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Why are most COVID-19 infection curves linear?
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Many countries have passed their first COVID-19 epidemic peak. Traditional epidemiological
models describe this as a result of non-pharmaceutical interventions that pushed the growth rate
below the recovery rate. In this new phase of the pandemic many countries show an almost linear
growth of confirmed cases for extended time-periods. This new containment regime is hard to
explain by traditional models where infection numbers either grow explosively until herd immunity
is reached, or the epidemic is completely suppressed (zero new cases). Here we offer an explanation
of this puzzling observation based on the structure of contact networks. We show that for any given
transmission rate there exists a critical number of social contacts, D., below which linear growth and
low infection prevalence must occur. Above D, traditional epidemiological dynamics takes place,
as e.g. in SIR-type models. When calibrating our corresponding model to empirical estimates
of the transmission rate and the number of days being contagious, we find D. ~ 7.2. Assuming
realistic contact networks with a degree of about 5, and assuming that lockdown measures would
reduce that to household-size (about 2.5), we reproduce actual infection curves with a remarkable
precision, without fitting or fine-tuning of parameters. In particular we compare the US and Austria,
as examples for one country that initially did not impose measures and one that responded with a
severe lockdown early on. Our findings question the applicability of standard compartmental models
to describe the COVID-19 containment phase. The probability to observe linear growth in these is
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practically zero.

INTRODUCTION

Textbook knowledge of epidemiology has it that an
epidemic event comes to a halt when herd immunity in a
population is reached [1, 2]. Herd immunity levels depend
on the disease. For influenza it is within the range of 33-
44% of the population [3] for Ebola it is 33-60% [4], for
measles 92-95% [4], and for SARS levels between 50-80%
are reported [5]. For the current COVID-19 outbreak it
is expected to be in the range of 29-74% [6, 7]. On way
towards herd immunity, textbook knowledge teaches, the
number of infected increases faster-than-linear (in early
phases even exponentially) as long as the effective repro-
duction number is larger than 1. Once this threshold is
passed, the daily increments in the numbers of infected
starts to decrease until it drops to zero [1, 8]. Combining
these two growth phases gives the characteristic S-shaped
infection curves.

The COVID-19 outbreak shows a very different pic-
ture, however. Several countries have clearly passed the
maximum of the epidemic, and are converging towards
zero new cases per day. None of these countries are even
close to herd immunity. In Austria at the hight of the
pandemic, a population-wide representative PCR, study
showed that only about 0.3% of the population were
tested positive [9]. Similarly, in Iceland in a random-
population screening the prevalence of positively tested
was found to be 0.8% [10]. Clearly, the COVID-19 out-
break is far from the uncontrolled case as many countries
have implemented non-pharmacautical interventions to
reduce infection rates [11].
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FIG. 1: Cumulative numbers of positively tested cases nor-
malized to the last day (May 8, 2020). Countries, even though
many followed radically different strategies in response to the
pandemic, seem to belong to one of three groups: (a) Coun-
tries with a remarkably extended linear increase of the cu-
mulated number of positively tested cases, including the US,
UK and Sweden. (b) Countries with an extended linear in-
crease that tend to level off and enter a regime with a smaller
slope. Inset shows extended regime after the peak (cases per
population size).

Maybe the most striking observation in the COVID-19
infection curves is that they exhibit linear growth for an
extended time interval quite in contrast to the S-shaped
curves expected from epidemiological models. For wide
range of countries regardless of size, demographic and
ethnic composition, or geo-location, this linear growth
pattern is apparent even by a plain-eye inspection of
the number of positive cases, see e.g. [12]. In Fig. 1
(a) we show infection curves (number of confirmed pos-
itive cases) for the US, UK, Sweden, Finland, Poland,
Indonesia, and a province of Canada. Clearly, after a
short initial exponential phase, infection curves are prac-
tically linear for several weeks. For many other exam-
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ples, see [12]. Many countries that implemented non-
pharmaceutical interventions in response to the COVID-
19 crisis [11], show a different pattern. They also show an
extended linear growth, however, infection curves tend to
bend and level off in response to the implemented mea-
sures, see Fig. 1 (b) . The extent of the linear regime
depends on the onset of the measures [11]. Many coun-
tries that are in the early phase of the pandemic are in
still (May 8, 2020) show the initial almost exponential
growth, see SI Fig. 5. According to basic epidemiolog-
ical concepts, growth patterns with extended linear re-
gions are not to be expected. They can only be observed
if the infection growth rate equals the recovery rate, giv-
ing an effective reproduction number, R(¢), of 1. Chances
of observing such a behaviour over an extended period of
time in a country are extremely tiny, let alone in several
countries. Mathematically speaking, linear growth is ba-
sically a measure zero solution in compartmental models.

The basic question of this paper is to clarify the mech-
anism that keeps R(t) ~ 1. In classical SIR-type [8] mod-
els there are no terms that explicitly peg R(t) to 1; see
SI. A simple explanation could be a limiting capacity of
availability of test kits. If the number of tests is limited
on every day only and assuming a fixed ratio of confirmed
cases per test, linear growth in the number of positively
tested would be the consequence. However, most Euro-
pean counties, even though experiencing initial difficulty
with testing capacity, have, by now, enough tests.

The rationale underlying social distancing efforts is
that they lead to a reduction of contacts which essentially
makes the social network sparser [11]. Infections occur if
(1) there is a social interaction between an infected and
susceptible person, and (ii) this contact is intense enough
to lead to a disease transmission. For instance, given a
basic reproduction number of Ry ~ 3, we effectively reach
herd immunity if two out of three contacts are avoided.
Still, this does not yet explain linear growth as a slight
increase or decrease in contact probabilities would again
lead to a faster-than-linear growth or suppression, respec-
tively. Network density alone can not explain persistent
linear growth.

In classic epidemiology network effects have long been
ignored in favour of analytical tractability [13]. In that
case epidemiological models can be formulated as differ-
ential equations, assuming that every person in princi-
ple can infect any other. This is called the well mixed,
or mean-field approximation; See SI. However, that fact
that networks matter in epidemiology is been recognized
for almost 2 decades and lead to extremely relevant con-
tributions, such as the dependence of vaccination thresh-
olds on network topology, see e.g. [14]. Classic contribu-
tions such as [15, 16] were able to incorporate network
topology into analytically solvable SIR models. There it
is possible to solve the SIR model in terms of outbreak
size and epidemic size, however, no focus was put on
the details of infection curves below the epidemic limit.

When dealing with structured networks it might well be
that the mean-field approximation does no-longer hold,
and details of the networks start to become crucial.

Since social networks are key to understand details of
epidemic outbreaks, what do they look like? The an-
swer is highly non-trivial since social networks are hard
to define. In terms of network topology, it became clear
that they are neither pure random graphs, small-world
networks, nor are they purely scale-free. They are of a
more involved structure, including multi-level organiza-
tion [17], weak-ties between communities [18] and tem-
poral aspects that suggest a degree of fluidity, however,
with stable social cores [19].

Here we try to understand the origin of the extended
linear regime in infection curves, as currently observed
in the number of positively tested cases in COVID-19
pandemic across many countries. To this end we solve
the SIR model on a simple social network and report a
hitherto unobserved transition from linear growth to S-
shaped infection curves. We show that for a given trans-
mission rate there exists a critical degree below which lin-
ear growth is expected and above which the model repro-
duces the classical SIR results. Below this critical degree
the mean-field approximation starts to fail. For the un-
derlying social networks we use a Poissonian small-world
network that tries to capture several empirical facts, in-
cluding a heterogenous number of social links (degree),
the small-world aspect, the fact that people tend to live
in small groups (families), that these groups overlap, and
that work and leisure relations can link distant groups;
see Methods. The framework allows us to model a lock-
down as a change of social networks with a high degree
to one with a degree that characterizes the members of
a household. Based on data on household size in the
EU [20], empirical estimates on how long individuals are
contagious, and on transmission (or attack) rates we are
able to calibrate the model to real countries. In partic-
ular we compare the situation in the USA and Austria.
These countries differ remarkably in size and the mea-
sures taken in response to the COVID-19 pandemic [11].
While Austria imposed a lockdown relatively early on
in combination with a number of other measures, the
US has implemented measures hesitantly with the con-
sequence that the situation was “not under control”, as
Dr A. Fauci, an advisor to the Trump administration,
has put it on May 12, 2020 [21]. The model reproduces
the real infection curves to a remarkable degree. All pa-
rameters are empirically motivated, there are no fitted
parameters involved.

MODEL

Model dynamics. We assume that there are N in-
dividuals connected by social links. If 4 and j are con-
nected, A;; = 1, if they are not 4;; = 0. As a toy
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model for social networks we use a so-called small-world
network with average degree D and shortcut probabil-
ity €; see Methods. The small-world aspect allows us
to model transmission between local groups and “super-
spreaders” [22]. As in a SIR model, every individual is
in one of three possible states, susceptible (S), infected
(I), and recovered (R). If an individual is infected it will
infect its susceptible neighbours with a per-day transmis-
sion probability, 7. This means that on every single day
the probability of passing the infection to a susceptible
neighbour is 7, which is sometimes called the microscopic
spreading rate [16]. Once a person is infected it stays in-
fectious for d consecutive days. After this the person can
no longer infect others, and is called recovered. Once re-
covered the state will no longer change. The update rules
of the corresponding model are:

e initialize all nodes as susceptible. Select N;,; nodes
randomly and change their state to infected,

e at every timestep ¢, find all infected and infect their
susceptible neighbors with probability 7,

e set all infected nodes that have been infected for
more than d timesteps to recovered,

e proceed to the next timestep until the dynamics
comes to a halt. All nodes are now either recovered
or susceptible.

At every timestep (day), ¢, we count the number of new
cases, C(t); the infection curve of positive cases, P(t), is
the cumulative sum of C(t). The model parameters are
related to those of the SIR model (see SI) by v = 1/d,
and 8 = rD/N. If the underlying network fulfils the
conditions necessary for the mean-field approximation,
C(t) corresponds to R(t) up to a timeshift of d.

RESULTS

Infection dynamics. We demonstrate the model
schematically in Fig. 2 (a)-(c). In the limit of large
degree D and large € the model should approximately
fulfill the mean-field conditions and should be close to a
classical SIR model. This is seen in Fig. 2 (d) where
the trajectory of an infection curve, P(t), is shown (blue
dots) for a network of 1000 nodes with a degree of D = 8,
e = 0.1, a period of contagiousness of d = 6 days, and
an transmission rate of = 0.1; 10 nodes were infected
at the start. The situation closely resembles the solu-
tion of the recovered, R(t), the SIR model with v =1/d,
and 8 = rD/N, shown as the dotted green line. Note
that a timeshift of —d days is necessary to compare P(t)
and R(t). The daily cases (red) increase, reach a peak
and decrease. The typical exponential initial phase in
P(t) is seen, immediately followed by a quick relaxation
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FIG. 2: Schematic demonstration of the model. Nodes are
connected in a Poissonian small-world network. Locally close
neigbors resemble the family contacts, long links to differ-
ent regions represent contacts to others, such as people at
work. (a) Initially, a subset of nodes are infected (yellow),
most are susceptible (green). (b) At every timestep, infected
nodes spread the disease to any of their neighbors with prob-
ability p. After d days infected nodes turn into ‘recovered’
and no longer spread the disease. (c¢) The dynamics ends
when no more nodes can be infected and all are recovered.
(d) Infection curve P(t) (blue dots) for the model on a dense
Poissonian small-world network, D = 8. The daily cases (red)
first increase and then decrease. For comparison, we show the
recovered cases, R(t), of the corresponding SIR model with
v =1/d, and 8 = rD/N (green). The mean-field conditions
are obviously justified to a large extent. (e) Situation for the
same parameters except for a lower average degree, D = 3.
The infection curve now increases almost linearly; daily in-
creases are nearly constant for a long time. The dynamics
reaches a halt at about 17% infected. The discrepancy to the
SIR model (green) is now obvious.

of growth until the plateau forms at the herd immunity
level (in this example at 98%).

The infection curve, P(t), changes radically when the
degree of the network is lowered to D = 3 (all other
parameters kept the same); see Fig. 2 (e). Clearly, it in-
creases almost linearly for a remarkable timespan, which
is marked in contrast to the SIR expectation (green line).
The situation already resembles the situation of many
countries. Once the system converged to its final state,
only about 17% of nodes were infected, which is far from
the expected (SIR) herd immunity level of about 77%.

The change of the infection curve from the S-shaped
to a linear behavior is clearly a network effect and indi-
cates that the mean-field assumptions might be violated.
To understand this better we next study the parameter
dependence more systematically.

Parameter dependence & phase transition. We
are interested to see if there is a critical degree, D., be-
low which the infection curve is (quasi) linear, whereas
for D > D, it assumes the S-shape. For this we define
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FIG. 3: (a) Order parameter for the transition from linear to
S-shaped infection curves as a function of degree, D, for trans-
mission rates r = 0.05 (blue), 0.1 (red), and 0.2 (orange). The
transition happens at the critical points, D., where the order
parameter starts to diverge from zero (arrows); see Table L.
(b) Infection curves (20 realizations) for three scenarios for a
network with D = 10. Scenario red: at an transmission rate
of r = 0.1 we see S-shaped curves reaching herd immunity
at about 75%. Scenario black: for the same network with a
lower transmission rate, » = 0.05, we fall below the critical
degree D.and consequently observe linear growth; note the
convergence of infected at levels of 1 — 4%, which are very
much below herd immunity (75%). Scenario blue (lockdown):
we start with the same network with » = 0.1, as in the red
scenario. After 5% of the population (black bar) is infected
there is a lockdown, that changes the network to one of degree
D> = 3, from one day to the next. The S-shaped growth im-
mediately stops and levels off at about 10% infected. Other
parameters: d = 2, ¢ = 0.3, and N = 10,000. 10 initially
infected.

an appropriate “order parameter”, O, able to distinguish
linear from S-shape growth, namely the standard devia-
tion of daily increments of infected people; see Methods.
In Fig. 3 (a) we show this order parameter as a function
of the degree, D, of the network for three transmission
rates 7 = 0.05, 0,1, and 0.2 (obtained as averages over
10 independent realizations with randomly selected 10
initially infected). It is clear that at specific (critical) de-
grees, D., the order parameter switches from (close to)
zero to larger values. The position of the critical degrees
depend on the parameter settings (arrows). It decreases
with the transmission rate r; while for » = 0.05 we find
D, =6.6, for r =0.1 it is D, = 3.9, and for r = 0.2, we
have D. = 2.3. The critical degree also decreases with
the parameters € and r. For more parameter settings, see
Table I, and SI Fig. 6 in the SI. The asterix denote the
degree, Dy;,, at which the SIR model would show a linear
curve, Dy, = 1/dr.

We checked that the position of the critical degrees is
relatively robust under the size of the network, and the
topology. We find that for NV = 1000 and 10 initially
infected, the critical degrees are practically at the same
locations. Regarding the topology, we implemented a
standard small-world network with a fixed degree. Also
here, results are practically identical; see SI in SI Fig. 7.

The existence of critical degrees signals the presence of
a hitherto overlooked ‘transition’ between linear and S-
shape growth that is most likely due to the fact that the

TABLE I: Critical degree, D., for a range of parameter val-
ues for the transmission rate, r, rewiring probability, €, and
duration of infectiousness, d. N = 10, 000.

r=0.015 » =0.05 r=0.1 » =0.2

e=01 d=2 12.5 7.4 4.3
d=4 7.9 4.8 3.0
d=16 5.7 3.5 2.4
e=03 d= 12.2 6.3 3.3
d=14 6.6 3.9 2.3
d= 4.7 2.9 1.9
d=14 7.2 2.7 1.9 1.5
e=05 d=2 11.7 5.9 3.2
d=14 6.0 3.3 2.2
d=6 4.4 2.7 1.8

well-mixed or mean-field assumption breaks down below
D.. To illustrate the dependence of this transition on
the transmission rate, Fig. 3 (b) shows 20 realizations
of model infection curves for a network with D = 10
at a rate of r = 0.1 (red). The curves were obtained
for 20 different initial conditions in the choice of the 10
initially infected nodes. One observes typical S-shape
curves reaching herd immunity at about 75%. Note that
R(t — o) of the SIR model reaches about 80%. For the
same network with a lower transmission rate of » = 0.05,
which is well below the critical degree we are in the lin-
ear growth domain (blue). The maximum of infected
reaches levels of only 1 — 4%, which are drastically lower
than SIR herd immunity with R(t — co) ~ 15%. The 20
green infection curves depict a “lockdown” scenario: we
start with the same network with » = 0.1 (red). On the
day when 5% of the population is infected (black bar)
a lockdown is imposed which means that effectively the
social network changes from one day to the next. We
model this by switching to a Poissonian small-world net-
work with a lower degree, Dy = 3. All other parameters
are kept equal. S-shape growth immediately stops and
final infection levels of about 10% are obtained.

Calibration. Finally, we calibrate the model to the
COVID-19 infection curves of two countries, the US and
Austria. For this we have to take the following assump-
tions on the model parameters.

The viral dynamics of COVID-19 is highly heteroge-
nous [23]. Motivated by evidence that people cary viral
loads and are thus contagious for more than 20 days af-
ter disease onset (most of them, however, being lower —
depending on severity) [24, 25], and given that infectious-
ness can start 2-3 days before showing symptoms [24], we
use d = 14 days.

In 2019 the average household size in the EU was 2.3
people [20]. If we assume that at work and during leisure
activity on average one meets 3-4 people more per day,
we decide to use an average degree of D = 5 in our Pois-
sonian small-world for normal conditions. If we assume
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FIG. 4: Model infection curves (red) when calibrated to the
COVID-19 curves of positively tested in (a) the US and (b)
Austria. Five realizations with different sets of initially in-
fected are shown. The simulation starts when more than a
tenth of a percent of the population was tested positive. The
situation in the US assumes a Poissonian small-world network
with average (daily) degree D = 5. The lockdown scenario
in Austria that has been in place from March 16 to May 15,
2020 is modeled with social contacts limited to households,
D = 2.5. For the choice of the other model parameters, see
text. The model clearly produces the correct type of infection
curves.

that on average about 30% of all of our social relations
are outside of our household, we set ¢ = 0.3. This is a
somewhat arbitrary choice, however, note that deep in
the linear regime, € is found to be an almost irrelevant
parameter that does not influence the outcome in signif-
icant ways. To model the lockdown that was imposed in
Austria on Mar 16, 2020 we assume that its effect is basi-
cally to reduce social contacts to within households, and
eliminate any other contacts. For this scenario we assume
D = 2.5, and € = 0. Finally, for the daily transmission
rate we set r = 0.0149. This choice is motivated by esti-
mates of the COVID-19 individual-level secondary attack
rate (SAR) in the household setting, which is reported at
about 19%, [26], and the relation r = 1 — (1 — SAR)'/.
Note that these estimates of the parameters are based
on recent estimates (not yet peer reviewed) and might
change in the future. Also note the SIR limit for this
case being at R(t — 00) ~ 20%, which is somewhat lower
than what is expected in [6, 7]. With these parameters
we find a critical degree of D, = 7.2.

We use 100,000 nodes and 40 and 100 initially infected
for the US and Austria, respectively. Since it is not pos-
sible to compute every individual in the simulation, we
decided to initiate the simulation at the point where 0.1%
of the population is tested positive that is Apr 7 for the
US and Apr 3 in Austria. For the respective population
sizes we use United Nations data from 2019 [27].

In Fig. 4 we show the model infection curves in com-
parison to the number of positively tested persons [12]
for the US (a) and Austria (b). Solid blue lines mark
the situation where more than 0.1% of the population

was tested positive; simulations are performed from that
date on. Note that one case in the model represents
many in reality. In the simulations relatively few cases
are produced and the integer steps are still visible. This
produces the wiggly appearance of the curves. Obviously,
the model produces infection curves of the observed type.

DISCUSSION AND CONCLUSIONS

Here we offer an understanding of the origin of the
extended linear region of the infection curves that is ob-
served in most countries in the current COVID-19 crisis.
This growth pattern is unexpected from mainstream epi-
demiological understanding. It can be understood as a
consequence of the structure of low-degree contact net-
works and appears naturally as an hitherto unobserved
(phase) transition from a linear growth regime to the ex-
pected S-shaped curves.

We showed that for any given transmission rate there
exists a critical degree of contact networks below which
linear infection curves must occur, and above which the
classical S-shaped curves appear that are known from epi-
demiological models. The model proposed here is based
on a simple toy contact network that mimics features
of a heterogenous degree, the small-work property, the
fact that people tend to live in small groups that over-
lap and the fact that distant groups are linked through
work and leisure activities. We showed how the model
can be used to simulate the effects of non-pharmaceutical
interventions in response to the crisis by simply switch-
ing to low-degree networks that do not allow for linking
of distant groups.

The model not only allows us to understand the emer-
gence of the linear growth regime, but also explains why
the epidemic halts much below the levels of herd im-
munity. Further, it allows us to explain the fact that
in countries which are beyond the maximum of the epi-
demic, a relatively small number of daily cases persists
for a long time. This is because small alterations and
re-arrangements in the contact networks will allow for a
very limited spread of infections.

We find that for the empirically motivated parameters
used here, the critical degree is D, = 7.2, which is above
the degree of the contact networks for which we effec-
tively assume D ~ 5. This means that linear growth
must be expected. Note that countries with larger fam-
ily structures might be closer to the critical degree, above
which catastrophic epidemic spreading would occur.

The linear growth phase appears to be dominated by
cluster transmission of the disease, meaning that new
infections primarily appear in the “small worlds” or lo-
cal network neighborhood (households, workplaces, etc.)
of infected individuals. In the superlinear (exponential)
phase, sustained community transmission sets in where
new cases cannot be traced to already known cases in
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their neighborhood. In this regime, transmission across
the shortcuts in the network becomes more prevalent.
This effective mixing of the population gives a dynamic
that approaches the mean field case of SIR-like models.

Finally, we calibrated the model to realistic network
parameters, transmission rates, and the time of being
contagious and showed that realistic infection curves (ex-
amples of the US and Austria are shown) emerge without
any fine-tuning of parameters. The onset of the lockdown
— and the associated reduction of the degree in the con-
tact networks — determines the final size of the outbreak
which is well below the levels of herd immunity.

Given the number of countries that enter linear growth
phases, our results raise serious concerns regarding the
applicability of standard compartmental models to de-
scribe the containment phase that can be achieved by
means of non-pharmaceutical interventions. SIR-like
models show linear growth only after fine-tuning param-
eters and linear growth would be a mere statistical fluke.
We argue that network effects must be taken into account
to understand post-intervention epidemic dynamics.

METHODS

Poissonian small-world network. For the network
A we use a Poissonian small-world network, which gener-
alizes the usual regular small-world network in the sense
that the degree is not fixed, but is chosen from a Pois-
sonian distribution, characterized by A. The network is
created by first imposing a Poissonian degree sequence on
all nodes. Assume that nodes are arranged on a circle.
Nodes are then linked to their closest neighboring nodes
on the circle. This creates a situation where every person
is member of a small local community. As for real fam-
ilies, these communities strongly overlap. Finally, as for
the conventional small-world network, with probability e
we re-link the links of every node i to a new, randomly
chosen target node j, which can be far away in terms
of distance on the circle. € is the fraction of an individ-
ual’s social contacts that are outside the local community
(family). These links can be seen as links to colleagues
at work or leisure activities, and allow us to model the
existence of superspreaders [22]. Note that the actual av-
erage degree of the so-generated network is very close to
the A of the Poisson distribution, D ~ A\. We also imple-
mented a conventional conventional small-world network
with a fixed degree. When results are compared with the
Poissonian small-world network only marginal differences
are observed.

Order parameter. To distinguish the linear from the
sigmoidal growth, we propose a simple “order parameter”
as the standard deviation of all new daily cases (after
excluding all days where there are no new cases),

O = std(C(t)). (1)

Clearly, for a linear growth of the infection curve, daily
cases, C(t), are constant, and the standard deviation is
zero. For the S-shape growth, daily cases first increase
then decrease over time, and the standard deviation be-
comes larger than zero. Hence, a standard deviation de-
viating from zero signals the presence of a non-linear in-
crease of the cumulative positive cases, P(t).
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Supplementary Information

the SIR model

The classic epidemiological model is the SIR model that models the time evolution of compartments of susceptible
S(t), infected I(t), and recovered R(t) individuals. It can be formulated as the set of non-linear differential equations,

d ST

@’ ='W

d SI

al = BW_VI . (2)
d

At any point in time, S+ I + R = N. To solve the equations, for a given N the initial conditions, S(0) and I(0)
must be specified. v is called the recovery rate, 3 is the infection rate, controlling how often a susceptible—infected
contact results in a new infection. To play with it online, see e.g. http://www.public.asu.edu/~hnesse/classes/
sir.html?Alpha=0.3&Beta=0.1666&initialS=990&initialI=10&initialR=0&iters=70

Countries in early phase of the pandemic

In ST Fig. 5 we show several countries that display the typical initial exponential growth of the infection curve.
Many of these countries are in South America.
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FIG. 5: Cumulative numbers of positively tested cases, as in Fig. [? |, normalized to the last day (May 8, 2020). for countries
with an exponential growth, possibly because they are still in an early phase.

Position of critical degrees for various parameter settings

In ST Fig. 6 we see the position of the transition from linear to traditional epidemic growth in terms of critical
degrees. The order parameter O is plotted on the y-axis. In traditional sigmoidal growth O takes values well above
zero, the onset defines the critical degree,D., for the various parameter settings, collected in Table 1. The position

of critical degrees is practically the same with a network of size N = 1000, assumed that both are initialized with 10
initially infected.
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FIG. 6: Transitions from linear growth (O ~ 0) based on a Poissonian small-world networks with N = 10,000 with degrees
ranging from 0 to 10. Cases for transmission probabilities of » = 0.05, 0.1, 0.2, and for rewiring probabilities ¢ = 0.1, 0.3, and
0.5 are shown. Days of being contagious are d = 2, d = 4, and d = 6.

Critical degrees for various parameter settings on a small-world network

The positions of the critical degrees (order parameter becoming larger than 0) are shown for a standard small-world
networks with N = 1000 in SI Fig. 7. Note that here we have used an even degree, indicated by 2K.
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FIG. 7: Position of critical degrees for a standard small-world networks with N = 1000, with degree D = 2K and transmission
rates of r = 0.05, 0.1, 0.2. (top) Rewiring parameters shown are ¢ = 0.05, 0.1, 0.2, 0.3. for d = 5 days being infectious.
(bottom) Here we set € = 0.3 and vary the days being contagious: d =1,d =4, d =6, d = 9. In all cases 10 randomly chosen
nodes were initially infected.
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