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 We propose an additional intervention that would contribute to the control of 
the COVID-19 pandemic, offer more protection for people working in essential jobs, 
and help guide an eventual reopening of society. The intervention is based on: (1) 
testing every individual (2) repeatedly, and (3) isolation of infected individuals. We 
show here that at a sufficient rate of testing and isolation, the R0 of SARS-CoV-2 would 
be reduced well below 1.0, and the epidemic would collapse. The approach does not rely 
on strong and/or unrealistic assumptions about test accuracy, compliance to isolation, 
population structure or epidemiological parameters, and its success can be monitored in 
real time by measuring the change of the test positivity rate over time. In addition to the 
rate of compliance and false negatives, the required rate of testing is dependent on the 
design of the testing regime, with concurrent testing outperforming random sampling of 
individuals. Provided that results are reported rapidly, the test frequency required to 
suppress an epidemic is linear with respect to R0, to the infectious period, and to the 
fraction of susceptible individuals. Importantly, the testing regime would be effective at 
any level of prevalence, and additive to other interventions such as contact tracing and 
social distancing. It would also be robust to failure, as even in the case where the testing 
rate would be insufficient to collapse the epidemic, it would still reduce the number of 
infected individuals in the population, improving both public health and economic 
conditions. A mass-produced, disposable antigen or RNA test that could be used at 
home would be ideal, due to the optimal performance of concurrent tests that return 
immediate results.  

 The ongoing pandemic spread of SARS-CoV-2 is the cause of widespread and 
accelerating outbreaks of the respiratory syndrome COVID-19. As of May 17, 2020, a total 
of 4 525 497 persons have been confirmed to be infected, and 307 395 have died1. Currently, 
the virus is present on all continents, spreading rapidly in Europe and the USA, and is a major 
threat to world order. It now seems likely that unemployment in most countries will exceed 
the levels reached during the depth of the Great Depression of the 1930s. Detailed models of 
the epidemic dynamics of SARS-CoV-2 are available that take into account population 
structure, and can provide estimates of the magnitude and duration of the peak of infection2. 
However, very broadly speaking, an outbreak of a novel virus in a naïve population can have 
only two outcomes. As long as the reproduction number R0 remains greater than 1, the virus 
spreads rapidly until most people have been infected (Fig. 1A), creating a temporary surge of 
infected individuals. If, using pharmaceutical or social interventions, R0 can be reduced 
below 1, then the epidemic collapses (Fig. 1B), and most people remain uninfected (but still 
susceptible). Because of the exponential nature of epidemics, the outcomes are nearly binary. 
Even when R0 exceeds one by only a small amount the disease spreads at an accelerating 
pace, whereas as soon as R0 falls just below one it rapidly collapses. These two outcomes 
correspond to two distinct strategies for epidemic control, suppression and mitigation. 
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 In the mitigation model, the goal is to reduce R as much as possible but not below 1.0, 
hoping to end up with a population that is largely immune, without overwhelming the 
healthcare system in the process (as in Fig. 1A, but attempting to flatten the temporary surge 
of infected individuals). If the virus induces immunity, the mitigation approach also limits the 
total number of people infected, and leads to “herd immunity” (see, for example Refs.3,4), 
which would limit future epidemics caused by variants of the same virus. However, 
exponential processes are notoriously difficult to control, particularly in the absence of 
accurate real-time data and when the effect of policy changes is uncertain. The choice is 
stark: allowing the disease to spread to a large fraction of a population, however slowly, 
greatly increases the total number of infected people and would cause a severe loss of life. 
Furthermore, given the difficulties in controlling exponential processes using limited 
information, even a strongly enforced mitigation strategy runs the risk of overwhelming the 
health care system and significantly increasing the mortality rate due to the failure to treat 
every patient optimally (primarily due to the lack of intensive care capacity). If the healthcare 
system is overwhelmed, patients must be triaged as in wartime, potentially for extended 
periods of time. 

 Notably, both suppression and mitigation are unstable: the mitigation model might 
first wreck the health-care system and then (as the public demands harsher controls when 
mortality rises) also wreck the economy. The suppression model might first wreck the 
economy and then as public pressure forces a relaxation of control, the virus re-emerges. For 
many months, both approaches are likely to force a large fraction of the population into 
conditions resembling quarantine. This is because of the large number of asymptomatic 
carriers of covid-19; in the absence of population-scale testing, the measures need to be 
implemented in an indiscriminate manner, affecting the whole population. Over time, this 
will result in severe and unequal economic deprivation. Our estimate is that in the United 
States, GDP per capita is already lower by about 1000 USD per month, and current estimates 
for economic loss due to the lockdown range up to $500 billion per month (~ $50 per person 
per day). Redistribution can offer some protection for the most vulnerable families, but if a 
loss of income of this magnitude persists for six or twelve months, it could generate a 
backlash against the social distancing measures that are currently in place.  

 Given these considerations, we asked if there are less costly and less disruptive 
alternative strategies to control the pandemic. At low levels of prevalence, testing, contact 
tracing and quarantine (TTQ) is a very effective means of suppression3,5, because it reduces 
the effective rate of reproduction close to zero. It is not a feasible strategy for suppressing the 
virus in the current, higher prevalence conditions faced by most countries because it would 
demand resources that would overwhelm any health department. In addition, the TTQ 
approach suffers from its own instability. Unless it identifies every single person who 
becomes infected, asymptomatic individuals that are not identified will generate new clusters 
that will not be detected until someone develops a severe infection that requires medical care. 
As a result, once the rate of new cases exceeds the capacity of tracing, even briefly, the 
epidemic runs out of control and the exponential dynamics make it almost impossible to 
catch up without imposing a lock-down.  

 Here, we propose a radically simpler strategy: test everyone, repeatedly. When 
someone tests positive, ask them to self-isolate and provide them public assistance that 
reduces the burden this imposes on them. This approach relies on a key observation that 
has not been widely appreciated, namely that what matters is the fraction of all individuals 
that are identified and isolated. It follows that testing a small number of individuals with a 
highly accurate test can be much less effective than testing everyone with a less accurate test 
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or reduced compliance. In fact, there is a quantifiable relationship between the reproduction 
number of a virus, and the efficiency of a population-scale testing strategy that brings the 
effective reproduction number below 1, as we show below. We use analytical models to 
derive both an upper and a lower bound on the effectiveness of testing, and demonstrate their 
real-world relevance using more realistic stochastic models. 

 The approach has several important advantages. First, it will work no matter how high 
the prevalence of infection might be. Second, it does not suffer from the inherent instability 
of contact tracing that requires a very high speed and a secondary mechanism to catch lost 
contacts. The offsetting disadvantage is that it is a challenge to test at the required scale, but 
this is not as difficult as it might at first seem. It could be implemented using mass 
distribution (e.g. regular mail) without returning samples to a central testing site. In fact, the 
tests required do not even have to be properly “diagnostic.” They only influence the decision 
to self-isolate. In the worst case, they may cause people who are not infectious to be 
quarantined, but this is already true for most people in the baseline lockdown scenario. The 
test can tolerate many false positives, because the result of a provisionally positive test is that 
someone self-quarantines for two weeks when they did not have to. False negatives are also 
acceptable as long as people are retested frequently. 

 The proposed approach is empirical, and does not depend on complex 
epidemiological models or a highly time-effective, centrally directed response. Its success 
can be assessed simply by evaluating the test positivity rate over time, and efficacy can be 
adjusted at an almost arbitrary level of granularity based on positivity rates as a function of 
other parameters.  

To guide initial design, we used the susceptible-infected-recovered (SIR) model to 
examine the effects of false negatives and noncompliance. We first make the best-case 
assumption about the timing of the tests: every person who is infected is tested before 
encountering someone who is susceptible. This limit can be approached, for example, when 
testing individuals as a condition of release from quarantine, or by a very effective form of 
contact-tracing. Note that if a perfectly accurate test were applied to the entire population at 
once, and those who tested positive were fully isolated, the epidemic would immediately 
collapse with no new infections (Fig. 1C). This optimal population-scale testing strategy will 
succeed if the fraction of infected persons who are isolated exceeds (𝑅! − 1)/(𝑅" − 𝑅#), 
where 𝑅# is the reproduction number in isolation or quarantine (Fig. 2A and Methods). For 
example, if 𝑅" = 2.4 and 𝑅# = 0.3, and if 𝑝 is the fraction of true positives correctly 
identified by the test, and 𝑐 is the fraction of the public that complies in the sense that they 
agree to be tested and follow any instruction to go into isolation, this bound means that the 
product 𝑐𝑝 must be greater than 2/3. 

 Next, we assume instead that the test sensitivity and compliance are perfect, so  𝑝 =
𝑐 = 1, and consider the worst-case assumption on the timing of the tests: each day, a 
randomly selected fraction of the population is tested. Under that strategy, we find that 
testing at a rate greater than a fraction (𝑅!𝑆/𝑁 − 1) of the population per infectious period 
will ensure that 𝑅$ 	< 	1 (Fig. 2B, Methods; S/N is the fraction still susceptible). Real-world 
testing strategies could do much better than test at random, for example by implementing 
procedures that test individuals concurrently within a region; that run the screen as a sweep 
across a country; that slice the population into groups that are tested in a cycle; that test 
individuals that have many contacts, or use other variables to predict who is more likely to be 
infected or more likely to infect others and to test them more frequently (see Methods). The 
theoretical limit of performance of most testing strategies lies between the two bounds 
delineated above. The order of performance is defined by a simple order rule (see Methods), 
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and is: testing the vector (e.g. blood before transfusion), testing before infectiousness, testing 
all people at the same time, testing each person but at different times, and random sampling 
of individuals. Cyclic processes that occur naturally (e.g. activity cycle across a week) or due 
to policy (e.g. rolling lockdown; Ref. 29) will also partially synchronize infectious intervals, 
and facilitate the application of the stronger testing regimes. Furthermore, if local or 
population-scale information exists that can be applied for contact-tracing, the efficacy of the 
regime can be significantly improved by isolating or quarantining the contacts of the 
individuals who test positive. 

 The fact that the approach will work is clear if one considers that the current 
approaches are "natural" variants of the population-scale testing regime. For example, 
lockdown corresponds to a test with a sensitivity of zero and false positive rate of one, and 
isolation of symptomatic individuals corresponds to a a non-biochemical test that measures 
presence of covid-19 based on self-assessment of generic symptoms, leading to a relatively 
low sensitivity and specificity, and a suboptimal timing (self-assessed or even expert-guided 
symptom-test for covid-19 is centered at the middle of the infectious interval, and will not 
detect cases that remain non-symptomatic throughout the infectious period). These 
parameters can clearly be improved by an introduction of a population-scale biochemical test. 
The rates of testing that are required to suppress an epidemic are sensitive to the input 
parameters. However, despite the exponential nature of the epidemic itself, the sensitivity of 
the required testing interval to variation in most parameters is linear or nearly so. For 
example, both a shorter infectious period and a larger 𝑅0 shorten the require testing interval 
proportionately. The most impactful parameter is the delay in obtaining a test result d, which 
should be minimized in any realistic plan for population-scale testing. This is because if d is 
longer than the sum of the detection lead time (l) and 𝑅0 divided by the infectious period, the 
epidemic cannot be collapsed by any rate of testing in the absence of other interventions (see 
Methods).  

 Population-scale testing positively interacts with other strategies. Interventions that 
reduce 𝑅" — e.g. working from home, improved hand hygiene, isolation even with mild 
symtoms, the use of masks and social distancing — are additive with respect to the testing, 
and hence lower the required frequency of the tests. Similarly, as the epidemic progresses and 
fewer people remain susceptible, the frequency of testing required to control the epidemic 
drops. The relationship between these variables in the SIR model with testing is captured by 
the following inequality (Methods), which relates the testing rate (τ, average fraction of 
population tested per day), the recovery rate (γ, inverse of the infectious period), and the 
proportion still susceptible (S/N): 

 

𝜏 > 𝛾(𝑅"𝑆/𝑁	 − 1) 
 

As shown in Fig. 3, with 𝛾 = 1/5, assuming moderate non-pharmaceutical 
interventions that reduce 𝑅" to the range 1.2 – 1.5, and assuming most (90%) of the 
population is still susceptible, population-scale testing on average every 15 – 120 days would 
be sufficient to bring the effective reproduction number below 1.0 and thus control the 
epidemic. With much longer (14 days) or shorter (3 days) infectious interval, the required 
rate of testing changes accordingly. Importantly, in a realistic range of parameters, it is 
particularly difficult to find values that would both make it impossible to suppress the 
epidemic by population-scale testing, and prevent relatively easily implementable alternative 
means of suppression (wherein testing would commonly also be an important component). 
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For example, if the infectious period was only two days, suppression of the epidemic by 
random testing alone would be difficult – but instead a short quarantine followed by a test 
would be highly effective. Similarly, if individuals with short and long infectious intervals 
co-exist in the population due to genetic or environmental variation, the short duration 
infections can be suppressed by lockdown, and the long ones by testing. The figure also 
illustrates the trade-offs involved: if population-scale testing rates can be increased from once 
every four months (1/120th of the population per day) to once per two weeks (1/14th of the 
population per day), then alternative measures such as lockdowns can be reduced from 𝑅" ≈
1.2 to 𝑅" ≈ 1.5. 

The standard but simple and deterministic Susceptible-Infectious-Recovered (SIR) 
models used to calculate these bounds is based on strong assumptions and approximations, 
such as random mixing of all individuals, perfectly accurate testing, full compliance and 
perfect isolation of cases. To relax those assumptions, we implemented a more realistic 
numerical simulation using a stochastic model with testing and an exposed state (i.e. a 
stochastic SEIR model). The deterministic model above predicted that testing at least every 
ten days would be required to control an epidemic when 𝑅" = 1.5. Fig. 4 shows a simulation 
that starts with 100 infected individuals out of a 100,000 population, with the infection 
fatality rate was set to 1%. Population-scale testing using random tests at a rate of once per 
ten days immediately suppressed transmission as expected, with 0.03% of the population 
dead. In contrast, without testing, viral spread caused a surge of cases that eventually led to 
herd immunity with 0.58% of the population dead. Translated to a US-sized population, more 
than 1.5 million lives were saved. 

 Equally importantly to considering the probability of success, a decision to apply a 
treatment or implement a policy must weigh the consequences failure. In the general case 
where testing is insufficient and 𝑅0 remains above 1 despite all interventions, the benefit 
from the testing would be the difference between the attack rates at original 𝑅0 and 𝑅𝑒𝑓𝑓 
under the testing regime (Fig. 5). As is clear from the figure, even when testing is insufficient 
to fully suppress the epidemic, testing at any rate reduces the final number of infected and 
deceased individuals. We conclude that the consequence of failure to fully implement the 
policy would still lead to improvement in both public health and economy, a finding that does 
not depend on the fractional scale at which the policy is implemented. We therefore see no 
medically or economically justifiable basis for not increasing Covid-19 testing to the 
maximum scale permitted by any limiting technical, logistical or economic constraint. 

 There are many plausible technical approaches to population-scale testing. Such a test 
can be based on presence of virus antigen, either in the form of viral proteins (technically 
more difficult but possible10), or viral RNA like current state-of-the-art diagnostic tests (for 
example Ref. 11). In both cases, a home self-test is preferable due to the simple logistics and 
quick time to result, which reduces the crucial latency to isolation of infectious individuals. 
Despite the technical simplicity, it is difficult to translate current tests designed for medical 
diagnostic purposes to a field setting. Current diagnostic tests for SARS-CoV-2 are qRT-PCR 
assays that require (1) nasopharyngeal swab collected by a trained nurse, (2) sample 
collection in viral transport media, (3) RNA purification, (4) reverse transcription and 
quantitative PCR. The test is highly accurate, and the total cost is in the order of $100. Such 
highly accurate testing is critical for accurate diagnosis of infections in a hospital setting. 
However, due to the very detailed and specific regulation, specialized staff and equipment, 
and centralized testing facilities, such tests have proven difficult to rapidly scale above 
thousands of assays in each location. A distributed system of sample collection and testing 
could, however, conceivably be used to scale qRT-PCR to population levels, particularly 
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when using a regional sweeping approach to limit the number of simultaneous tests needed. 
The capacity could also be increased 10 to 100-fold by group testing24, a method with a long 
history of use in public health that was originally designed for Syphilis tests, and now 
commonly also used for optimally efficient detection of defective components in industrial 
production.  

 A parallel relatively centralized testing method based on existing DNA sequencing 
technology could also be fielded rapidly. In this approach, viral RNA in the samples is used 
to generate DNA sequences containing the virus sequences, a sample DNA barcode (to 
identify each case) and two unique molecular identifiers23 at both ends of the resulting DNA 
fragment (to count the number of virus RNAs per sample and to ensure that patient samples 
do not get mixed in the reaction), and then sequenced using a massively parallel sequencer. 
This approach is very scalable, as in principle, a single sequencing instrument that is 
routinely used in scientific research can report more than a billion results per day. 
Furthermore, in the future, a test based on sequencing19-21 that covers many acute infections 
could also be used to suppress or even eradicate a large number of infectious diseases 
simultaneously. This would be very difficult to achieve using vaccines or drugs that target 
each infectious agent separately. 

 Alternatively, we envisage supplementing the current testing regime with a mass-
produced home test kit that could be used by anyone, result in a simple easily-understood 
readout, and be performed without specialized equipment. The test should be as easy to use 
as a pregnancy test, to ensure maximal compliance; importantly, using a home test, the time 
delay to report the result d would be effectively eliminated. Boxes of e.g. 50 tests would be 
mass-mailed to all citizens, and a national information campaign would encourage everyone 
to test themselves frequently. In an infected individual, viral RNA is present at reasonably 
high levels in nasopharyngeal swabs, throat swabs, sputum, and stool for up to two weeks12, 
with the greatest amounts in saliva, sputum, stool. Saliva might be the ideal source for a 
home test kit, given the ease of sampling.   

 Tests suitable for home use are already in development. For example, an isothermal 
and colorimetric test has been described13,14, based on reverse transcription-loop mediated 
amplification (RT-LAMP) technology. This test has several desirable properties: unlike PCR, 
it does not require temperature cycling; the readout is binary and can be achieved by simple 
observation; and it can start from crude samples15. Many other technologies also have the 
potential to detect viral RNA rapidly and isothermally16-18; these include recombinase 
polymerase amplification (RPA), transcription mediated amplification, nicking enzyme 
amplification reaction (NEAR), rolling circle replication, and in vitro viral replication assays. 
Finally, lateral-flow strips for the detection of viral antigen have been announced, although 
their performance has not yet been assessed.  

 We have outlined a framework for population-scale testing as an effective 
intervention, and derived formulas that relate the key design parameters for such a strategy. 
Importantly, the benefits of such a strategy are likely to greatly outweigh the cost, even in the 
event that it would fail to fully suppress the epidemic. 
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METHODS 

Assumptions, parameters and choice of models 

 The present work relies on two principal assumptions: 1) testing an individual for the 
presence of viral RNA or antigen will predict future infections originating from the same 
individual, and 2) future infections can be prevented by isolating the individual. If these two 
assumptions hold, an epidemic will collapse if the testing regime can decrease the rate of 
generation of new infections below the rate of recovery or death of the infected individuals. If 
the epidemic does not collapse, the testing regime will still decrease the rate of generation of 
new infections, leading to a less dramatic but still beneficial outcome. It is important to note 
that the above conclusions rely only on the two assumptions stated above, and not on the 
specific model used to assess the quantitative relationships between the testing rate and 
design, and summary statistic abstractions such as 𝑅". 

 The epidemic was first modelled with a standard (continuous, deterministic) 
susceptible, infected, removed (SIR) model. An important consideration in the choice of a 
model to represent underlying physical reality is that it represents the level of abstraction that 
is relevant to the scientific question addressed. The SIR model was chosen as it is sufficiently 
abstract to capture general features that operate at a population-level, and does not fit to 
particular conditions in specific countries. Furthermore, the abstract nature of the model is 
further justified by the uncertainty in the input parameters, inclusion of each of which would 
require a new set of separate assumptions. Just as an example, we lack accurate parameters 
that describe the rate of test positivity as a function of future infectivity of an individual. 
Using any individual parameter that includes uncertainty introduces error, and using any pair 
of separately measured parameters that depend on each other introduces further error. 
Therefore, the modeling we perform here is solely aimed at evaluating the general feasibility 
of the approach, and for setting initial parameters that should be dynamically adjusted during 
the intervention itself. 

 It is important to note that parameter ranges where testing cannot effectively be used 
to suppress an epidemic can be found, particularly when combining worst-case estimates 
across studies. The weakest performance of testing is in cases with extremely high 𝑅", or 
very long incubation period with low viral load, followed by rapid increase and high 
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infectiousness (however, long incubation period is not likely due to the initial exponential 
replication of viruses in the host). The failure of some countries to suppress Covid-19 by the 
means available to them also suggests that some initial parameter estimates are unlikely to be 
correct (e.g. initially it was estimated that infectious period starts after symptoms). This also 
indicates that a different approach is required than what was initially taken, and that 
asymptomatic cases need to be identified to control spread.  

 One important parameter that affects performance of testing is the false negative rate 
of tests, which varies mainly due to viral load and sampling errors. We would like to note that 
methods based on amplification of nucleic acids generally have higher sensitivity to detect (a 
correlate of) an infectious viral particle than the viral infection itself. This is due to three 
reasons: First, viral infection of cells is a complex process, that tends to be inefficient, with 
many viruses needed to establish one productive infection. Second, volume of a sample taken 
from a patient (microliters) is generally much higher than the total volume in the particles 
that reach the airways of the infected patients (nanoliters or picoliters; Ref. 30). Third, 
nucleic acid detection methods can also detect RNA released from dead cells, RNA present in 
dead viruses, and in the subset of defective interfering viral particles that carry the relevant 
segment of RNA. Despite these advantages, even PCR tests return false negatives for 
clinically diagnosed cases. However, the false negative rate estimated in the literature (e.g. 
71% according to Ref. 31) cannot be easily used in analysis of the effectiveness of 
population-scale testing. This is because the rate of false negatives is estimated from all 
cases, and not from infectious cases. Using two independent measured values for 
infectiousness and false negative rate leads to measurement of a form of lower bound for the 
relevant variable (time-dependent probability of obtaining a positive test result as a function 
of the area under the curve of future infectiousness). 

 

SIR model 

 In addition to the very general assumption that there are a relatively large number of 
cases, which allows modeling of a partially discrete system using a continuous model, the 
SIR model is based on the following standard assumptions: (1) the population is fixed, (2) it 
mixes homogenously, (3) the only way a person can leave the susceptible group is to become 
infected, (4) the only way a person can leave the infected group is to recover from the 
disease, (5) recovered persons become immune, (6) age, sex, social status, genetics etc. do 
not affect the probability of being infected, (7) there is no inherited immunity, and (8) the 
other mitigation strategies and testing are independent of each other (for Fig. 1D). The 
assumption (2) leads the SIR model to overestimate viral spread, as in reality population has 
substructure (e.g. families, workplaces) and is geographically separated and contacts are 
more likely between subsets of the population; this is not expected to materially affect our 
analysis as our conclusions are not based on the absolute rate of the spread, only on its 
exponential nature. Furthermore, the SIR model is extremely conservative in the sense that it 
overpredicts the rate of growth of the infected population when the number of infected 
individuals is low; it does not even allow for extinction of the virus – a very desirable 
outcome, which obviously has a non-zero probability of occurrence in any real-world 
scenario. 
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In addition, we modeled the effect of testing in two ways. The first, maximally 
effective testing strategy assumed that every individual was tested before they infected 
another person, leading to the upper bound on testing performance in Fig. 2A-B. Under this 
model, the requirement for collapsing the epidemic is that the weighted average of the basic 
reproduction number 𝑅0 and the reproduction number in isolation or quarantine 𝑅# must be 
less than one: 

𝑝𝑐𝑅% + (1 − 𝑝𝑐)𝑅! < 1 

i.e. 

𝑝𝑐 >
𝑅" − 1
𝑅" − 𝑅#

 

Here, 𝑝 is the true positive rate of the test and 𝑐 is the compliance (fraction of all tested 
individuals who actually self-isolate).  

Using 𝑅0 = 2.4 and 𝑅𝑞 = 0.3 for COVID-19, the product of the true positive rate and 
compliance must be greater than two thirds: 

𝑝𝑐 > 2
38  

The second, lower bound testing strategy (Fig. 2C-D) was modelled by adding an additional 
‘detected’ state to the model, and adding transitions from infected to detected (with rate 𝜏𝐼) 
and from detected to recovered (with rate 𝛾𝐷). This corresponds to continuous random 
testing of the population at a fixed rate 𝜏 per person per day. Here, the requirement for 
successful collapse of the epidemic is given by the basic reproduction number (assuming 
perfect isolation; Fig. 2D), as follows. First, the rate equations for the SIR model with testing 
are:

 
𝑑𝑆
𝑑𝑡 =

−𝛽𝑆𝐼
𝑁  

 
𝑑𝐼
𝑑𝑡 =

𝛽𝑆𝐼
𝑁 − (𝛾 + 𝜏)𝐼 

 
𝑑𝐷
𝑑𝑡 = 𝜏𝐼 − 𝛾𝐷 

 
𝑑𝑅
𝑑𝑡 = 𝛾(𝐼 + 𝐷) 

 
 
Rewriting the second equation above as follows: 
 

𝑑𝐼
𝑑𝑡 = ?

𝛽
𝛾 + 𝜏

𝑆
𝑁 − 1@ (𝛾 + 𝜏)𝐼 
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makes it clear that 𝑑𝐼/𝑑𝑡 will be negative (i.e. the epidemic will collapse) only if: 
 

𝛽
𝛾 + 𝜏 <

𝑁
𝑆  

 
Note that the ratio 𝛽/𝛾 is the basic reproduction number 𝑅0, so that the previous inequality 
can be rewritten as follows: 
 

𝜏 > 𝛾 ?
𝑅"𝑆
𝑁 − 1@ 

 
 
In other words, the testing rate must exceed a threshold given by the recovery rate 𝛾 (inverse 
of the infectious period), the time-varying reproduction number 𝑅" and the fraction of 
susceptible individuals 𝑆/𝑁. The required testing rate drops if non-pharmaceutical 
interventions reduce 𝑅". Similarly, as the epidemic progresses, the required testing rate drops 
as fewer and fewer individuals remain susceptible and herd immunity kicks in. 
 
 
Stochastic SEIR model 
 
 The SIR model fails to account for several key properties of real epidemics, such as 
social and geographical population structure, the discrete and stochastic nature of infection 
and disease progression, and the fact that testing cannot be instantaneous. To account for 
such more complex real-world phenomena, we implemented a stochastic network model 
using the Gillespie algorithm for accurate numerical simulation of the stochastic dynamics. 
We used the seirsplus Python package (https://github.com/ryansmcgee/seirsplus), which 
models a population where each individual transitions between six states: susceptible, 
exposed, detected-exposed, infectious, detected-infectious, and recovered. The two detected 
states are used to model the effectiveness of testing and isolation. The population consisted of 
10,000 individuals. Detailed source code with comments and parameter settings for each 
model are available in the accompanying Jupyter notebook at 
https://github.com/paulromer149/ubiquitous-testing. 
 
 
Efficiency of testing 
 To understand the efficiency of testing, it is helpful to consider three separate 
processes: the process of the infection itself, the ordering of the tests relative to the infectious 
process, and the structuring of the testing process. 
 The infection itself can be divided to four periods: the period that an individual carries 
a virus to four consecutive intervals: undetectable (u), lead time for testing (l), infectious 
period (i) and antigen positive but non-infectious period (a). In a model of testing, the 
classical incubation period has to be split into two (u+l), because the relevant interval for 
antigen/RNA testing to suppress an epidemic by isolation of the tested individuals is not the 
infectious period i, but l+i; l exists because of the very large difference in volume transfer 
between a test and an infection in the case of a respiratory virus. The period relevant for 
contact-tracing is even longer, l+i+a, as detection of the recent infection leads to 
identification of a starting point for the search of currently infected contacts. It is important 
also to note that the intervals are abstractions of infectious and non-infectious virus genetic 
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material / particle concentration over time within an individual; this is never 0 in an 
individual who carries the virus, and varies in both time and magnitude, affected by the 
precise dynamics of the infection process itself. 
 To understand the difference between testing (1) the vector, (2) prior to transmission, 
(3) everyone at the same time, (4) everyone in a time separated manner, or (5) the population 
by random sampling, it is helpful to consider extreme case of certainly and completely 
collapsing an epidemic by testing and isolation, using a perfect test that detects all infected 
individuals, and complete isolation. For optimally achieving this, it is necessary to identify 
everyone who is infected before they have infected anyone else (denoted efficiency, e = 1) 
and quarantining every infected individual (c = 1). This requires obtaining a minimum of n 
bits of information for a population of size n. Note, however, that a single test performed as a 
group test can return more than 1 bit, and that this can be useful in detection of super-
spreaders with very high viral titer (Ref. 32). The order of performance of different strategies 
can be derived from the following simple model: 

Let there be a constant number of tests (T) per individual placed on sequences consisting of 
four elements: I0 (incoming infection of individual 0), T (test), In (infection of individual n, 
with I without index indicating any infection) and R (recovery of the individual). 
 
All sequences in case (1) have the following form:  
T-I0-(I or R) 
This allows the test to prevent even the first infection, which is clearly the best possible way 
to place a single test per individual. 
 
All sequences in case (2) have the following form: 
I0-T-(I or R) 
This cannot prevent the first infection, but is clearly the second-best possible way to place a 
single test per individual. 
 
Case (3) allows the second-best order: 
I0-T-(I or R) 
but also recursively: 
I0-I1-      ...  -In   -T-(I or R) 
    I1-I1,1-...  -I1,n-T-(I or R) 
        I1,1-...-I1,1,n-T-(I or R) 
 ... 
                      In-T-(I or R) 
note that the concurrency ensures that tests are placed on each interval optimally (one on each 
branch of the tree). 
 
Whereas case (4) can allow the above sequences, and in the absence of specific ordering of 
infections and tests: 
I0-T-I1-(I or R) 
        I1-I1,1-...  -I1,n-T-(I or R) 
which places two tests along the same chain, and also recursively: 
I0-I1-    ...    -In  R 
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    I1-I1,1-...  -I1,n R 
A branch with no tests at all. Ordering of tests and infections, by for example sweeping a 
region and preventing movement of individuals in the opposite direction improves this 
strategy, but its performance will remain below case (3) because the branches will grow until 
a test is placed on them. 
 
Case (5) performs the worst, because it also allows: 
I0-T-T-I1  
Which tests the same individual twice during one infectious period. This is in itself good, but 
decreases overall efficacy of the regime as it leads to more branches with no tests than case 
(4). 
 
 Case (3) is the weakest testing regime that always achieves complete collapse; this is 
achieved by testing everyone at the same time with a perfectly accurate test that returns one 
bit (positive or negative). In this case, e = 1 and c = 1. However, when tests are separated in 
time (Case 4), the order of testing becomes important. Most strategies for testing n 
individuals during time ttest_interval before t0 have e < 1, and are not sufficient to completely 
collapse the epidemic using one testing round, as e depends on the relationship between the 
order of testing and the order of infections. For example, using a random order of testing 
allows some individuals that have already been tested negative to become infected during the 
ttest_interval (the mutual information between test results and person being infected at t0 is less 
than one bit). However, some other regimens using a perfectly sensitive test can collapse the 
epidemic (but not always prevent all future infections): for example, a geographical sweep 
where infections (individuals) are prevented from crossing a moving test front can be used to 
identify every infected individual in the population by performing a single round of n tests.  

 In case (5), random sampling of n individuals, e is always less than 1. The testing 
becomes less efficient than testing each of the n individuals at the same time, because some 
individuals are tested twice, and some not at all; some information is thus not obtained, and 
some tests do not return information that is completely independent of information returned 
by other tests (sum of mutual information between all pairs of tests is not 0 bits). In other 
words, if individuals are selected randomly, during a given time interval, the tests will miss 
some individuals, and some individuals are tested more than once (this increases true positive 
rate for those individuals, but this does not make up for failing to catch some individuals 
entirely). 

 Considering the extreme case of immediate collapse, it may appear that testing in a 
time separated manner or by using random sampling will not work because non-concurrent 
testing can permit infections to cross the testing boundary, and random sampling clearly 
leaves some cases undetected. However, this very intuitive idea is incorrect, as collapsing an 
epidemic only requires that the rate of generation of new cases per current case is less than 
one. The limit for random testing can be obtained using the SIR model extended with testing 
(SIR+T), which abstracts away individuals and thus can (only) be used to investigate the 
effect of random, time-separated testing. Analytically from this model, as shown above, the 
𝑅 < 1 condition is true when tests are performed at a rate that is higher than 𝑅0 − 1 tests per 
mean infectious period. The same limit results from the consideration of a model that is 
similar to the the simple model above: reducing 𝑅0 to less than one using the method 
representing the lower bound – a completely random testing regime – requires that an 
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infected individual has less than an equal probability of (a) infecting another individual over 
(b) being tested and isolated or recovering from the infection (analogously, in SIR+T, the 
combined testing and recovery rate needs to be higher than the rate of new infections). Events 
(a) can recur, but either event (b) terminates the chain. Therefore, at R = 1 there will be on 
average one (a) event, which requires that the order of the infectious and protective events are 
randomly ordered with respect to each other, with equal density. This yields 𝑅0 − 1 tests and 
one recovery per 𝑅0 infections per infectious period, and an upper limit of 𝑅0 tests per 
infectious period at infinity (because as 𝑅0 → ∞ the expectation value for the number of test 
required per 𝑅0 becomes the geometric series ∑ 2'()

(*+ = 1).  

 Outside of the theoretical consideration of 𝑒 = 1, multiple population-scale tests are 
always required to collapse the epidemic in the absence of other interventions that achieve 
the same aim. Performing multiple tests over time imposes an additional constraint on 
optimality – the allocation of tests to each transmission interval. As described above, best 
performance of continuous testing and isolation is thus achieved when testing is performed 
immediately after infection for each individual, or as requirement for exiting quarantine. 
Testing at border crossings, conditional opening of lockdown, or some regimes that apply 
contact-tracing may come close to approximating this limit, which for Covid-19 is 𝑝𝑐 =
(𝑅" − 1)/𝑅" = 0.57 per mean infectious period; Fig. 2). However, in most scenarios, such 
testing efficacy is difficult to maintain over time (because contact is lost, and the unknown 
infectious intervals rapidly become randomly distributed over time). This level can thus be 
considered an upper limit of performance of any scenario applied at population scale.  

 Using a test whose true positive rate is 1 and testing everyone at the same time 
performs as well as the optimal strategy. As test sensitivity decreases, the performance of the 
concurrent regime becomes lower than optimal. However, concurrent testing still performs 
well above the lower limit obtained from the random testing model. The required pc rate to 
bring 𝑅" 	< 	1 using concurrent tests has a simple relationship with the exponential growth of 
infectious cases. Over interval t-t0, pc > 1-(infectious cases at t0)/(infectious cases at t). 
However, it is not as simple to relate this to original 𝑅", because the relationship between 𝑅" 
and growth rate is a function of the distribution of the generation intervals (Ref. 28). 
Estimating at 𝑅" = 2.4 using even probability distribution of infections over time, the 
infected population becomes approx. eight times larger in a single infectious period (for SIR, 
this would be different due to the different assumption about the distribution of infectious 
periods; see Ref. 28). This means that a testing regime that is regularly spaced at 14 day 
intervals should have pc value of > 7/8 = 0.875 to bring 𝑅" < 1. This is confirmed using 
empirical simulations to assess the rate of exponential growth in the complete absence of 
immunity and all other types of interventions; the limit 𝑅 = 1 at 𝑅0 = 2.35 with testing 
every infectious period is reached when 𝑝𝑐 ≈ 0.85 (compared to 0.58 for testing each 
individual directly after infection). The required testing interval at 𝑅0 = 2.35 and 𝑝𝑐 = 0.8 
in the absence of other interventions and immunity is ~ 0.8, 0.6 and 0.4 times the infectious 
period for concurrent testing, testing each individual randomly once during each testing 
period, and continuous random testing, respectively. 

 These considerations can be summarized as follows: the order of testing efficacies is: 
all vectors (at edges of network) > everyone before they have had a chance to infect anyone > 
everyone at the same time > everyone once during a period > testing by random sampling – 
with population-scale testing remaining feasible and cost-effective by one or more orders of 
magnitude across all these regimens.  
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 For the structuring of the testing process, one should carefully consider the entire 
testing regime, which is invariably population-scale for all infectious diseases, even if this 
intuitively may appear not to be the case. In practice, many different approaches are used, but 
most behave formally as consecutive testing, with the increased number of layers commonly 
(optimally in any real situation) increasing both the true positive and the false negative rate. 
This is because the first test (e.g. appearance of symptoms, or being a contact or not) can 
increase the true positive rate, but also determines the lower bound for the false negative rate 
of the whole process (e.g. in a purely contact-tracing based approach, infection of a missed 
contact cannot be detected biochemically). Thus, it is important to understand that while 
predictive tools such as appearance of symptoms or contact-tracing can increase the true 
positive rate, this invariably comes at some cost of increase in the false negative rate (e.g. 
asymptomatic individuals, lost contacts). Many predictive approaches are also highly time-
dependent; for example, timing of tests in contact-tracing optimally approaches the best case 
(testing before infectivity), but in the worst case performs far worse than random testing 
(testing after an individual has already infected everyone they can). Thus, due to the increase 
in false negative rate, a contact-tracing approach must both be combined with another 
mechanism to catch the escaped contacts, and performed extremely fast to improve the 
timing of the tests. In summary, and in simple terms, any consecutive approach always – by 
definition – will have a time-cost that a population-scale biochemical testing approach will 
eliminate. 
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FIGURES 

 

Fig. 1 | Requirements for epidemic control of COVID-19 using population-scale testing and 
self-isolation. (A) An SIR model22 with 𝑅" = 	2.4 leads to infection of the majority of the 
population, with a massive peak of active infection that overwhelms the health care system. 
(B) With strong interventions that reduce 𝑅" to 0.95, many deaths are avoided. (C) Testing 
everyone simultaneously cuts all chains of transmission. (D) The required level of 
compliance (fraction of all individuals) for effective control of the epidemic, as a function of 
the strength of other interventions and assuming a test with 85% efficacy (fraction of future 
infections detected). With moderate social distancing, epidemic control can be achieved even 
with low levels of test compliance. 
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Fig. 2 | Compartment models and requirements for suppression by testing. (A) Parameters for 
a standard SIR model. (B) Inequality that must be true to suppress transmission. For the 
epidemic to collapse, the weighted average of the natural reproduction number 𝑅" and the 
reproduction number in self-quarantine 𝑅# must be less than one. Here, 𝑝 represents the test 
true positive rate (fraction of all infectious individuals detected), and 𝑐 the rate of 
compliance. (C) Parameters for a SIR model with testing and a detected state. (D) 
Requirements for testing to collapse an epidemic in the SIR model with testing, expressed in 
terms of the testing rate 𝑡 required in a population where all individuals are susceptible, with 
inverse infectious interval 𝜆. (E) Parameters for the discrete, stochastic SEIR model.  
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Fig. 3 | Testing frequency required to control transmission as a function of the fraction still 
suceptible (𝑆/𝑁, horizontal axes) and the reproduction number (𝑅", vertical axes) for three 
recovery rates corresponding to 3, 5 and 14 days infectious periods. Solid curves, testing 
frequencies, indicated as average number of days between tests, per person. Dashed curves, 
herd immunity threshold below which transmission collapses without testing.  

 
 
 
Fig. 4 | Simulation of suppression by testing using the stochastic SEIR model. Simulations 
with (left) and without (right) testing at a rate of one test per ten days (𝜏 = 1/10) were 
started with 100 infected individuals, using 𝛽 = 0.2, 𝜎 = 1/5, 𝛾 = 1/5 correspodning to five 
days infectious period and 𝑅" = 1.5. Testing was assumed perfect and test-positive 
individuals were perfectly isolated. The infection fatality rate was 1%. The total population 
was set to 100,000 individuals. Note that without testing, the epidemic reaches herd 
immunity with fatalities that scale with population size, whereas with testing, the epidemic is 
extinguished and the number of fatalities scales with the size of the initial outbreak regardless 
of population size. 
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Fig 5 | Consequence of failure to suppress the epidemic by population-scale testing. Left: 
Decrease in the final attack rate (y-axis) as a function of change in 𝑅" induced by population-
scale testing (x-axis). Note that the effect is nearly linear, and that effects of up to 50% of the 
total population can be observed even when 𝑅" remains over 1. Right: Decrease in the final 
attack rate (y-axis) as a function of initial 𝑅" that is decreased by 1 to 20% by population-
scale testing. The final attack-rates (z) were calculated using the lambert W function: z = 1 + 
W(-𝑅" exp(-𝑅"))	/	𝑅". 
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