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Abstract

In May 2020, many jurisdictions around the world began lifting physi-
cal distancing restrictions against the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), giving rise to concerns about a
possible second wave of coronavirus disease 2019 (COVID-19). These
restrictions were imposed as a collective population response to the pres-
ence of COVID-19 in communities. However, lifting restrictions is also
a population response to their socio-economic impacts, and is expected
to increase COVID-19 cases, in turn. This suggests that the COVID-19
pandemic exemplifies a coupled behaviour-disease system. Here we de-
velop a minimal mathematical model of the interaction between social
support for school and workplace closure and the transmission dynamics
of SARS-CoV-2. We find that a second wave of COVID-19 occurs across
a broad range of plausible model input parameters, on account of insta-
bilities generated by behaviour-disease interactions. We conclude that
second waves of COVID-19–should they materialize–can be interpreted
as the outcomes of nonlinear interactions between disease dynamics and
population behaviour.
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Introduction

The COVID-19 pandemic has given rise to an “epidemic of models” [48]. Diverse
mathematical models of SARS-CoV-2 transmission have been instrumental in
capturing infection dynamics and informing public health control efforts to mit-
igate the COVID-19 pandemic and reduce the mortality rate. The concept of
“flattening the curve” comes from model outputs that show how reducing the
transmission rate through efforts such as contact tracing and physical distancing
can lower and delay the epidemic peak [44].

On account of limited options for pharmaceutical interventions such as vac-
cines, and inadequate testing capacity in many jurisdictions, the COVID-19
pandemic has also been characterized by large-scale physical distancing efforts–
including school and workplace closure–being adopted by entire populations
despite heavy economic costs. Mathematical models of COVID-19 transmission
and control show that physical distancing can mitigate the pandemic [24,37,44]
and this has subsequently been backed up by empirical analyses of case noti-
fication data. These analyses show how mitigation measures have reduced the
effective reproduction number of SARS-CoV-2 below one, meaning that each
infected case infects less than one person on average [3, 8, 32]. However, the
population’s willingness to support school and workplace closures could wane
over time, as the economic costs of closure accumulate [6]. This has given rise
to the possibility of a second wave of COVID-19 in many populations.

The large role played by physical distancing during the COVID-19 pandemic
exemplifies a coupled behaviour-disease system, in which human behaviour in-
fluences infectious disease transmission and vice versa [4,5,11,12,31,36]. These
systems are part of a broader class of pervasive systems in which human be-
haviour both influences, and responds to, the dynamics of our environment.
Hence, one might better speak of a single, coupled human-environment system,
instead of just human systems or environmental systems in isolation from one
another [17,43,45].

The interactions between disease dynamics and behavioral dynamics in COVID-
19 are emphasized by research showing that the perceived risk of COVID-19
infection is a predictor of adherence to physical distancing measures [35] and
moreover that individuals respond to the presence of COVID-19 cases in their
population by increasing their physical distancing efforts [49]. In turn, physical
distancing has been shown to reduce the number of cases [8], completing the
loop of coupled behaviour-disease dynamics. Some models have already begun
exploring this interaction between disease dynamics and individual behaviour
and/or public health policy decision-making for COVID-19 [1,23,38,39,41,50].

In particular, the social aspects of behaviour-disease interactions seem to be
relevant for COVID-19 decision-making. Individuals do not necessarily make the
best possible (most rational) response to the presence of COVID-19 cases in their
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population. Instead, it has been found that political leaders can be influential
in convincing individuals to change their physical distancing efforts [1]. Addi-
tionally, jurisdictions experiencing outbreaks that start relatively late appear to
learn from the experiences of jurisdictions that were affected earlier [42]. Mean-
while, other research emphasizes a need for more work on the socio-economic
aspects of the pandemic [21]. These findings suggest that imitation and social
learning processes are important for understanding interactions between disease
dynamics and decision-making for COVID-19, which ultimately determine the
fate of epidemic curve.

Here we model the coupled behaviour-disease dynamics of COVID-19 trans-
mission and population support for school and workplace closure, using a simpli-
fied theoretical model. We opted for a simple model that avoids heterogeneities
because our objective is to gain insights into potential interactions between
social and behavioural dynamics. Public opinion evolves according to social
learning rules [4, 43], and public opinion in support of closure depends both on
COVID-19 case incidence and accumulated socio-economic losses due to school
and workplace closure. A central decision-maker chooses a time to initially close
schools and workplaces when the outbreak begins, but may subsequently open
and close them again depending on how public opinion ebbs and flows. Mean-
while, disease dynamics are described by a compartmental epidemic model [18].
The details of our mathematical model are described in the Methods section.
We analyze the model to characterize the conditions that give rise to a second
wave of COVID-19 in the population.

Results

Mechanisms causing a second wave

At our baseline parameter values, time series of infection prevalence I(t) and
support for closure x(t) exhibit nontrivial time evolution, including a second
wave of COVID-19 infections (Figure 1a,b). These results illustrate the basic
mechanisms underlying the model dynamics. As infection prevalence grows,
support for closure rises and eventually crosses the 50% threshold by t = 80
days. After this, infection prevalence peaks and begins to decline. Support
remains at a high plateau for a period of two months, after which support
for closure wanes, causing restrictions to be lifted by t = 160 days. Shortly
thereafter, prevalence begins to rise again. Support for closure correspondingly
rises again, but not quickly enough to prevent a second wave of COVID-19 with
a peak at t = 240 days that is higher than the peak of the first wave.

Epidemiological conditions for a second wave

Our goal was to gain insight into the conditions that generate a second wave
of COVID-19, and to test the robustness of the predicted result at our baseline
parameter values illustrate in Figure 1. Hence we explored the model dynamics
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Figure 1: (left) Time series plot of the number of infected individuals in the
face of social showing appearance of second wave (left) due to effects of social
dynamics (right). The results are obtained for C0 = 0.6, R0 = 2.4,1/σ = 2.5,
γ = 1/5, κ = 5, ε = 0.008, α = 1.0 ∗ 24/365 and δ = 0.05 ∗ 24.0/365 and initial
conditions S(0) = (1000000−1)/1000000, E(0) = 0, I(0) = 1/1000000, R(0) =
0, x(0) = 0.25, L(0) = 0 and H(0) = 0.

in the neighbourhood of our baseline parameter values (Table 1) using parameter
planes that show how the dynamical regimes of the model vary with changes
in two model parameters (one on each axis) around the baseline values. We
explored two dynamical outcomes: the number of waves in the course of the
entire pandemic, and the ratio of the peak height of the second wave to the
peak height of the first wave.

We start by exploring the effects of variation in the epidemiological param-
eters β (transmission rate) and γ (inverse of the average duration of infectious-
ness) in Figure 2, while keeping the rest of the parameters at baseline values.
The results show that one, two, or three waves are possible under variation in
these parameter values. A second wave characterizes most of the β − γ plane,
however. A third wave appears when 1/γ is between 5 to 7 days and β is up to
0.4/day, corresponding to R0 < 2. (We note that most estimates place R0 > 2
for COVID-19 [19,29].) The second peak may be higher or lower than the first
peak, depending on the β and γ parameter combinations. For R0 > 2.4, the
second peak tends to be lower than the first, while for R0 < 2.4 is is higher.

Changes in the duration of infectiousness 1/γ and the duration of the latent
stage 1/σ around baseline values do not change the number of peaks: a second
wave is still observed across the range we explored (SI Appendix: Figure 2).
However, the second peak is higher than the first when 1/γ is between 3 to 5
days, while out of this range the second peak is lower. The lack of dependence of
dynamics on σ is expected. When 1/γ < 3 days, the second peak is less severe
because R0 drops below levels that are feasible for continued transmission in
the population. In contrast, when 1/γ > 5 days the second peak is less severe
because a heightened R0 causes rapid build-up of herd immunity in the first
wave of infection.
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Figure 2: Parameter plane showing model dynamics as they vary with changes
in the transmission rate β and the rate γ at which the infectious period ends, for
the number of COVID-19 waves (a) and the ratio of peak height of the second
wave to the first wave peak. Other parameters are at baseline values (Table 1).

Socio-economic and intervention conditions for a second
wave

Next we explored the effect of variation in intervention, economic and social
parameters. The parameter plane for α, the rate at which economic losses
due to closure accumulate, and δ, the discounting rate for losses, shows little
variation in these values across the ranges we explored (SI Appendix: Figure 3).
Two waves are predicted and the peak of the second wave is higher than the first
wave for almost all parameter combinations The only exception is that when
α is very small, only a single wave occurs because the population is willing
to tolerate economic losses indefinitely. As a result, x remains high over the
entire time horizon of the simulation and COVID-19 is effectively controlled
throughout this period.

The behavioural parameter κ is a measure of how quickly novel social be-
haviour spreads through a population as disease cases are reported. It has a
large influence on the model dynamics, as represented in the κ − α, κ − ε and
κ − C0 parameter planes (Figures 3-5). Higher values of κ indicate that indi-
viduals imitate more quickly. At our baseline value κ = 5/day, we observe a
second wave. As the value of κ increases from this baseline value, the number
of waves increases from two to six or seven in all three parameter planes, un-
less the effectiveness of closure (C0) is so low that the population experiences a
single large epidemic that rapidly confers herd immunity to everyone (Figures
3-5). As κ is reduced sufficiently from its baseline value, the second wave is lost
as expected, since we enter a parameter regime where the population responds
with an unrealistic slowness to the presence of COVID-19, and it experiences
a single, rapid pandemic wave that rapidly confers herd immunity. The second
peak is higher than the first peak in all three parameter planes, except again
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Figure 3: Parameter plane showing model dynamics as they vary with changes
in the rate α at which socio-economic losses accrue and the rate κ that controls
the social learning rate, for the number of COVID-19 waves (a) and the ratio
of peak height of the second wave to the first wave peak. Other parameters are
at baseline values (Table 1).

when C0 is too low to effectively flatten the curve, and a single large outbreak
results. Some examples of model outcomes for three or more waves are shown
in SI Appendix: Figure 4. In these extreme scenarios, the second wave can
either dominate the first and third waves, or it is also possible that the peaks of
successive epidemic waves increase over time until it reaches a maximum peak
in the fourth wave.

Discussion

A second wave of COVID-19 is widely feared in May 2020 as many jurisdictions
around the world begin lifting restrictions that have held viral transmission
in check. To address this issue, we analyzed a simple theoretical model of
the interplay between SARS-CoV-2 transmission dynamics and social dynamics
concerning public support for physical distancing and school and workplace
closure. We found that a second wave of COVID-19 (and sometimes also a
third wave) was likely across a broad range of epidemiological and behavioural
parameters. In some cases, the second peak was higher than the first peak,
while for other parameter combinations it was lower.

Our prediction of a second wave driven by behaviour-disease interactions is
plausible, given past and recent experience with novel emerging pathogens. One
of the first affected countries in the COVID-19 pandemic–Iran–is now experi-
encing a large second wave on account of lifting restrictions in April 2020 [22].
During the 2003 SARS-CoV-1 epidemic in Toronto, premature relaxation of con-
trol measures resulted in a second wave of infections that was as large as the first
wave [10]. Finally, behavioural responses to disease dynamics appear to have
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Figure 4: Parameter plane showing model dynamics as they vary with changes
in the rate κ that controls the social learning rate and the parameter ε which
controls how sensitive the population is to economic losses relative to infection
prevalence, for the number of COVID-19 waves (a) and the ratio of peak height
of the second wave to the first wave peak. Other parameters are at baseline
values (Table 1).

Figure 5: Parameter plane showing model dynamics as they vary with changes
in the rate κ that controls the social learning rate and the parameter C0 which
controls how effective closure is, for the number of COVID-19 waves (a) and the
ratio of peak height of the second wave to the first wave peak. Other parameters
are at baseline values (Table 1).
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played a role in shaping the three waves that many populations experienced
during the “Spanish flu” pandemic in 1918 [14].

Our model makes simplifying assumptions that could influence its projec-
tions. For instance, our model assumes that populations respond to infection
prevalence I(t) but in fact, populations observe reported cases and deaths, both
of which are delayed compared to time of actual infection. Time delays tend
to destabilize dynamics in epidemic models [2] and hence we suspect that a
model extension including a response to lagged outcomes like reported cases
and deaths would exacerbate the severity of second waves in our model.

On the other hand, adding real-world spatial and demographic heterogeneities
to our model could stabilize the dynamics and make the predicted oscillations
less extreme, even if they do not remove them completely [9, 13, 30, 33, 46].
Similarly, on the behavioural modelling side, we suggest that the extreme os-
cillations observed in this model could also be stabilized if individuals use past
and/or projected future states in their decision-making, instead of just the cur-
rent prevalence, as we assumed [7,47]. Alternatively, if individuals learn socially
from other populations at differing stages of COVID-19 outbreaks [42], and not
just their local population, this might also dampen the oscillations we observed
in the model.

In summary, we speculate that incorporating social and spatial heterogeneities
into the model would not completely remove the possibility of a second wave,
although it could dampen the cycles [9, 13, 30, 33, 46] and give rise to epidemic
curves more closely resembling that observed in the second wave in Iran [22].
Moreover, our prediction of a second wave was relatively robust across param-
eter space. Hence, we conclude that a second wave of COVID-19 on account of
the coupled behaviour-diseases feedbacks we explore in this model will charac-
terize many populations. We also conclude that that more effort in transmission
modelling of COVID-19 should consider the effect of interactions between the
dynamics of disease spread and social processes.

Methods

Model equations

Transmission dynamics are given by an SEIR model, modified to take physical
distancing into account,

dS

dt
= −β(1− C(t))SI, (1)

dE

dt
= β(1− C(t))SI − σE, (2)

dI

dt
= σE − γI, (3)

dR

dt
= γI, (4)
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where S is the proportion of susceptible individuals (“susceptible”), E is the
proportion of individuals who have been infected but are not yet infectious
(“exposed”), I is the proportion of individuals who are both infected and infec-
tious (“infectious”), and R is the proportion of individuals who are no longer
infectious (“removed”). The time-varying parameter C(t) captures the impact
of school and workplace closure on the transmission of COVID-19. β is the
baseline transmission rate in the absence of school/workplace closure, σ is the
time rate at which an exposed person becomes infections, and γ is the time rate
at which an infectious person recovers.

The decision-maker decides to “turn on” closure at some time tclose, and
then decides to “turn off” closure when population support for closure, x(t)
drops below 50%. Hence C(t) is given by:

C(t) =

{
0 t < tclose or x < 50%,
C0 t ≥ tclose and x ≥ 50%,

where C0 is a combined measure of how many workplaces are closed (the re-
mainder being essential workplaces such as hospitals) as well as the effectiveness
of physical distancing in those workplaces that remain open. The percentage of
the population that supports school and workplace closure, x, evolves according
to an imitation dynamic that represents social learning processes,

dx

dt
= κx(1− x)(ωI − εL), (5)

where κ is the social learning rate, ω is sensitivity to infection prevalence, and ε
is sensitivity to accumulated socio-economic losses L. In this equation, support
for closure goes up when the prevalence of infection goes up, but it declines when
the accumulated socio-economic losses, L, become too large. The quadratic term
x(1− x) represents a social learning dynamics where individuals sample others
at some rate, and they change opinion based on the utility difference ωI − εL.
(A full derivation of this type of differential equation appears in Ref. [43]). We
can absorb ω into κ, yielding:

dx

dt
= κω · x(1− x)(I − ε/ω · L) (6)

and then, setting κ′ = κω and ε′ = ε/ω and dropping the primes for simplicity
we obtain

dx

dt
= κx(1− x)(I − εL). (7)

Finally, the variable L is a phenomenological representation of accumulated
socio-economic losses obeying

dL

dt
= αC(t)− δL, (8)

where α controls the rate at which school and workplace closure impacts socio-
economic health of the population, and δ is a decay rate that represents adjust-
ment to baseline losses.
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Parameterization

A full list of parameter definitions, baseline values, and literature sources ap-
pears in Table 1. The basic reproduction number R0 and the transition rates σ
and γ, were set based on COVID-19 epidemiological literature [16,25,27,28,34].
We note that the last compartment of the model, R, does not correspond to a
stage of illness preceding recovery but rather a stage of infectiousness [2], which
wanes quickly after the imposition of case isolation, in addition to the decline in
viral shedding after the first 5 days [15]. Moreover, the infectious stages is pre-
ceded by a latent stage in which the virus is still replicating inside its new host
until it can reach a level where the host can transmit the infection to others.
These features of COVID-19 disease history guided our choice of γ and σ.

The social parameters κ and ε were calibrated. While κ dictates how quickly
novel social behaviour spreads through a population, ε dictates how sensitive
the population is to changes in case reports relative to socio-economic losses.
κ can be estimated from behaviour early in the epidemic when socio-economic
losses are small as dx/dt ≈ κx(1 − x)I. For I(t) we used reports of confirmed
positive cases from the early stages of the United States epidemic, adjusted by
a case under-ascertainment factor of 8.7 in the United States [26] in order to
estimate the true prevalence of infections I(t) in the model. We used 21 January
2020 as the initial date of the epidemic, when the first case of COVID-19 was
reported in the United States. Most populations rapidly adopted physical dis-
tancing measures against COVID-19. Gallup polls indicate that 59%/79%/92%
of the United States public avoided going to events with large crowds, as
of 13-15 March/16-18 March/20-22 March 2020 respectively [40]. Similarly,
30%/54%/72% avoided public places, and 23%/46%/68% avoided small gath-
erings [40]. Taking the average of these responses across the three question
types, we obtain that x(52) = 0.373, x(59) = 0.597, x(66) = 0.773 where time
is measured in days since January 21. Finally, we shifted these points forward
14 days as physical distancing at time t will not be reflected in infection data
until t+ 14 due to the delays in testing and symptom recognition. We assumed
x(0) = 0.25 when fitting to these three data points using least-squares mini-
mization for the κ calibration. Accordingly, we fit the model to the number
of cases in the United States (SI Appendix: Figure 1b). The fitted infection
trajectory is in good agreement with reported cases in the US during the initial
phase of the epidemic leading up to 4 April 2020. For the special case where
there is an absence of any control measures, the model predicts that about 80%
of the population becomes infected by the end of the outbreak (SI Appendix:
Figure 1a).

The remaining two parameters, ε and α, were calibrated to obtain the result
that x remains high after the initial surge in support for closure, but begins to
drop after two months. This period of time was based on the observation that
two months that have elapsed since the declaration of the national emergency
in the United States on 13 March 2020, and the process of re-opening state
economies that has unfolded over the month of May 2020. These two parameters
control the timescale of lifting school and workplace closure based on its socio-
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Table 1: Parameter values, baseline values and literature sources
Parameter Meaning Baseline Value Range Source
R0 basic reproduction number 2.4 2.1 - 2.7 [16,25,34]
1/σ latent period 2.5 days 2 - 3 [28]
1/γ infectious period 5 days 3 - 7 [25,27,28]
β transmission rate 0.48/day 0.42− 0.54 β = γR0 [18]
C0 closure efficiency 0.583 0− 0.583 C0 = 1− 1/R0, [18]
α rate of socio-economic loss 0.0657/day 0.00273− 0.0822 calibrated
δ discounting rate 0.0033/day 0.00014− 0.0041 δ = 0.05α, [20]
κ social learning rate 5/day 1-500 calibrated, [26,40]
ε sensitivity to infection 0.005 0.001 - 0.01 calibrated

economic impacts. Finally, the parameter δ was set such that δ = 0.05α on
the basis of commonly used discounting rates in economics and assuming that
economic losses accumulated through the αC(t) term would be discounted at a
rate of 5% per year [20].

In order to illustrate curve flattening and show that the model has the ex-
pected response to reduction in the transmission rate due to closure, we gen-
erated model timeseries of I(t) for the special case where closure is applied
throughout the entire outbreak. The epidemic curve for different values of the
closure efficacy C0 is shown, ranging from C0 = 0 (no intervention) to C0 = 0.6
(SI Appendix: Figure 1c). The timeseries show that the epidemic curve is
flattened and delayed as closure becomes more efficacious, which reduces peak
demand for intensive care beds and buys time for developing pharmaceutical
interventions like vaccines and antiviral drugs, improving testing capacity, and
establishing novel approaches to patient care. For the remainder of our analy-
sis, to determine C0 it was assumed that C0 should be large enough to bring
the effective reproduction number Reff below 1, reflecting the observed success
in multiple jurisdictions where physical distancing and closure have maintained
Reff < 1 [3, 8, 32]. Hence we chose C0 = 1 − 1/R0 based on the elimination
threshold for the SEIR model [18]. We also assumed tclose = 20 days but in
practice, our second requirement that x ≥ 50% was not reached until after 20
days in all of the model simulations.

Data availability

All data used in the model are publicly available.

Computer code

The computer code used to generate our model projections is available upon
request.
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