1	Anti-SARS-CoV-2 lgG antibodies are associated with reduced viral load
2	
3	Andrew Bryan ¹ , Susan L. Fink ¹ , Meghan A. Gattuso ² , Gregory Pepper ¹ , Anu Chaudhary ¹ , Mark H.
4	Wener ^{1,3} , Chihiro Morishima ¹ , Keith R. Jerome ^{1,4} , Patrick C. Mathias ^{1,5} , Alexander L.
5	Greninger ^{1,4,#}
6	
7	
8	
9	
10	¹ Department of Laboratory Medicine, University of Washington School of Medicine, Seattle,
11	WA
12	² Aquaelis, LLC
13	³ Department of Medicine, University of Washington School of Medicine, Seattle, WA
14	⁴ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
15	⁵ Department of Biomedical Informatics and Medical Education, University of Washington
16	School of Medicine, Seattle, WA
17	
18	[#] Corresponding author, agrening@uw.edu
19	
20	
21	Running title: SARS-CoV-2 IgG viral load
22	

23

24 Abstract

- 25 Anti-SARS-CoV-2 antibodies have been described, but correlation with virologic outcomes is
- 26 limited. Here, we find anti-SARS-CoV-2 lgG to be associated with reduced viral load. High viral
- 27 loads were rare in individuals who had seroconverted. Higher viral load on admission was
- associated with increased 30-day mortality (OR 4.20 [95% CI: 1.62-10.86]).

30 Introduction

31	SARS-CoV-2 is a novel coronavirus associated with high morbidity and mortality that has
32	rapidly spread across the world. After initial concerns surrounding test characteristics, accurate
33	serological testing for SARS-CoV-2 is increasingly becoming available in the United States. For
34	instance, we have previously shown the Abbott Architect anti-SARS-CoV-2 nucleocapsid \lg G
35	assay to be both highly sensitive and specific for detecting prior SARS-CoV-2 infection [1].
36	However, data correlating these antibody results to meaningful virologic and clinical outcomes
37	is currently lacking.
38	Here, we examined clinical and virologic features associated with seropositivity and
39	seroconversion to SARS-CoV-2 in a cohort of hospitalized patients in Seattle, Washington. We
40	specifically sought to assess whether detection of anti-SARS-CoV-2 antibodies was associated
41	with a better prognosis, including lower viral load and reduced 30-day all-cause mortality.
42	
43	Methods
44	Study population and clinical laboratory testing
45	Patients with positive SARS-CoV-2 RT-PCR results from nasopharyngeal swabs were
46	identified at UW Medicine hospitals and excess serum and plasma samples were retrieved for
47	SARS-CoV-2 antibody testing. Samples were enriched for patients that had RT-PCR results
48	available on the same calendar date as a remnant serum or plasma sample. A total of 245
49	patients were identified with at least one residual serum/plasma sample and at least one
50	clinical note available for chart review to determine days from symptom onset. The population
51	was 40% female; age by decade was: 10-20: 0.4%, 20-29 4.9%, 30-39 6.9%, 40-49 11.0%, 50-59

52	17.1%, 60-69 18.8%, 70-79 21.2%, 80-89 12.2%, 90-99 7.3%. The primary clinical encounter was
53	inpatient for 194 patients, emergency department for 39, and outpatient for 12. Eight patients
54	were asymptomatic at the time of initial PCR result; for these patients, day of symptom onset
55	was therefore set at the date of first positive PCR. 30-day mortality was determined by manual
56	chart review for all patients that had either a RT-PCR result or an IgG result from the day of
57	admission and calculated from the day of first positive PCR. The number of subjects included in
58	the different analyses is described in the Results, as data were not available for all subjects at
59	all time points. The study was approved under a consent waiver by the University of
60	Washington IRB.
61	Anti-SARS-CoV-2 nucleocapsid IgG was determined by the Abbott Architect as previously
62	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS-
62 63	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas
62 63 64	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas 6800 platforms, or a CDC-based laboratory developed test (LDT) [2]. Cycle threshold (Ct) values
62 63 64 65	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas 6800 platforms, or a CDC-based laboratory developed test (LDT) [2]. Cycle threshold (Ct) values were available from the Hologic Panther Fusion and LDT assays and were treated
62 63 64 65 66	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas 6800 platforms, or a CDC-based laboratory developed test (LDT) [2]. Cycle threshold (Ct) values were available from the Hologic Panther Fusion and LDT assays and were treated interchangeably given their close correlation [2]. A Ct of 22 is equivalent to approximately
62 63 64 65 66 67	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas 6800 platforms, or a CDC-based laboratory developed test (LDT) [2]. Cycle threshold (Ct) values were available from the Hologic Panther Fusion and LDT assays and were treated interchangeably given their close correlation [2]. A Ct of 22 is equivalent to approximately 2,500,000 copies/mL viral transport media in these assays [3].
62 63 64 65 66 67 68	described [1]. The manufacturer's suggested cut-off of 1.40 was used for seropositivity. SARS- CoV-2 qRT-PCR was performed using Hologic Panther Fusion, DiaSorin Simplexa, Roche Cobas 6800 platforms, or a CDC-based laboratory developed test (LDT) [2]. Cycle threshold (Ct) values were available from the Hologic Panther Fusion and LDT assays and were treated interchangeably given their close correlation [2]. A Ct of 22 is equivalent to approximately 2,500,000 copies/mL viral transport media in these assays [3].

The association between SARS-CoV-2 IgG index value and Ct was assessed using a linear mixed effects model with significance determined by restricted maximum likelihood ratio using R packages Ime4 and ImerTest [4,5]. To account for singularity, the model incorporated scaling and a weak Bayesian prior via the R package blme [6]. Multivariate logistic regression to

74 determine association of Ct value and mortality was performed using the base R function.

75 Visualization was performed using ggplot2 [7].

76

77 Results

78 A total of 181 patients had both an Abbott Architect anti-SARS-CoV-2 nucleocapsid IgG 79 index value and a SARS-CoV-2 PCR Ct value available from the same calendar day. Several 80 patients had quantitative PCR and serology data available from multiple days, resulting in a 81 total of 224 total unique patient-days. Comparison of qRT-PCR and serology data revealed only 82 one SARS-CoV-2 seropositive individual with a simultaneous SARS-CoV-2 Ct < 22 (Figures 1A-B). 83 While both Ct and IgG signal/index ratio increased with increasing days since symptom onset, lgG was found to be inversely correlated with SARS-CoV-2 viral load (p < 0.001). To substantiate 84 85 this association at the individual patient level, we identified patients with more than three 86 measures of SARS-CoV-2 IgG and viral load. Although the kinetics of SARS-CoV-2 IgG and viral 87 load varied between individual patients, these parameters consistently trended together in 88 individual patients (Figures 1C-H). Lymphocyte counts increased and inflammatory markers 89 decreased over time in these patients (Figure S1), concomitant with a decreasing viral load 90 (Figure 1C-H).

91 To test whether seroconversion or high viral loads were associated with mortality, we 92 examined SARS-CoV-2 viral load (n=109) and anti-SARS-CoV-2 lgG index values (n=114) on 93 admission and 30-day all-cause mortality from day of PCR positivity (Figures 1I-J). The viral load 94 on admission was found to be independently associated with mortality, after adjusting for 95 SARS-CoV-2 serostatus, age, and sex (p = 0.01). Patients with a high viral load on admission (Ct <

22) had a significantly greater odds of mortality (OR 4.20 [95% CI: 1.62-10.86] compared to
patients with lower viral loads (Ct > 22). Thirty-three percent of patients (38/114)
seroconverted prior to admission. Seroconversion on admission trended towards lower
mortality, although this relationship was not statistically significant (OR 0.43 [95% CI: 0.151.26]) (Figure 1J).

101

102 **Discussion**

103 Here we demonstrate that detection of anti-SARS-CoV-2 lgG antibodies is associated 104 with lower viral loads in COVID-19 patients. This antibody response also tracked closely with 105 the amount of viral nucleic acid in individual patients over time. Due to the close relationships of both IgG and viral load with days since symptom onset, we could not conclude that the viral 106 107 load dependence on IgG response was independent from the passage of time, but days since 108 symptom onset was accounted for in our mixed effects model. Our data further indicate that 109 viral load at admission is a significant independent predictor of 30-day mortality. Individuals 110 who were SARS-CoV-2 antibody positive on admission were less than half as likely to die within 111 30 days, though this relationship was not statistically significant. The inability to reach 112 statistical significance is likely due to the limited study population size (power = 0.56 for an OR of 0.5). 113

114 Our data provide support for a disease model in which the development of anti-SARS-115 CoV-2 immune response leads to control of the virus in humans. While our data do not directly 116 assess the potential for ongoing immunity against future infections of SARS-CoV-2, they 117 indicate that high viral loads almost never coexist with SARS-CoV-2 seropositivity and that

antibodies are indicative of a protective anti-viral response and reduced 30-day all-causemortality.

120	Our data provide further support for quantitative viral load assessment, especially on
121	hospital admission. Our results agree with other work that has shown viral load to be
122	associated with disease severity [8]. Currently, the FDA has only authorized reporting of
123	qualitative results from SARS-CoV-2 qRT-PCR tests, despite nearly all tests returning some
124	estimate of viral load. Indeed, our clinical laboratory has reported semi-quantitative results for
125	respiratory viruses for more than a decade. Quantitative reporting of SARS-CoV-2 molecular or
126	serologic assays would require significant modifications of existing emergency use
127	authorizations. Our data further suggest that a cycle threshold of 22 may serve as a useful
128	discrete cut-off for significant viral replication that is associated with mortality. We note,
129	however, that sample and swab variability across patient populations may limit the widespread
130	use of a discrete cutoff for quantitative RT-PCR results.
131	The main limitation of our study was the retrospective nature in a population enriched
132	for hospitalized patients with acute disease. The retrospective nature precluded analyses of
133	viral clearance and length of stay due to significant confounding factors associated with RT-PCR
134	testing frequency during admission and patient discharge placement. Although we had
135	insufficient sample size to perform separate analyses with patients who only presented to the
136	emergency department or outpatient clinic, results appeared similar to the full data set (Figure
137	S2). Our serological test detects IgG antibodies against the nucleocapsid protein of SARS-CoV-2,
138	and the correlation between these antibodies and neutralizing antibody responses is unknown.
139	Variability in neutralizing responses between patients not elucidated by our assay may explain

140	some of the variation in our data set. However, neutralizing antibody assays are <i>in vitro</i>
141	methods that may or may not be associated with clinically meaningful outcomes unless
142	performed in concert with challenge studies. In addition, non-neutralizing antibodies may also
143	confer protection against infection in some viral infections [9].
144	Our work illustrates the importance of serological testing for SARS-CoV-2 infection. The
145	association of the presence of anti-SARS-CoV-2 nucleocapsid IgG with lower viral load indicates
146	antibodies may serve as a biomarker for COVID-19 disease course and infectious risk of the
147	individual to the community.
148	
149	Acknowledgements
150	The authors would like to thank Nathan Breit of the University of Washington Department of
151	Laboratory Medicine for assistance in obtaining data and Thomas E. Grys of the Mayo Clinic in
152	Arizona for critical review of the manuscript. We also thank the University of Washington
153	Medical Center (UWMC) Northwest Campus clinical laboratory staff and the UWMC Clinical
154	Immunology staff or reserving remnant serum and plasma samples from COVID-19 PCR positive
155	patients.
156	
157	Funding
158	This work was supported by the Department of Laboratory Medicine at the University of
159	Washington Medical Center.
160	
161	Conflict of Interest

- 162 ALG reports personal fees from Abbott Molecular, outside of the submitted work.
- 163 AB,SLF,MAG,GP,AC,MHW,CM,KRJ,PCM report no conflicts of interest.

- 165 References
- Bryan A, Pepper G, Wener MH, et al. Performance Characteristics of the Abbott Architect
 SARS-CoV-2 lgG Assay and Seroprevalence in Boise, Idaho. J Clin Microbiol **2020**; Available
- 168 at: https://jcm.asm.org/content/early/2020/05/07/JCM.00941-20. Accessed 17 May 2020.
- Lieberman JA, Pepper G, Naccache SN, Huang M-L, Jerome KR, Greninger AL. Comparison of
 Commercially Available and Laboratory Developed Assays for in vitro Detection of SARS-
- 171 CoV-2 in Clinical Laboratories. J Clin Microbiol **2020**; Available at:
- 172 https://jcm.asm.org/content/early/2020/04/27/JCM.00821-20. Accessed 17 May 2020.
- Ga P, Ak N, Ml H, et al. Validation of SARS-CoV-2 Detection Across Multiple Specimen Types.
 J Clin Virol, 2020. Available at:
- https://pubmed.ncbi.nlm.nih.gov/32405257/?from_single_result=32405257&expanded_se
 arch_query=32405257. Accessed 19 May 2020.
- Bates, Douglas, Bolker, Ben, Walker, Steve. Fitting Linear Mixed-Effects Models Using Ime4.
 J Stat Softw 2015; 67:1–48.
- Kuznetsova, Alexandra, Brockhoff, Per B., Christensen, Rune H. B. ImerTest Package: Tests in
 Linear Mixed Effects Models. J Stat Softw **2017**; 82:1–26.
- Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A nondegenerate penalized likelihood
 estimator for variance parameters in multilevel models. Psychometrika **2013**; 78:685–709.
- Wickham, Hadley. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2016.
 Available at: https://ggplot2.tidyverse.org.
- Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with
 SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study.
 BMJ 2020; 369. Available at: https://www.bmj.com/content/369/bmj.m1443. Accessed 17
 May 2020.
- 189 9. Ilinykh PA, Huang K, Santos RI, et al. Non-neutralizing Antibodies from a Marburg Infection
 190 Survivor Mediate Protection by Fc-Effector Functions and by Enhancing Efficacy of Other
 191 Antibodies. Cell Host Microbe 2020;
- 192
- 193

194 Figure Legends

195	Figure 1. A-B) Unique patient-days with an anti-nucleocapsid IgG index value and viral load
196	(qRT-PCR Ct value) on the same calendar day. The dashed vertical line indicates the
197	manufacturer's seropositivity index value cutoff of 1.40. The dashed horizontal line indicates a
198	Ct value of 22. Colors indicate days from symptom onset (A) or days since first positive PCR (B).
199	C-H) Six representative patients with > 3 IgG (blue) and Ct (green) results available over the
200	course of their hospital stay. X-axis indicates days from first positive PCR. Dashed horizontal line
201	indicates the IgG cutoff of 1.40. Green Xs indicate RT-PCR results with no nucleic acid detected.
202	I) Patients with a Ct value available on the day of admission. Red X data points indicate patients
203	who expired within 30 days of their first positive PCR result. The dashed vertical line indicates
204	the manufacturer's seropositivity threshold of 1.40. J) Patients with an IgG result available on
205	the day of admission. Red X data points indicate patients who expired within 30 days of first
206	positive PCR result. The dashed vertical line indicates a Ct value of 22.
207	

209 Supplemental Figures

- 210 Figure S1. Hematology cell counts (panels A-C) or CRP by day since symptom onset for the six
- 211 patients presented in Figures 1C-H. Patient H did not have cell count or CRP data available.

- 213 **Figure S2.** Patients who had their primary encounter as an outpatient or emergency
- 214 department-only visit. Data indicate unique patient-days with an anti-nucleocapsid IgG index
- value and RT-PCR Ct value on the same calendar day. The dashed vertical line indicates the
- 216 manufacturer's IgG index value cutoff of 1.40. Dashed horizontal line indicates a Ct value of 22.
- 217 Colors indicate days from symptom onset.

