
A super-series of extracellular miRNA in cerebrospinal fluid reveals broad patterns 
associated with neurologic disease 
Andrew Dhawan ​1* 
1​Department of Neurology, Neurological Institute, Cleveland Clinic Foundation, Cleveland, OH, 
USA, 44195 
*Corresponding author: adhawan@qmed.ca 
 
Abstract 
Extracellular non-coding RNA are emerging biomarkers across diseases, as they may represent 
the functional state of the cells of origin, and have been robustly detected and associated with 
disease in many biofluids, but not yet at a large scale in cerebrospinal fluid (CSF). While there 
have been extracellular non-coding RNA (exmiRNA) identified in small associative studies 
involving the CSF and patients with neurologic conditions, much remains to be determined, 
including what constitutes healthy CSF.  In this work, we aggregate 9 existing cohorts to define a 
super-series of 864 extracellular circulating microRNA (exmiRNA) samples in the CSF from 
patients with 16 neurologic diseases and healthy controls. Through this, we identify broad 
patterns of conserved expression of CSF exmiRNA in the healthy state and in neurologic 
diseases, and a set of robustly detectable miRNA that may be strong biomarker candidates for 
future studies. We show that the coexpression network of exmiRNA differs significantly 
between the malignant and non-malignant states, suggesting that widespread dysregulation of 
miRNA due to cancer can be detected in the CSF. The super series will serve as a resource for 
future research in CSF exncRNA biomarkers, and will continue to evolve as more data is 
generated in this burgeoning field. 
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Introduction 
 
Across the spectrum of neurologic disease, the need for non-invasive biomarkers of illness is 
massive, given that many conditions are diagnosed based on clinical criteria alone, have 
significant overlap with other syndromes, and cannot be differentiated until late in the disease 
course, after irreversible damage has occurred.​1,2​ Moreover, in neurodegenerative conditions with 
heterogeneous clinical phenotypes, such as Alzheimer’s disease, amyotrophic lateral sclerosis 
(ALS), or Parkinson’s disease, clinical trials may be limited by difficult identification of optimal 
candidates for therapies because of difficulties in identifying minimally symptomatic disease, 
and identifying an appropriate target population.​3–6​ In response to this, there has been a 
significant effort to identify non-invasive biomarkers of neurologic disease involving 
combinations of clinical features, radiomic studies, and biochemical testing of the serum and 
cerebrospinal fluid (CSF).​7–9 
 
Among these non-invasive biomarkers, testing for extracellular genetic material in the form of 
exosomes or free-floating fragments of DNA and RNA has emerged as a promising modality. 
Used particularly in serum testing, as a ‘liquid biopsy,’ these are becoming standard clinical 
practice in the non-invasive monitoring of solid tumours, and in prenatal diagnostics.​10–12 
Extracellular microRNA (exmiRNA), small 18-22 nucleotide regulatory RNA molecules, have 
recently been shown to be stable and robustly detectable in nearly every biofluid, including 
serum, saliva, urine, and cerebrospinal fluid (CSF).​13​ These small molecules act at the 
transcriptional level to induce the degradation of specific target messenger RNA (mRNA) 
molecules, ultimately reducing or stabilizing protein levels.​14​ Small variations in their 
expression, amplified by the pleiotropy of their cognate mRNA targets, result in significant 
phenotypic changes in the expressing cell.​15,16​ Gaining an understanding of exmiRNA may allow 
for an ​in vivo ​functional biomarker of neural cell activity, and may not only inform the diagnosis 
of disease, but also may allow for a better understanding of disease pathophysiology.  
 
Despite their significant promise, exmiRNA CSF biomarkers have yet to reach mainstream 
clinical use owing to a multitude of factors. There is limited data in best practices for small RNA 
extraction from CSF, as well as a limited understanding of the range of expression in healthy 
patients, and even less of an understanding of the differences in exmiRNA expression across the 
compendium of neurologic disease.​17​ Larger studies are needed, in concert with the integration of 
extant data to guide clinicians and researchers to the optimal biomarker candidates.  
 
As a step towards addressing these issues, in this work, primary data from human samples of 
CSF exmiRNA was aggregated, contacting authors and data repositories for data not publicly 
available. Datasets were annotated with as much metadata as possible, results have been stored in 
a harmonized format, and have been made publicly available. Using this super-series of 864 
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patients across 16 neurological conditions from 9 studies, we studied the impact of technical 
protocol on exmiRNA yield, and uncovered an understanding of candidate CSF exmiRNA 
biomarkers across a spectrum of neurological disease. In doing so, this work represents the 
largest super-series of such patients to date, and identifies candidate biomarkers as well as a set 
of 30 consensus exmiRNA robustly detected across samples, with 8 species detected strongly in 
healthy tissues. It is our hope that these findings can be used to guide future work in the 
development of CSF exmiRNA biomarkers. 
 
Results 
 
Assembling a super-series of CSF exmiRNA samples 
We sought to identify all possible published and unpublished works of CSF samples with 
unbiased sequencing of extracellular miRNA, first with a structured literature search in Ovid 
EMBASE, as described in Methods. Our search strategy returned 83 studies, manually screened 
for deduplication, primary data, human samples, and unbiased miRNA characterization. In 
addition to the structured portion of the literature search, an unstructured approach was taken 
analysing Google Scholar search results for CSF miRNA studies, which yielded an additional 12 
studies. Two series (Jensen_IVH, Jensen_SAH) were added from the exRNA database without 
associated publication, and another was identified directly on the GEO database (Dong et al., 
2018, GSE108398). ​13​ Datasets were not included if they solely reported relative changes by 
qtPCR due to the limitations in measuring an unbiased set of exmiRNAs with this method. After 
screening, 20 studies were identified with likely suitable data, and for those studies in which data 
was not publicly available, authors were contacted multiple times to report data. Flow diagram of 
this process is presented in Figure 1. Ultimately, 9 studies had sufficient data to be included in 
the super-series, as summarised in Table 1. 
 
The 864 samples (of which 142 are healthy controls) included this study encompassed a wide 
range of neurologic disease across age groups, ranging from neonates (primarily IVH patients), 
to elderly adults with neurodegenerative disease. In all patients, the diagnosis was known, and 
breakdown is shown in Table 1. Of the 453 patients for whom gender was reported, 227 (50%) 
were male and 226 were female (50%). Of the 694 study patients in whom age was reported, 
32% of patients were between 40-59 years, and 23% were between 60 and 79 years of age, age 
ranges where there is a high burden of neurologic disease.  
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Figure 1. Literature search overview and sample breakdown. ​(a) PRISMA-style diagram 
depicting the inclusion and exclusion of relevant studies used to define super-series of CSF 
exmiRNA samples. (b) Breakdown of patient samples included in super series by proportion. HD 
Pre-Low refers to the low clinical risk group for Huntington’s disease, as defined by Reed et al. 
in the PREDICT-HD study ​18​. MS refers to multiple sclerosis. 
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Table 1. Super-series composition. ​Listing of studies comprising the super-series, as well as patient breakdown by 
disease, gender, and age. AD refers to Alzheimer’s disease. PD refers to Parkinson’s disease. PDD refers to 
Parkinson’s disease dementia. M refers to male, F to female. HD refers to Huntington’s disease. GBM refers to 
glioblastoma. Met refers to metastasis. IVH refers to intraventricular hemorrhage. SAH refers to subarachnoid 
hemorrhage. HD Pre-Low refers to low clinical risk score for Huntington’s disease , Pre-Med refers to medium 
clinical risk score for Huntington’s disease, and Pre-High refers to high clinical risk score for Huntington’s disease 
all as defined in the PREDICT-HD study​18​. For the purposes of this analysis, Pre-Med and Pre-High risk groups 
were joined with the overall HD group and Pre-low group was kept separate. ALS refers to amyotrophic lateral 
sclerosis. MS refers to multiple sclerosis.  

Study Patients Breakdown Gender Age (y) Reference 

Burgos et al., 2014 181 

62 Healthy 
62 AD 
36 PD 

21 PDD 

M: 95 (52%) 
F: 86 (48%) 

0-19: 0 
20-39: 1 (0.6%) 
40-59: 3 (2%) 

60-79: 77 (43%) 
80+: 134 (74%) 

19 

Dong et al., 2018 136 
21 Healthy 

115 HD 
M: 52 (38%) 
F: 84 (62%) 

0-19: 0 
20-39: 59 (43%) 
40-59: 57 (42%) 
60-79: 20 (15%) 

80+: 0 

GSE108398  

Drusco et al., 2015 80 

14 Healthy 
16 GBM 

15 Medulloblastoma 
13 Breast Met 

7 Glioma 
6 Lung Met 

4 Meningioma 
3 Lymphoma 

2 Ependymoma 

Not available Not available 20 

Godoy et al., 2018 8 8 Healthy Not available Not available 21 

Jensen, IVH 70 70 IVH 
M: 51 (73%) 
F: 19 (27%) 

0-19: 70 (100%) 
20-39: 0 
40-59: 0 
60-79: 0 
80+: 0 

13 

Jensen, SAH 241 241 SAH Not available 

0-19: 22 (9%) 
20-39: 20 (8%) 

40-59: 140 (58%) 
60-79: 67 (28%) 

80+: 8 (3%) 

13 

Reed et al., 2018 60 

15 Healthy 
10 HD-Pre-low 

35 HD, HD-Pre-Med, 
HD-Pre-High 

M: 27 (45%) 
F: 33 (55%) 

0-19: 0 
20-39: 24 (40%) 
40-59: 24 (40%) 
60-79: 12 (20%) 

80+: 0 

18 
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Waller et al., 2018 82 
16 Healthy 

58 ALS 
8 MS 

Not available Not available 22 

Yagi et al., 2017 6 6 Healthy 
M: 2 (33%) 
F: 4 (67%) 

0-19: 0 
20-39: 2 (33%) 
40-59: 2 (33%) 
60-79: 2 (33%) 

80+: 0 

23 

Totals 864 142 Healthy 
M: 227 (50%) 
F: 226 (50%) 

0-19: 89 (13%) 
20-39: 103 (15%) 
40-59: 222 (32%) 
60-79: 161 (23%) 
80+: 119 (17%) 

 

 
Methods of miRNA isolation and quantification in CSF 
The studies comprising the super-series were selected because their approach to miRNA 
characterisation was unbiased, thereby facilitating the identification of biomarkers. Methods used 
by each study for the extraction, library preparation, and sequencing platform are summarized in 
Table 2, along with the number of miRNA detectable in at least 10% of samples. Most studies 
(7/9) relied on an Illumina platform for sequencing, one used Nanostring nCounter technology, 
and one used the HTG molecular diagnostics platform. Studies relying on the Illumina platform 
tended to use higher volumes of CSF, most commonly 1000 µL, with a yield of 47-59% of 
miRNA species having nonzero expression in at least 10% of samples. The HTG platform 
yielded a surprisingly high proportion of miRNA from 15µL of CSF, with 2066 species having 
non-zero reads in at least 10% of samples, though this result is based only on a single study 
(PREDICT-HD). ​18​ Lastly, the characterization of exosomal miRNA as performed by Yagi et al., 
as expected, resulted in much lower yields of miRNA and required a greater quantity of CSF 
(7000µL). ​23 
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Table 2. Methods of RNA quantification used in studies comprising the super-series. ​Data from 9 studies is 
presented showing the variety in CSF quantity, extraction method, library preparation, sequencing method, and 
miRNA expressed in at least 10% of samples. N ​≥10% ​refers to the proportion of quantified miRNA species with 
non-zero expression in at least 10% of samples. NR refers to not-reported, despite having contacted authors for 
study details. 

Study CSF Quantity Extraction 
Library 

Preparation 
Sequencing 

Platform 
N​≥10% 

Burgos et al., 
2014 

1000µL 
mirVana™ PARIS™ 

kit 

Illumina TruSeq 
Small RNA Library 

Prep Kit 

Illumina HiSeq 
2000 

976 / 2094 
(47%) 

Dong et al., 
2018 

NR 
mirVana™ PARIS™ 

kit 

Illumina TruSeq 
Small RNA Library 

Prep Kit 

Illumina HiSeq 
2000 

198 / 639 
(31%) 

Drusco et al., 
2015 

250µL Trizol extraction 
 nCounter Capture 

System 
Nanostring 
nCounter 

225 / 225 
(100%) 

Godoy et al., 
2018 

200µL miRNEasy Micro Kit 
Illumina TruSeq 

Small RNA Library 
Prep Kit 

Illumina HiSeq 
4000 

1083 / 2115 
(51%) 

Jensen, IVH 1000µL 
mirVana™ PARIS™ 

kit 

Illumina TruSeq 
Small RNA Library 

Prep Kit 

Illumina HiSeq 
2000 

1012/1705 
(59%) 

Jensen, SAH 1000µL 
mirVana™ PARIS™ 

kit 

Illumina TruSeq 
Small RNA Library 

Prep Kit 

Illumina HiSeq 
2000 

997 / 2131 
(47%) 

Reed et al., 2018 15µL 

 HTG Molecular 
Diagnostics miRNA 
whole transcriptome 

protocol 

 HTG Molecular 
Diagnostics miRNA 

whole 
transcriptome 

protocol 

 HTG EdgeSeq 
2066 / 2066 

(100%) 

Waller et al., 
2018 

1000µL 
mirVana™ PARIS™ 

kit 

Illumina TruSeq 
Small RNA Library 

Prep Kit 
Illumina HiScanSQ 

327 / 631 
(52%) 

Yagi et al., 2017 
7000µL 

(exosome 
sequencing) 

miRNEasy Mini Kit 
Illumina TruSeq 

Small RNA Library 
Prep Kit 

Illumina HiSeq 
2500 

401 / 2550 
(16%) 

 
Broad associations of exmiRNA with categories of neurologic diseases 
 
Expression for the 30 species of exmiRNA common to all datasets after filtering out poorly 
expressed species (consensus miRNA) was considered next. The expression of these 30 
exmiRNA was first normalized and batch-corrected as described in the Methods. Expression was 
assessed for batch effects by computing the delta score (proportion of variance attributable to 
batch effect) and the corresponding empiric p value. Notably, pre-correction delta statistic was 
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0.99 with p < 0.001 for batch effect, and post-correction delta was 0.11, p = 0.99, suggesting that 
we had appropriately corrected for batch effects. Going forward, normalized and batch-corrected 
CSF exmiRNA expression was used, and a summary heatmap of normalized, batch-corrected 
expression for the 30 consensus exmiRNA is shown in Figure 2a. Clustering was performed 
using the uniform manifold approximation (UMAP) to project the expression of the consensus 
miRNA of each sample into two dimensions (Figure 2b), overlaid with both the diagnoses 
themselves, as well as the category of disease.​28​ Reproducibility of this clustering was assured 
with a leave-one-out approach to ensure no one dataset was skewing the results (Supplementary 
Figures 1-2). Hemorrhagic samples tended to cluster away from non-hemorrhagic samples, 
perhaps due to the miRNA intrinsic to red blood cells and platelets, and those with 
neurodegenerative conditions (most reliably Huntington’s disease) clustered away from healthy 
samples. Even despite the increased sample size, due to limitations in the number of samples for 
each of the conditions considered, and the heterogeneity in phenotypes, robust clustering for any 
particular disease based on the 30 consensus exmiRNA alone was not observed. 
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Figure 2. Heatmap of consensus miRNA expression and uniform manifold approximation 
(UMAP) plots describing sample clustering. ​(a) Heatmap with cells coloured by normalized 
batch-corrected expression for each of the 30 consensus exmiRNA identified, and samples as 
columns. (b) UMAP plot of samples coloured by patient condition, projecting the 30 dimensional 
consensus exmiRNA expression dataset into 2 dimensions, showing clustering of patients with 
IVH and SAH, as well as (separately), those with Huntington’s disease. (c) Samples coloured in 
the UMAP plot by broad category of disease as defined by disease groups (see Methods) 
revealing the separation between hemorrhagic CSF and degenerative CSF, and the range of 
exmiRNA expression in healthy patients.  
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exmiRNA in healthy controls 
Next, we sought to establish the range of exmiRNA expressed and detectable in the CSF of 
healthy controls. As such, we sought to determine which of the consensus exmiRNA showed 
consistently strong normalised expression in healthy samples, as assessed by the rank product 
statistic. 8 miRNA showed consistently strong expression above all others in healthy tissues, 
with statistical significance: hsa-miR-125a-5p (p < 10​-73​), hsa-miR-146b-5p (p < 10​-56​), 
hsa-miR-34c-5p (p < 10​-52​), hsa-miR-127-3p (p < 10​-41​), hsa-miR-142-5p (p < 10​-33​), 
hsa-miR-769-5p (p < 10​-31​), hsa-miR-107 (p < 10​-13​), and hsa-miR-484 (p < 0.02). Density plots 
of the expression of these miRNA are shown in Figure 3. Crucially, this defines a set of 
exmiRNA whose detectability makes them strong biomarker candidates, in which their absence 
or increase may signal an unhealthy state.  
 
Figure 3. Robustly detected exmiRNA in healthy CSF.​ Density plots depicting expression of 
the 8 miRNA found to be statistically significantly detected consistently across CSF of healthy 
patients, as defined by the rank product. Statistical significance, p, of the rank product testing is 
reported as -log​10​(p). X-axis represents normalized, batch-corrected expression for each 
exmiRNA.  
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Next, we asked which of the 30 consensus miRNA could differentiate between healthy patients 
and those with various neurologic conditions. For each of the consensus miRNA, expression was 
compared in healthy patients and those with neurologic disease, to identify whether there was 
statistically significant difference in expression between the two states. After correcting for 
multiple testing, we identified four cases where miRNA expression could differentiate between 
the control population and a specific disease state (Figure 4a-f). Both cases identified were those 
of differentiating healthy patients from those with neurodegenerative conditions. In Alzheimer’s 
disease, hsa-miR-767-5p showed greater expression than in the control population (p < 0.001, 
one sided Wilcoxon rank sum test). In ALS, hsa-miR-142-5p was reduced in expression 
compared to the control population (p = 0.0029, one sided Wilcoxon rank sum test). In 
Huntington’s disease, hsa-miR-361-3p was significantly lower in expression in the HD 
population than control (p < 10​-4​, one sided Wilcoxon rank sum test). Similarly, in the low-risk 
HD premutation carriers, hsa-miR-885-5p was increased in expression compared to the control 
group (p = 0.0029, one sided Wilcoxon rank sum test). When considering the broad disease 
categories as defined previously, hsa-miR-142-5p and hsa-miR-361-3p were again identified as 
miRNA that tended to be reduced in expression in patients with neurodegenerative disease 
compared to control (p < 0.003 for both cases, one sided Wilcoxon rank sum test).  
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Figure 4. Expression of key exmiRNA differentiating disease states from healthy CSF 
samples. ​(a) hsa-miR-767-5p is statistically significantly detected at a higher level in CSF of 
patients with Alzheimer’s disease (AD) as compared to healthy patients.  (b) hsa-miR-142-5p is 
detected at a lower level in CSF of patients with amyotrophic lateral sclerosis (ALS) compared 
to healthy controls. (c) hsa-miR-361-3p is detected at a lower level in the CSF of patients with 
Huntington’s disease compared to healthy controls. (d) hsa-miR-885-5p is detected at higher 
levels of patients with low clinical probability of Huntington’s disease (HD-Pre-Low), as defined 
by the PREDICT-HD study, as compared to healthy control population. (e, f) When comparing 
patients with degenerative conditions more generally to healthy controls, hsa-miR-142-5p and 
hsa-miR-361-3p show statistically significant decrease in expression. 

 
exmiRNA coexpression networks are dysregulated in malignancy 
 
miRNA act as components of complex gene regulatory networks, and are expressed not in 
isolation, but rather in coordinated groups to alter cellular behaviour. Coexpression networks 
across each of the broad categories of disease as defined above were constructed, and examined 
for differences between diseases. Networks were defined by the Spearman correlation between 
different miRNA species for categories of disease in which at least 25 samples were present 
(healthy, degenerative, malignancy, hemorrhage), and only highly statistically significant 
correlations (p < 0.01) were retained for further analysis (Figure 5a). In focusing on pairs of 
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miRNA for which there was a positive correlation in one disease subgroup and a negative 
correlation in another subgroup, it is evident that the underlying coexpression networks of 
exmiRNA are markedly different between the categories of disease considered. Among the 47 
cases of miRNA-miRNA pairs that showed positive correlation in one subgroup and negative 
correlation in another subgroup, 45 (96%) of these involved a miRNA-miRNA pair in the 
malignant state. For instance, the two miRNA miR-769-5p and miR-127-3p have Spearman 
correlation 0.49 (p < 10​-9​)  in healthy tissues, but have Spearman correlation -0.45 (p = 0.002) in 
malignant tissues (Figure 5b). Strikingly, this suggests that the malignant state may represent 
fundamentally different biology that can be detected at the level of CSF exmiRNA. Moreover, 
while miRNA expression within the individual samples themselves may not be expressly 
revealing of the malignant state, the coexpression network dysregulation compared to normal 
neural tissues suggests very significant underlying differences, perhaps pointing towards the use 
of network-based metrics as biomarkers. 
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Figure 5: Coexpression networks in CSF exmiRNA by disease status depict the altered 
network in malignancy.​ (a) Coexpression heatmaps for consensus exmiRNA detected in the 
CSF of patients in degenerative, healthy control, malignancy, and hemorrhage disease categories. 
Values displayed are the Spearman correlation coefficient. Only statistically significant 
correlation values are shown (p < 0.01), and all other values are set to 0. Circled are the points on 
each heatmap representing the four scatterplots in (b), which show the correlation between 
normalized and batch corrected expression of  hsa-miR-127-3p and hsa-miR-769-5p, 
highlighting the difference in correlation between the non-malignant and malignant states.  
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Discussion 
In this work, we present data collected from 9 studies that relied on unbiased sampling methods 
to assess exmiRNA in the CSF. This is the largest such series, and the first super-series of its 
kind. The datasets comprising the super-series were selected with a standardized approach, and 
every attempt was made to contact authors of additional relevant datasets for primary 
information. This study could have encompassed more smaller studies’ data, but a surprising 
number of authors did not respond (64%) or did not wish to share their data, or were not able to 
share data (36%). Despite this limitation in accruing data, this series represents a significant step 
forward in generating an understanding of CSF exmiRNA expression, with 864 patients of whom 
142 are healthy controls, across every age group, and a wide set of 16 neurological disorders.  
 
The identification of miRNA in biofluid is dependent on three main factors: the production and 
excretion of the miRNA by the cell of origin, the stability of the miRNA in the biofluid, and the 
technical detectability of the miRNA by extraction protocols and various sequencing 
technologies. Our review has shown that the majority of studies use Illumina platforms and 
associated protocols with 47-59% of miRNA species detectable in 90% of samples when starting 
with 1000µL of CSF. One study using HTG EdgeSeq had a much higher capture rate of miRNA 
with a significantly reduced starting volume of 15µL of CSF, suggesting that this may be a more 
sensitive platform, which will need to be investigated further.​18​ The role of exosomes in CSF as 
carrier vehicles for miRNA has shown that they are in general, less detectable than their 
free-floating counterparts and require a much greater quantity of CSF (7000µL) for analysis, and 
still have a low proportion of detectable species (16%).​23 
 
This super-series also provides insight into the range of exmiRNA that can be detected in the 
CSF of healthy patients, and it is particularly those species that are robustly detectable that may 
function well as biomarkers of disease. Not unexpectedly, many of the species we identified as 
highly expressed in CSF are known to be expressed in neural tissues themselves, such as 
hsa-miR-142-5p, which may function in dopaminergic signalling.​31​ hsa-miR-142-5p is also 
thought to contribute to pathogenesis in Alzheimer’s disease due to synaptic dysfunction, is 
overexpressed in patients with autism, and is downregulated in patients who completed 
suicide.​29–31​ Likewise, hsa-miR-107, also robustly detectable in healthy patients, has been shown 
to be dysregulated early in the pathogenesis of Alzheimer’s disease, with a link to increased 
BACE1 mRNA levels.​32,33​ hsa-miR-34c-5p has been shown to participate in cortical 
morphogenesis, and expression of this miRNA may be related to cognition.​34,35​ Taken together, 
these results suggest that the exmiNRA identified as robustly detectable in normal controls may 
not only represent meaningful biology, but also perhaps participate in disease pathogenesis when 
dysregulated, suggesting their utility as biomarkers. 
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Tantalizingly, our analysis also suggests that viewing miRNA as isolated variables may not 
reveal the full story of the biology underlying the diseased states. Rather, our work shows that 
the biology may be more robustly uncovered by the demonstration of altered interaction 
networks of miRNA. Indeed, exmiRNA coexpression networks differ significantly between 
malignant and non-malignant samples, suggesting network dysregulation in this state, perhaps 
due to a global ‘rewiring’ of the transcriptome driving disease progression and phenotype. As 
more datasets become available, this will be uncovered further with greater certainty, and the 
measurement of networks, as opposed to individual exmiRNA, may allow for greater resolution 
of pathophysiology.  
 
Lastly, this dataset was not designed to be a static resource, but rather was designed with the goal 
of extensibility and adaptation to additional data as more becomes available. The pipeline 
constructed is able to facilitate comparison between any number of different datasets, while 
correcting for batch effects. By iteratively adding data and metadata to this resource with future 
studies, the field of CSF exmiRNA can be advanced faster than it would by small studies alone. 
It is our hope that this work can help bring insight into the instances where CSF exmiRNA 
biomarkers can truly alter neurology clinical practice in neurology, a field where such 
biomarkers are badly needed.  
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Methods  
 
Defining the super series and literature search 
The search terms used in Ovid Embase were ‘microRNA or miRNA’, ‘CSF or cerebrospinal 
fluid’, and ‘biomarker or bio-marker.’ Studies were limited to English language, primary 
research, journal articles, and human species. Only those articles with unbiased evaluation of the 
miRNA in the CSF (by next-generation sequencing or similar technologies), were included for 
further analysis. Google Scholar was used with the search term “CSF miRNA biomarker” to 
identify additional literature. Additional studies were obtained by searching through the Gene 
Expression Omnibus (GEO) database for “CSF miRNA” datasets in Homo sapiens, and in the 
exRNA atlas database with CSF as the primary biofluid type.​13  
 
Metadata standardisation 
All available metadata was acquired for each of the 9 studies included in the super-series. Across 
datasets, the only metadata variable that was common to all samples was diagnosis associated 
with the sample. Among most datasets, age of the patient at the time the sample was taken (in 
years), as well as the sex of the patient (male or female). These variables were collected for as 
many samples as possible and stored in a harmonized format. The PREDICT-HD study classified 
patients into one of three risk groups in addition to Huntington’s disease patients (HD-Pre-Low, 
HD-Pre-Med, and HD-Pre-High).​18​ For the purposes of this analysis, HD-Pre-Med and 
HD-Pre-High risk groups were integrated with the overall HD group and the HD-Pre-Low group 
was retained separately. Diagnoses were grouped into one of 5 categories for simplified analysis 
by broad pathophysiological mechanism. Namely, IVH and SAH were grouped into the category 
of hemorrhage; Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, Parkinson’s 
disease dementia, and amyotrophic lateral sclerosis were grouped into the category of 
degenerative disease; glioma, ependymoma, meningioma, glioblastoma, lymphoma, and 
medulloblastoma were grouped into the category of malignancy; multiple sclerosis samples were 
maintained as multiple sclerosis, and lung and breast metastases were grouped into the category 
of metastasis. The remainder of the samples were healthy controls.  
 
Standardizing miRNA annotation version 
Because different studies relied on different versions of the miRNA annotation from miRbase 
(ranging from v20-21), these were standardized to the latest version (v22) for the combined 
dataset.​24​ Crucially, because every iteration of miRbase improves upon the previous, and miR 
entries may be deleted as more information is obtained about various species, it was felt that it 
was important to harmonize before any other steps were taken, as miRNA reclassified as 
non-miRNA may cloud further analyses. The impact of this was relatively small, with roughly 
1-2% of miRNA removed from each dataset. Most commonly, the removed species had more 
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information in the latest version of miRbase indicating that their reads came from fragments of 
other larger RNA molecules, and did not represent primary miRNA on their own.  
 
Expression data normalisation and batch correction 
All computations were done in R, version 3.5.0. Briefly, raw data were imported into R and first 
log-transformed using the transform log​2​(x+1) for expression x, if not already log-transformed. 
Subsequently, miRNA names were harmonized to version 22 of miRbase, as discussed above, 
using miRBaseConverter version 1.12.0.​36​ miRNA no longer considered bona fide miRNA were 
discarded, and in the case of non-unique mappings of miRNA after conversion, the miRNA with 
greater expression was retained and the others were discarded. In general, in these cases, only 
one of the miRNA had non-zero measurements in the original dataset. Following this, exmiRNA 
species with expression above 0 in at least 10% of samples were retained for further analysis. 
miRNA expressions were then normalized using the YuGene transform, implemented in the 
YuGene package version 1.1.6.​25​ After normalizing, only those miRNA common to all datasets 
were retained for further analysis (consensus exmiRNA). The ComBat batch correction function 
(as implemented in the R package sva, version 3.30.1) was then applied with batches defined as 
the samples from each of the 9 datasets.​37​ Batch-corrected datasets with the consensus exmiRNA 
were used for all further analyses. The guided principal components analysis (gPCA) package, 
version 1.0 was used in R to calculate delta, a test statistic estimate for the proportion of variance 
attributable to batch effects, along with empiric p-value, to ensure appropriate batch correction.​38 
 
Association of exmiRNA to neurologic disease 
The Wilcoxon rank-sum test was used to compare the batch-corrected normalized expression 
values across disease states, for each of the 30 consensus exmiRNAs individually. Statistical 
significance was defined as a one-sided Wilcoxon rank-sum test p < 0.05 after Bonferroni 
correction. Uniform manifold approximation (UMAP) was used to project the batch-corrected, 
normalized dataset into 2 dimensions using the umap package in R version 0.2.5.0.​39​ UMAP 
settings used were all defaults, except random seed was set to 1234567890 for reproducibility, 
n_neighbours was set to 30, and n_epochs was set to 2500.  
 
Analysis of miRNA expressed in healthy tissues 
To obtain the miRNA most consistently showing strong expression in healthy samples, the 
batch-corrected normalized dataset was subsetted to include only healthy samples, across the 30 
consensus miRNA. Following this, across samples, the rank product statistic was used to identify 
the miRNA species that consistently ranked high in expression across the healthy samples. The 
rank product test statistic and empiric p-value were computed using base settings and functions 
from the RankProd package, version 3.14.0 in R.​40​ Statistical significance was defined as 
Bonferroni corrected p < 0.05.  
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exmiRNA coexpression network  
Coexpression network of miRNA was constructed by computing the Spearman correlation 
between pairs of the consensus exmiRNA in groups of samples as stratified by their disease 
category. To ensure that correlations observed were above a minimum threshold of statistical 
significance, only disease categories with at least 25 samples were used. Correlation coefficient 
was defined as Spearman’s rho if the value was statistically significant (p < 0.01), and was 0 
otherwise. 
 
Dataset and code availability 
The final dataset cleaned with normalised, batch-corrected expression values has been uploaded 
to Github (​https://github.com/andrewdhawan/csf_ncRNA ​) as a .RDA file, along with all code 
that reproduces the plots and analysis within this paper.  
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Supplementary Information 
 
Supplementary Figure 1. UMAP plots coloured by disease for leave-one-out dataset. ​Data 
was pre-processed and batch corrected with the indicated dataset removed. Clustering was then 
performed using the resultant consensus exmiRNA common to all datasets included. UMAP 
plots were then regenerated (n_neighbours = 30, n_epochs = 2500) and show similar clustering 
as the full super-series, suggesting that no one dataset significantly skewed UMAP results.  
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Supplementary Figure 2. UMAP plots coloured by disease category for leave-one-out 
datasets. ​As in Supplementary Figure 1, data were pre-processed and batch-corrected with the 
indicated dataset removed. As in the full super-series, exmiRNA were again restricted to those 
common between all datasets included, and clustering with UMAP was performed in two 
dimensions (n_neighbours = 30, n_epochs = 2500), and points coloured by disease category. 
Again, similar clustering as in the full super-series is observed, suggesting that there is no strong 
driving influence by any one dataset in the UMAP analysis. 
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