where a               

minimum of 2,000 SARS-CoV-2 infections and 200 deaths were reported by PHE from             

February 1 to April 8, 2020, approximately two weeks after the UK was placed into               

lockdown (Figure 1). 

The spatial pattern of COVID-19 deaths matched the geographical distribution of           

COVID-19-related cases, with the largest numbers of COVID-19 deaths occurring in London            

and in the Midlands (Figure 2). According to previous studies, those two areas present the               

highest annual average concentration (μg/m​3​) of nitrogen oxides ​19​. In addition, ground-level            

ozone concentrations have been previously shown to vary significantly with latitude and            

altitude, depending on the ​concentration of ozone in the free troposphere, long-range            

transport and emission of its precursor ​20​. Therefore, we sought to determine if spatial              

variations in the levels of nitrogen oxides, in particular nitrogen dioxide (NO ​2​) and nitrogen              

oxide (NO), as well as ground-level ozone concentrations in England are associated with             

increased numbers of COVID-19 infections and mortality. We applied a negative binomial            

regression model to estimate the association between each air pollutant with the cumulative             

number of both COVID-19 cases and deaths at the regional level (Supplementary Tables 2              

and 3). The model was chosen based on the data type (count data) and log likelihood and AIC                  

scores ​21​. Population density, a confounding factor, was added to this model as an              

independent variable to account for differences in the number of inhabitants across regions.             

The levels of nitrogen oxide and nitrogen dioxide are significant predictors of COVID-19             

cases ( ​p ​< 0.05), independent of the population density (Supplementary Table 2). We next              

applied a similar method to assess the association with the number of COVID-19 deaths              

(Supplementary Table 3). Ozone, nitrogen oxide and nitrogen dioxide levels are significantly            

associated with COVID-19 deaths, together with the population density. 
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Taken together, the negative binomial regression models of both COVID-19 cases and deaths             

(Supplementary Tables 2 and 3) show that nitrogen dioxide, nitrogen oxide and ozone levels              

are significant predictors of COVID-19-related death, after accounting for the population           

density. This study provides the first evidence that SARS-CoV-2 cases and deaths are             

associated with regional variations in air pollution across England. 

 

Sulphur dioxide is a main contributor to increased numbers of COVID-19 deaths and             

cases at the subregional level 

We next sought to increase both the resolution and accuracy of our analysis. We gathered               

data on COVID-related cases and deaths from all the local authorities in England and              

expanded the number of the pollutant species (n=6). We also retrieved the longitude and              

latitude for each local authority. The levels of ozone, nitrogen oxide, nitrogen dioxide, PM              

with aerodynamic diameters of 2.5 and 10 µm (PM ​2.5 and PM ​10​, respectively), and sulphur              

dioxide are reported as averages of the 10 values measured nearest the centre of each local                

authority in England. Local authority-level population density, mean annual earnings and age            

in 2018 were included as potential confounding variables (Figure 1). We calculated the             

estimated regression coefficients of each variable and their respective mortality and           

infectivity rate ratios (Figure 3 and Supplementary Tables 4 and 5) relative to the different air                

pollutants mentioned. Higher nitrogen or sulphur dioxide levels predict an increase in            

COVID-19 deaths and cases. The levels of sulphur dioxide have a mortality rate ratio of               

1.172 [95% confidence interval (CI): 1.005-1.369] and infectivity rate ratio of 1.316 [95%             

CI: 1.141 - 1.521], indicating that a 1 µg/m​3 increase in the sulphur dioxide concentration will                

lead to 17.2% more deaths and 31.6% more cases. Both the levels of nitrogen oxides and                

dioxide show mortality and infectivity rate ratios of approximately 1.03 (Figure 3). The             

incidence rate ratios of cases and deaths for ozone levels are less than 1, indicating that higher                 

ozone levels lead to lower numbers of deaths and cases. PM ​2.5 and PM ​10 are negatively               

associated with the number of cases, and they are not significant predictors of the number of                

COVID-19-related deaths.  
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Levels of PM pollutants and nitrogen oxides are associated with an increase in             

SARS-CoV2 infections in UK Biobank participants living in England 

We next used information from the UK Biobank to further assess whether people exposed to               

increased pollution levels are more likely to contract SARS-CoV-2 at the individual scale.             

This resource contains data from more than half a million UK volunteers recorded across              

multiple years. As of the writing of this paper, the UK Biobank dataset contains COVID-19               

tests for 1,450 participants, of whom 669 were diagnosed as positive for COVID-19. The              

location of each subject included in the analysis is shown in Figure 4A. Compared to the                

local authority case model, the UK Biobank analysis provides a higher resolution air             

pollution estimate (less than 2 km away from their self-reported address) and includes             

potentially asymptomatic cases. 

In our model, we accounted for a list of confounding variables (Supplementary Table 1),              

which we selected based on a previous study ​22​. Our model identified PM ​2.5 and PM ​10 as                

significant predictors of increased SARS-CoV-2 infectivity (Figure 4B). The odds ratios are            

1.120 [CI: 1.036 - 1.211] and 1.074 [CI: 1.017 - 1.136] for PM ​2.5 and PM ​10​, respectively.                

While PM does not predict the numbers of deaths and cases at a subregional level, these                

pollutants are significant predictors of infectivity at an individual level. Similar to the             

subregional models (Figure 3), levels of nitrogen oxides and dioxide were predictors of             

increased infectivity with a lower impact than PMs, with an odds ratio of approximately 1.03               

(Figure 4B). Conversely, sulphur dioxide and ozone levels are not significant predictors of             

infectivity at the individual level, although they are predictors of deaths and cases at the               

subregional level (Figures 3 and 4B).  

We observed an association between current smokers and a lower likelihood of COVID-19             

positivity than previous and non-smokers. However, according to our model, population           

density and predisposing health factors, such as age, sex, diabetes and a previous history of               

cancer and lung problems, are not predictors of the probability of being infected             

(Supplementary Table 6). 

 

Fossil fuel emission levels are linked to pollutants that contribute to increased numbers             

of COVID-19 deaths 

We next collected national emission totals from DEFRA to identify the sources of air              

pollution associated with COVID-19. While no record for ozone and nitrogen dioxide            
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emissions was identified, road transport accounted for more than 30% of nitrogen oxide             

emissions from fuel combustion in the UK between 1993 and 2018, while manufacturing and              

energy industries accounted for approximately 16% and 25%, respectively (Supplementary          

Table 7). For sulphur dioxide, energy production and transformation emerged as the greatest             

pollution sources in 2018, accounting for 30% of overall emissions (Supplementary Table 8).  

We mapped fuel consumption by sector and fuel type in England against air quality values               

for nitrogen dioxide, nitrogen oxides, sulphur dioxide and ozone to assess individual            

contributions of fossil fuel consumption sources on air pollution levels. First, we calculated             

the principal components of each fossil fuel category (road transport, residual fuels and gas              

consumption) on pollutant levels (Supplementary Table 9). We then employed a Gaussian            

generalised linear model to characterise the effect of the first two principal components of              

each category on pollutant levels, after adding population density as a confounding variable.             

These models indicated that high levels of fossil fuel consumption from on-road vehicles,             

residual fuels and gas consumption significantly predicted increased nitrogen dioxide,          

nitrogen oxides, ozone and sulphur dioxide levels (Supplementary Table 9). Based on these             

results, increases in the levels of each group are associated with increased levels of air               

pollutants.  

We employed an iterative stepwise regression approach that aims to select the most suitable              

predictors of air pollution to elucidate the effects of individual fossil-fuel burning sources             

within each category (Supplementary Tables 10-13). We observed significant positive          

associations between annual average amounts of fuels consumed by A-road buses and            

nitrogen dioxide, nitrogen oxides and sulphur dioxide (Supplementary Tables 10-13).          

Contributions from residual fuel types (petroleum, coal, manufactured solid fuels and           

bioenergy and waste) were disaggregated by sector categories to assess the effects of the              

industrial, commercial and agricultural sector on air pollution levels. Among residual fuels,            

petroleum consumed by commercial non-road machinery shows one of the highest positive            

associations with increased levels of nitrogen oxides (odds ratio = 1.310, 95% CI: 1.092,              

1.587), nitrogen dioxide (odds ratio = 1.200, 95% CI: 1.026, 1.414) and ozone (odds ratio =                

8.503, 95% CI: 2.029, 35.626), while petroleum consumed by off-road agriculture equipment            

is negatively associated with the levels of both nitrogen dioxide and nitrogen oxides (Figure              

5B-C). In addition, petroleum used for rail transport is a significant contributor to both              

sulphur dioxide (odds ratio = 1.03, 95% CI: 1.009, 1.051) and nitrogen dioxide (odds ratio               
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=1.018, 95% CI: 1.000, 1.037) ground-level concentrations (Figure 5A-B), but not ozone            

levels, where an inverse relationship is identified (Figure 5D). Additionally, domestic           

consumption of manufactured fossil fuels emerges as one of the strongest predictors of the              

levels of nitrogen oxides (odds ratio = 1.266, 95% CI: 1.135, 1.416), nitrogen dioxide (odds               

ratio = 1.210, 95% CI: 1.094, 1.340) and sulphur dioxide (odds ratio = 1.350, 95% CI: 1.212,                 

1.508), but not ozone levels. Finally, we investigated if weather-corrected levels of domestic             

and non-domestic gas consumption predict air quality values in England. Potentially toxic            

ambient concentrations of nitrogen oxides are generated from gas combustion, particularly as            

a result of indoor household activities ​23​. After accounting for variations in population             

density, we observed positive associations between domestic gas consumption and both           

nitrogen oxides and dioxide levels in England (Supplementary Tables 10 and 11).  
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DISCUSSION 

 

Here, we identified associations between air pollution and COVID-19 deaths and cases in             

England, expanding on previous evidence linking high mortality rates in Europe with            

increased toxic exposure to air pollutants ​11,24​. Air pollution exposure and health impact             

estimates have been suggested to mainly depend on the resolution at which they are evaluated               
25​. Therefore, we first calculated the effects of air pollution on COVID-19 mortality and              

spread using regional, coarse resolution data, and then high-resolution, individual-level          

observations obtained from the UK Biobank. By employing finer resolution grids, we also             

show the relative contributions of individual fossil-fuel burning sources to ground-level           

measurements of air pollutants.  

 

According to our initial findings, regional variations in nitrogen oxide and ozone            

concentrations in England predict the numbers of COVID-19 cases and deaths, independent            

of the population density. However, overall uncertainties for modelled exposure estimates at            

the regional scale ​25 led us to achieve increased spatial resolution. Using highly granular,              

local authority-level measurements, we show an association between a 1 µg/m​3 increase in             

sulphur dioxide and nitrogen oxide levels with a 17% and approximately 2% increase in              

COVID-19 mortality, respectively. Notably, these findings are consistent with studies          

conducted during the previous SARS outbreak, where long-term exposure to air pollutants            

predicted adverse outcomes in patients infected with SARS in China ​26​. Although nitrogen             

oxides are key ozone precursors, the relationship between these gases and ozone is nonlinear              

in ozone chemistry ​27​. Therefore, the negative associations between ozone levels and            

COVID-19 infection and mortality may be attributed to reduced nitrogen oxide conversion to             

ozone in urban areas, a phenomenon previously reported for areas with heavy traffic ​20,28​. In               

addition, given the highly reactive nature of ozone, the inverse relationship between ozone             

levels and COVID-19 is consistent with increased nitric oxide scavenging close to points of              

emissions ​29​.  
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Although the molecular mechanisms underlying the relationship between pollutant exposure          

and COVID-19 remain to be determined experimentally, they are hypothesised to include the             

stimulation of chronic, background pulmonary inflammation ​24​. Chamber studies have shown           

that ambient PM, nitrogen dioxide and sulphur dioxide induce infiltration of the airways by              

inflammatory cells in healthy volunteers ​30-32​. In addition, exposure to these pollutants may             

inhibit pulmonary antimicrobial responses, reducing clearance of the virus from the lungs and             

promoting infectivity. Reduced phagocytic function is well documented after the exposure of            

macrophages to PM ​1-3 and is suggested to be the mechanism that enhances viral infection in                

mice exposed to nitrogen dioxide ​33​. 

 

At the individual level, our UK Biobank model indicated that exposure to PM ​2.5 and PM ​10               

increases the risk of COVID-19 infection, in addition to nitrogen oxides, which were             

previously identified in the regional analysis. This observation conforms to the hypothesis            

that viruses attach to air pollutants ​34​, potentially explaining the propagation of SARS-CoV-2             

and its infectious capacity. Estimations of the viral replication number R​0 thus must be              

informed by the local levels of PM. According to our models, demographic features such as               

age and gender do not alter risk of testing positive for COVID-19. Notably, non-smokers and               

past smokers are more likely to test positive than current smokers. While we did not               

investigate the mechanisms by which current smoking protects against hospitalisation due to            

COVID-19, our findings are consistent with a large body of evidence of a consistently lower               

prevalence of current smoking among COVID-19 patients and therefore require further           

investigation ​35​. Although the local authority model suggests a negative association of            

COVID-19 with PM ​2.5 and PM ​10​, the infection model generated using the UK Biobank data              

produced the opposite results. The conflicting results may arise from diverging testing            

methodologies in the population samples analysed. While government guidelines in England           

prioritised testing for symptomatic COVID-19 patients, asymptomatic individuals from the          

UK Biobank were subjected to COVID-19 testing. Since a large proportion of COVID-19             

infections are asymptomatic ​36,37​, the UK Biobank model represents a more accurate            

estimation of infection.  

 

Based on the purported association between air pollution and COVID-19, we also            

investigated the contribution of potential sources of key air pollutants to COVID-19 in             
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England. Among the industrial variables, petroleum combustion from non-road commercial          

machinery emerged as an important predictor of nitrogen dioxide, nitrogen oxide and ozone             

concentrations. These findings recapitulate previous observations of the estimated         

concentrations of nitrogen oxides and ozone discharged from stationary combustion sources           

and off-road mobile machinery ​38,39​. However, operating conditions, engine parameters and           

vehicle age substantially affect the composition of exhaust emissions ​40​, and thus more             

detailed information is necessary to construct improved emission models. Among the           

domestic variables, increased consumption of manufactured solid fuels was associated with           

higher levels of nitrogen oxides, nitrogen dioxide and sulphur dioxide, indicating a possible             

link between indoor fuel consumption and air pollution in England. As shown in previous              

studies, indoor air pollution aggravates the effects of respiratory disorders ​41​, and increasing             

evidence indicates that home isolation strategies have led to a considerable deterioration of             

indoor air quality following the COVID-19 outbreak ​42​. As the present study identifies             

nitrogen oxides ​and sulphur dioxide as important contributors to COVID-19 mortality, our            

results are consistent with the hypothesis that indoor air pollution may increase the risk of               

severe outcomes in COVID-19 patients and thus warrants further attention ​42,43​.  

  

Our findings, supported by results obtained from recent studies conducted in northern Italy ​11​,              

Europe ​24​, and the USA ​7,44​, suggest that exposure to poor AQ increases the risks of                

COVID-19 infection and mortality in the UK. Future studies may expand on these             

observations and address additional confounders, including comorbidities, race,        

meteorological trends and differences between regional health regulations and their ICU           

capacities. Nonetheless, air pollution factors should be considered when estimating the           

SARS-CoV-2 infection rate (R​0​). In addition, our results emphasise the importance of            

strengthening efforts to tighten air pollution regulations for the protection of human health,             

both in relation to the COVID-19 pandemic and for the mitigation of potential future              

diseases. 
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FIGURES & FIGURE LEGENDS 

 

 

Figure 1. Analysis workflow. 

This flowchart summarizes how raw data were extrapolated, processed and analysed. Blue            

indicates data sources, whereas red and green indicate the type of model employed and the               

final output, respectively. Population density data (person/km​2​) were derived from ONS and            

used to account for region-specific differences in population size across England; COVID-19            

case and death data were obtained from PHE, NHS and ONS, respectively. Air pollution data               

from each monitoring station were manually curated using DEFRA’s Air Quality Spatial            

Object Register and aggregated into statistical regions. ONS, Office for National Statistics;            

PHE, Public Health England; NHS, National Health Service; EEA, European Environmental           

Agency. 
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Figure 2. Regional heatmaps of COVID-19 and pollutants. 

Regional English heatmaps of reported deaths and diagnosed COVID-19 cases through April            

8, 2020 (top row), as well as AQ values for the indicated pollutants (bottom row). 
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Figure 3. Cases and deaths in local authorities.  

Summary of infectivity and mortality rate ratios and respective 95% CIs at the local authority               

level. Red indicates significant associations ( ​p ​≤ 0.05), while grey lines show a lack of               

significance ( ​p > 0.05). See also Supplementary Table 4 for a detailed description of the               

model.  

 

 

Figure 4. Distribution and infectivity data from the UK Biobank. ​A) Distribution of UK              

Biobank subjects included in the current analysis. B) Odds ratios and respective 95% CIs for               

the relationship between individual exposure to several air pollutants and the number of             

lab-confirmed COVID-19 cases.  
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Figure 5. Fossil fuel consumption and air pollution in England. ​Odds ratios and respective              

95% CIs of the effects of fossil fuel consumption stratified by sector and fuel type on A)                 

sulphur dioxide, B) nitrogen dioxide, C) nitrogen oxide and D) ozone levels. Results were              

normalised to the population density to account for variations in population size across the              

country. For simplicity, the figure only includes statistically significant ( ​p ​≤ ​0.05) sources of              

emissions and odds ratios greater than 1.01 or less than 0.99. 
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TABLES & TABLE LEGENDS 

 

Table 1. Summary of data sources.  

Data type Source  Download 
date 

Measuring units 

 
 

COVID-19 cases 

 
Public Health England 

(​https://coronavirus.data.gov.u
k/#region​)  

 
 

April 9, 
2020 

 
Lab-confirmed cases per 

region up to and including 
April 8, 2020 

 
 

COVID-19 deaths 
(regional) 

National Health System 
(​https://www.england.nhs.uk/s
tatistics/statistical-%20work-ar

eas/covid-19-daily-deaths/​)  

 
 

April 9, 
2020 

 
Cumulative death counts per 
region up to and including 

April 8, 2020 

 
 

COVID-19 deaths 
(subregional) 

Office for National Statistics 
(​https://www.ons.gov.uk/peopl
epopulationandcommunity/birt
hsdeathsandmarriages/deaths/b
ulletins/deathsregisteredweekl
yinenglandandwalesprovisiona

l/weekending1may2020/​ )  

 
 

April 28, 
2020 

 
Cumulative death counts per 

local authority up to and 
including April 10, 2020 

 
COVID-19 cases 

(subregional) 

 
Public Health England 

(​https://coronavirus.data.gov.u
k/​#LA) 

 
May 15, 

2020 

 
Cumulative cases counts per 

local authority up to and 
including April 10, 2020 

 
Nitrogen dioxide, 
nitrogen oxide and 

ozone 
concentrations  

European Environmental 
Agency (EEA) 

(​https://www.eea.europa.eu/da
ta-and-maps/data/aqereporting

-8​) 

 
 

April 7, 
2020 

 
 

AQ values (μg/m​3​) 
 

 
 

Subnational fossil 
fuel consumption 

statistics 

BEIS 
(​https://www.gov.uk/governm
ent/organisations/department-f
or-business-energy-and-indust
rial-strategy/about/statistics ​)  

 
 

April 29, 
2020 

 
 

Tonnes of oil equivalent 
(ToE) 
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Population data, 

mean annual 
earnings and 
median age 

 
Office for National Statistics 

(​https://www.ons.gov.uk​) 
 

 
 

April 17, 
2020 

 
Regional and subregional 

population density in 
England (person/km​2​). Age in 

years. Annual earnings in 
GBP.  

Air quality data 
(Pollution Climate 

Mapping) 

UK Air information resources 
(https://uk-air.defra.gov.uk/dat

a/pcm-data)  

May 2, 
2020 

AQ values (μg/m​3​), except 
for ozone: days in which the 
daily max 8-hr concentration 

is greater than 120 µg/m​3 

 
National emission 

totals 

DEFRA 
(​https://webarchive.nationalarc
hives.gov.uk/20200303104044
/https://www.gov.uk/governm
ent/statistics/emissions-of-air-

pollutants ​)  

 
May 5, 
2020 

 
National emission totals by 

sector expressed in thousands 
of tonnes of oil equivalent 

(kToE) 

This table summarises publicly available data sources used for the analysis.  

 

 

  

Page 24 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://www.ons.gov.uk/
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://webarchive.nationalarchives.gov.uk/20200303104044/https://www.gov.uk/government/statistics/emissions-of-air-pollutants
https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

CONFLICTS OF INTEREST 

The authors have no conflicts of interest to declare. 

 

AUTHORS’ CONTRIBUTIONS 

MT, YY, RP and LMM planned and designed the study. MT, YY, RP, and NSL collected the                 

data. MT, YY and NSL treated and analysed the data. MT and YY developed the models and                 

wrote the RMD file. MT, YY and RP wrote the manuscript with the support of NSL and LS.                  

LS provided guidance regarding study of air pollution toxicity. MT, YY, RP, LS, NSL and               

LMM conducted this study while in self-isolation due to the current pandemic. 

 

ACKNOWLEDGEMENTS 

We are grateful to all the staff members with critical functions in administration, operations              

and logistics at the MRC Toxicology Unit during the present crisis. 

FUNDING 

This study is funded by the UK Medical Research Council, intramural project            

MC_UU_00025/3 (RG94521). 

  

Page 25 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 

 

 

 

1. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia 
in China, 2019. ​N Engl J Med ​ 2020; ​382 ​(8): 727-33. 
2. Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. COVID-19: what has been learned and to be 
learned about the novel coronavirus disease. ​Int J Biol Sci​ 2020; ​16 ​(10): 1753-66. 
3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel 
coronavirus in Wuhan, China. ​Lancet ​ 2020; ​395 ​(10223): 497-506. 
4. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 
2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. ​Jama​ 2020. 
5. Cao X. COVID-19: immunopathology and its implications for therapy. ​Nat Rev 
Immunol ​ 2020: 1-2. 
6. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 
2019: a model-based analysis. ​Lancet Infect Dis​ 2020. 
7. Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and 
COVID-19 mortality in the United States. ​medRxiv​ 2020: 2020.04.05.20054502. 
8. Strak M, Janssen N, Beelen R, et al. Long-term exposure to particulate matter, NO(2) 
and the oxidative potential of particulates and diabetes prevalence in a large national health 
survey. ​Environ Int​ 2017; ​108 ​: 228-36. 
9. Guarnieri M, Balmes JR. Outdoor air pollution and asthma. ​Lancet (London, 
England) ​ 2014; ​383 ​(9928): 1581-92. 
10. Wong CM, Thach TQ, Chau PY, et al. Part 4. Interaction between air pollution and 
respiratory viruses: time-series study of daily mortality and hospital admissions in Hong 
Kong. ​Research report (Health Effects Institute)​ 2010; (154): 283-362. 
11. Conticini E, Frediani B, Caro D. Can atmospheric pollution be considered a co-factor 
in extremely high level of SARS-CoV-2 lethality in Northern Italy? ​Environmental Pollution 
2020: 114465. 
12. Selley L, Schuster L, Marbach H, et al. Brake dust exposure exacerbates inflammation 
and transiently compromises phagocytosis in macrophages. ​Metallomics​ 2020; ​12 ​(3): 371-86. 
13. Setti L, Passarini F, De Gennaro G, et al. SARS-Cov-2 RNA Found on Particulate 
Matter of Bergamo in Northern Italy: First Preliminary Evidence. ​medRxiv​ 2020: 
2020.04.15.20065995. 
14. Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for 
identifying the causes of a wide range of complex diseases of middle and old age. ​PLoS Med 
2015; ​12 ​(3): e1001779. 
15. Leepe KA, Li M, Fang X, Hiyoshi A, Cao Y. Acute effect of daily fine particulate 
matter pollution on cerebrovascular mortality in Shanghai, China: a population-based time 
series study. ​Environmental science and pollution research international ​ 2019; ​26 ​(25): 
25491-9. 
16. Yang Y, Cao Y, Li W, et al. Multi-site time series analysis of acute effects of multiple 
air pollutants on respiratory mortality: a population-based study in Beijing, China. ​Sci Total 
Environ ​ 2015; ​508 ​: 178-87. 

Page 26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17. Chen YY, Shi RH, Shu SJ, Gao W. Ensemble and enhanced PM10 concentration 
forecast model based on stepwise regression and wavelet analysis. ​Atmos Environ​ 2013; ​74 ​: 
346-59. 
18. Hlavac M. stargazer: Well-Formatted Regression and Summary Statistics Tables. R 
package version 5.2.2 ed. ​https://CRAN.R-project.org/package=stargazer​; 2018. 
19. Pannullo F, Lee D, Neal L, et al. Quantifying the impact of current and future 
concentrations of air pollutants on respiratory disease risk in England. ​Environmental health : 
a global access science source ​ 2017; ​16 ​(1): 29. 
20. Hagenbjork A, Malmqvist E, Mattisson K, Sommar NJ, Modig L. The spatial 
variation of O3, NO, NO2 and NO x and the relation between them in two Swedish cities. 
Environmental monitoring and assessment​ 2017; ​189 ​(4): 161. 
21. Akaike H. Information Theory and an Extension of the Maximum Likelihood 
Principle. In: Parzen E, Tanabe K, Kitagawa G, eds. Selected Papers of Hirotugu Akaike. 
New York, NY: Springer New York; 1998: 199-213. 
22. Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated 
with COVID-19-related hospital death in the linked electronic health records of 17 million 
adult NHS patients. ​medRxiv ​ 2020: 2020.05.06.20092999. 
23. Dennekamp M, Howarth S, Dick CA, Cherrie JW, Donaldson K, Seaton A. Ultrafine 
particles and nitrogen oxides generated by gas and electric cooking. ​Occup Environ Med 
2001; ​58 ​(8): 511-6. 
24. Ogen Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to 
coronavirus (COVID-19) fatality. ​Sci Total Environ​ 2020; ​726 ​: 138605. 
25. Stroh E, Harrie L, Gustafsson S. A study of spatial resolution in pollution exposure 
modelling. ​Int J Health Geogr ​ 2007; ​6 ​: 19. 
26. Cui Y, Zhang Z-F, Froines J, et al. Air pollution and case fatality of SARS in the 
People's Republic of China: an ecologic study. ​Environmental Health​ 2003; ​2 ​(1): 15. 
27. Kelly NA, Gunst RF. Response of ozone to changes in hydrocarbon and nitrogen 
oxide concentrations in outdoor smog chambers filled with Los Angeles air. ​Atmospheric 
Environment Part A General Topics ​ 1990; ​24 ​(12): 2991 - 3005. 
28. Melkonyan A, Kuttler W. Long-term analysis of NO, NO2 and O3 concentrations in 
North Rhine-Westphalia, Germany. ​Atmos Environ​ 2012; ​60 ​: 316 - 26. 
29. Lefohn AS, Shadwick D, Oltmans SJ. Characterizing changes in surface ozone levels 
in metropolitan and rural areas in the United States for 1980–2008 and 1994–2008. ​Atmos 
Environ ​ 2010; ​44 ​(39): 5199-210. 
30. Sandström T, Stjernberg N, Andersson MC, Kolmodin-Hedman B, Lundgren R, 
Angström T. Is the short term limit value for sulphur dioxide exposure safe? Effects of 
controlled chamber exposure investigated with bronchoalveolar lavage. ​British Journal of 
Industrial Medicine​ 1989; ​46 ​(3): 200-3. 
31. Sandström T, Stjernberg N, Eklund A, et al. Inflammatory Cell Response in 
Bronchoalveolar Lavage Fluid after Nitrogen-Dioxide Exposure of Healthy-Subjects - a 
Dose-Response Study. ​European Respiratory Journal​ 1991; ​4 ​(3): 332-9. 
32. Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild 
pulmonary inflammation in healthy human volunteers. ​Am J Respir Crit Care Med​ 2000; 
162 ​(3 Pt 1): 981-8. 
33. Rose RM, Fuglestad JM, Skornik WA, et al. The pathophysiology of enhanced 
susceptibility to murine cytomegalovirus respiratory infection during short-term exposure to 
5 ppm nitrogen dioxide. ​Am Rev Respir Dis​ 1988; ​137 ​(4): 912-7. 

Page 27 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://cran.r-project.org/package=stargazer
https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

34. Reche I, D'Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses 
and bacteria above the atmospheric boundary layer. ​ISME J​ 2018; ​12 ​(4): 1154-62. 
35. Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current 
smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic 
option? ​Intern Emerg Med ​ 2020. 
36. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. ​Bmj 
2020; ​369 ​: m1375. 
37. Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of 
novel coronavirus infections (COVID-19). ​Int J Infect Dis​ 2020; ​94 ​: 154-5. 
38. Placet M, Mann CO, Gilbert RO, Niefer MJ. Emissions of ozone precursors from 
stationary sources: a critical review. ​Atmos Environ​ 2000; ​34 ​(12-14): 2183-204. 
39. Sarofim AF, Flagan RC. Nox Control for Stationary Combustion Sources. ​Prog Energ 
Combust ​ 1976; ​2 ​(1): 1-25. 
40. Fu ML, Ge YS, Tan JW, Zeng T, Liang B. Characteristics of typical non-road 
machinery emissions in China by using portable emission measurement system. ​Science of 
the Total Environment ​ 2012; ​437 ​: 255-61. 
41. Billionnet C, Gay E, Kirchner S, Leynaert B, Annesi-Maesano I. Quantitative 
assessments of indoor air pollution and respiratory health in a population-based sample of 
French dwellings. ​Environ Res ​ 2011; ​111 ​(3): 425-34. 
42. Afshari R. Indoor Air Quality and Severity of COVID-19: Where Communicable and 
Non-communicable Preventive Measures Meet. ​Asia Pacific Journal of Medical Toxicology 
2020; ​9 ​(1): 1-2. 
43. Thakur M, Boudewijns EA, Babu GR, van Schayck OCP. Biomass use and 
COVID-19: A novel concern. ​Environ Res ​ 2020; ​186 ​: 109586. 
44. Liang D, Shi L, Zhao J, et al. Urban Air Pollution May Enhance COVID-19 
Case-Fatality and Mortality Rates in the United States. ​medRxiv​ 2020: 2020.05.04.20090746. 
 

 

1. Becker S, Soukup JM, Sioutas C, Cassee FR. Response of human alveolar 
macrophages to ultrafine, fine, and coarse urban air pollution particles. ​Exp Lung Res​ 2003; 
29 ​(1): 29-44. 
2. Lundborg M, Dahlen SE, Johard U, et al. Aggregates of ultrafine particles impair 
phagocytosis of microorganisms by human alveolar macrophages. ​Environ Res​ 2006; ​100 ​(2): 
197-204. 
3. Selley L, Schuster L, Marbach H, et al. Brake dust exposure exacerbates inflammation 
and transiently compromises phagocytosis in macrophages. ​Metallomics​ 2020; ​12 ​(3): 371-86. 
 

Page 28 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 29, 2020. ; https://doi.org/10.1101/2020.04.16.20067405doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.16.20067405
http://creativecommons.org/licenses/by-nc-nd/4.0/

