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Novelty statement:  

Machine learning based on ACMG criteria for all known MODY causal genetic variants show 

different ACMG weight for different MODY genes. ACMG criteria have high accuracy 

predictive abilities for functional MODY genetic variants. Our results highlight the need for 

different weights of the ACMG criteria in relation with different MODY genes for accurate 

functional classification. For proof of principle, we applied the ACMG criteria as feature vectors 

in a machine learning model obtaining precision-based result. 
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Abstract 

Background: Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited 

monogenic diabetes, with HNF4A-MODY, GCK-MODY and HNF1A-MODY being the three 

most common genes responsible. Molecular diagnosis of MODY is important for precise 

treatment. While a DNA variant causing MODY can be assessed by the criteria of the American 

College of Medical Genetics and Genomics (ACMG) guidelines, gene-specific assessment of 

disease-causing mutations is important to differentiate between the MODY subtypes. As the 

ACMG criteria were not originally designed for machine learning algorithms, they are not true 

independent variables.  

Methods: In this study, we applied machine learning models for interpretation of DNA variants 

in MODY genes defined by the ACMG criteria based on Human Gene Mutation Database 

(HGMD) and ClinVar.  

Results: The results show highly predictive abilities with accuracy over 95%, suggest that this 

model could serve as a fast, gene-specific method for physicians or genetic counselors assisting 

with diagnosis and reporting, especially when confronted by contradictory ACMG criteria. Also, 

the weight of the ACMG criteria shows gene specificity which advocates for the application of 

machine learning methods with the ACMG criteria to capture the most relevant information for 

each disease-related variant.  

Conclusion: Our results highlight the need for different weights of the ACMG criteria in relation 

with different MODY genes for accurate functional classification. For proof of principle, we 

applied the ACMG criteria as feature vectors in a machine learning model obtaining precision-

based result. 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.20108035doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.20.20108035


Background 

Monogenic diabetes results from DNA mutations in a single gene and accounts for about 1 to 4 

percent of all cases of diabetes in United States (https://www.niddk.nih.gov/health-

information/diabetes/overview/what-is-diabetes/monogenic-neonatal-mellitus-mody). The most 

common form of monogenic diabetes is maturity-onset diabetes of the young (MODY), an 

autosomal dominant disease that most commonly occurs in adolescence or early adulthood[1]. 

Genetic sequencing is needed to identify the casual mutations and diagnose different types of 

MODYs[2]. The DNA variant causing MODY can be specifically assessed by the criteria 

established by the American College of Medical Genetics and Genomics (ACMG), as  published 

in their guidelines[3]. While the ACMG guidelines can be universally applied for all human DNA 

variants, our previous study suggests that a gene-specific assessment is important for disease-

causing mutations in different MODY genes[4]. In addition, contradictory evidence is commonly 

seen in functional classification of genetic variation by the ACMG guidelines[5]. While the 

ACMG guidelines may suggest a variant of uncertain significance (VUS), classification of the 

variant may have contradictory evidence, and some variants with contradictory evidence may turn 

out to have reliable definite classification.  

In this study, we focused on DNA variants of three MODY genes (i.e., HNF1A, HNF4A, 

and GCK) underlying the three most common types of MODYs[6], where we tested machine 

learning models for interpretation of DNA variants, using the ACMG criteria. Our results 

highlight the need for a different weight of the ACMG criteria in the functional classification of 

DNA variants of different MODY genes. 

 

Methods 

Data Collection for Machine Learning Procedures 

Known DNA variants of the three MODY genes, HNF1A, HNF4A, and GCK, were acquired from 

the database of common SNP 151[7], the ClinVar database[8], and the Human Gene Mutation 
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Database (HGMD) 2019 professional version[9]. Among the multi-hundred variants reported in 

these genes, approximately one half have the classification of pathogenic/likely pathogenic(P/LP) 

variants according to the annotation in ClinVar or HGMD. According to the HGMD, the three 

genes were curated by Professor Andrew Hattersley, a leading genetic expert in MODYs 

(http://www.hgmd.cf.ac.uk/docs/new_back.html). The classification of benign/likely benign 

(B/LB) variants varies between the different databases according to the annotation of ClinVar or 

common SNP 151. Overall, for the three genes, there are 899 unique variants reported inHNF1A, 

including 569 P/LP sites, and 330 B/LB sites; 1037 unique variants for HNF4A, including 182 

P/LP sites, and 855 B/LB sites; and 1664 unique variants for GCK, including 1065 P/LP sites and 

599 B/LB sites. However, a number of these variants have different annotation features between 

the different databases. 

 

Feature Vector Generation 

The feature vectors for the machine learning modeling are the criteria based on the ACMG 

guidelines[10]. The criteria terms were generated based on InterVar[11], a computational tool that 

uses a pre-annotated or VCF file as an input and generates automated interpretation based on the 

ACMG criteria. It should be noted that not all 33 ACMG criteria can be computationally scored. 

For example, the PS3 criteria requires well-established in vitro or in vivo functional studies 

supportive of a damaging effect on the gene or gene product. As a result, the number of ACMG 

criteria, or the length of feature vectors for the three MODY genes is 15, include PVS1, PS1, PS4, 

PM1, PM2, PM4, PM5, PP2, PP3, PP5, BA1, BS1, BP4, BP6, and BP7.  

Using machine learning regression procedures, we normalized the weights for the 

evidence of different categories in accordance with the ACMG guidelines, i.e., assuming that the 

weight coefficient of PVS1 criteria is 1, PS criteria is 1/2, PM criteria is 1/6 and PP criteria is 

1/12.  We additionally assumed that the weight coefficient of BA1 is -1, BS criteria is -1/2 and 

BP criteria is -1/4. As the ACMG criteria were not originally designed for machine learning, 
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these criteria are not true independent variables. Multi-collinearity among feature vectors is 

commonly seen within each gene and an example is the PM1 and PP2 criteria. By definition, a 

PM1 hit means the variant locates in a mutational hot spot and/or critical and well-established 

functional domain without benign variation; PP2 hit means there is a missense variant in a gene 

that has a low rate of benign missense variation and in which missense variants are a common 

mechanism of disease. In many situations PM1 and PP2 are consistent with each other, which has 

the potential to cause mis-weighing of the two criteria because of multi-collinearity. In order to 

detect the collinearity among feature vectors, we calculated the variance inflation factor (VIF) 

and pairwise correlation coefficient for the ACMG criteria. Feature vectors with VIF greater than 

10 or correlation coefficient larger than 0.8 were removed before the learning procedures. 

 

Learning Procedures & Predictive Modeling 

The machine learning procedure is a typical logistic regression based on the Scikit-learn package 

in Python[12]. For the detection of weight matrix of the ACMG criteria, all the variants including 

P/LP and B/LB were taken into account. For predictive modeling, we split the data based on 2-

fold random shuffle processes. In other words, the P/LP and B/LB variants were split randomly 

into equal size sets, with one set serving as training data, and the other set serving as testing data 

to determine the predictive capabilities of the model. This process was repeated ~20 times to 

obtain the mean and standard deviation for accuracy measures, including sensitivity and 

specificity.  

 

Results 

Weight matrix of the ACMG criteria show differences among the three MODY genes 

Based on the machine learning procedure, we found that the weight matrix of the ACMG criteria 

was significantly different between the three MODY genes, HNF1A, HNF4A and GCK (Table 1, 
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Figure 1). The differences are non-trivial and must be taken into consideration in clinical 

interpretation of DNA variants for genetic diagnosis.  

PS evidence are rarely observed with MODY variants. On the other hand, PS4 evidence 

(the prevalence of the variant in affected individuals is significantly increased compared with the 

prevalence in controls) is commonly observed and often misclassified.  As an example, the 

HNF1A variant, 12:121420807-G-A, or rs1183910, has been reported in a genome-wide 

association study (GWAS) to be associated with C-reactive protein, a marker of inflammation. 

[13]. However, as a common SNP with a minor allele frequency of 0.292 in European 

populations, it can’t be a variant causing the rare and dominantly inherited form of HNF1A-

MODY. 

Among the PM evidence, PM1, which is defined as located in a mutational hot spot 

and/or in a critical and well-established functional domain (e.g., active site of an enzyme) without 

benign variation, and PM2 (absent from controls or at extremely low frequency if recessive in 

Exome Sequencing Project, 1000 Genomes Project, or Exome Aggregation Consortium) are both 

commonly observed in support of pathogenic variants in the three MODY genes. However, PM2 

is also commonly seen in B/LB variants in these three genes, thus lacking specificity for the 

functional classification. In our study, PM2 showed a VIF of 79.0 in HNF1A, and 247 in GCK. 

As a result, although PM2 is much more common than PM1 in the three MODY genes, the 

weight of PM2 in HNF1A is lower than PM1. 

Among the PP evidence, PP2 (missense variant in a gene that has a low rate of benign 

missense variation and in which missense variants are a common mechanism of disease) is absent 

in HNF1A and GCK, but commonly seen in HNF4A. However, PP2 has a correlation coefficient 

of 0.932 with PM1, so it doesn’t add much weight to the classification of P/LP variants in HNF4A.  

 

 

Highly accurate predictive ability for MODY gene pathogenicity 
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HNF4A-MODY (MODY1), GCK-MODY (MODY2), and HNF1A-MODY (MODY3) are the 

three most common types of MODYs accounting for ~70% of all MODY genes[14]. Therefore, 

predictive model aimed at the recognition of pathogenic variants would be useful for the 

diagnosis of novel mutations in these genes. As described in the method section, we used 2-fold 

random shuffle testing which used 50% of the mutations as training data, another half as testing 

data, and repeated the analysis dozen times. The logistic regression machine learning shows 

overall accuracy above 95% for MODY gene mutations (Figure 2). Both HNF1A and HNF4A 

have specificity close to 100%, and specificity in GCK is also above 95%. The lower specificity 

however is also consistent with the benign phenotype and mild clinical expression of GCK-

MODY. The results prove the principle that ACMG criteria could be applied as meaningful 

feature vectors in machine learning model and machine learning model based on ACMG criteria 

could provide accurate pathogenic classification for other Mendelian disease genes in a gene-

specific way. 

 

Discussion 

In the past decade, sequencing technologies have evolved rapidly with the advance of high-

throughput next-generation sequencing (NGS). By adopting NGS, clinical laboratories are now 

performing an ever-increasing volume of genetic testing for genetic disorders. Increased 

complexity in genetic testing has been accompanied by new challenges in sequence interpretation 

and multiple new standards have been implemented for physicians and genetic counselors 

regarding interpretation and reporting of sequence variants at different level of pathogenicity. 

Currently there are multiple computational tools which are based on different algorithms and 

databases that are being used to predict the pathogenicity of DNA variants, such as SIFT[15], 

MutationTaster[16], likelihood ratio test (LRT)[17], FATHMM by supervised machine learning 

model [18], GERP++ by maximum likelihood evolutionary rate estimation [19] for coding 

variants, and DANN for both coding and non- coding variants using deep neural network [20]. 
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However, all these computational tools assess each gene with a common rule which is not based 

on biology, while our study suggested gene-specific assessment for pathogenicity is required at 

least for MODY genes[4]. The evolutionary selection pressures on MODYs vary across different 

genes, whereas it is minimum in the case of GCK-MODY[21]. Similar issues exist with 

functional classification by the ACMG criteria which are globally applied for all human genes. 

The ACMG Criteria contain 33 terms that lead to five categories of mutations ("pathogenic," 

"likely pathogenic," "uncertain significance," "likely benign," and "benign"), is one of the most 

commonly used standards. 

Maturity-onset diabetes of the young (MODY) is a group of dominantly inherited 

monogenic diabetes, and HNF4A-MODY (MODY1), GCK-MODY (MODY2), and HNF1A-

MODY (MODY3) are the three most common types of MODY. These MODY genes are 

involved in different molecular pathways. MODY variants of different gene show different 

clinical features and require different treatment. For example, HNF1A-MODY has reduced beta 

cell mass or impaired function, and has been treated with sulfonylureas with excellent results for 

decades[22]. These patients are so sensitive to sulfonylurea treatment and may be susceptible to 

develop hypoglycemia during sulfonylurea treatment[22]. HNF4A-MODY has similar clinical 

features with HNF1A-MODY, and the affected transcription network plays a role in the early 

development of the pancreas. The pancreatic beta cells produce adequate insulin in infancy but 

capacity for insulin production declines thereafter[23]. The beta cells in GCK-MODY have a 

normal capacity to make and secrete insulin, but do so only above an abnormally high glucose 

threshold which produces a chronic, mild increase in blood sugar, which is usually 

asymptomatic[21]. The treatment of GCK-MODY can be achieved by a healthy diet and exercise, 

while oral hypoglycemic agents or insulin is of no benefit in these patients[21]. Therefore, 

molecular diagnosis of these MODYs are important for precise treatment. 

 

Conclusion 
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In this study, we applied a computational machine learning method together with the ACMG 

criteria for functional classification of genetic variants of the three most common MODY genes, 

HNF1A, HNF4A and GCK. Our results show that a typical machine learning model using 15 

computational ACMG criteria as the feature vector has predictive abilities that are highly accurate 

(>95% accuracy) for hundreds of annotated variants in three MODY genes. It suggests that this 

model could serve as a fast, gene-specific method for physicians or genetic counselors assisting 

with diagnosis and reporting, especially when confronted by contradictory ACMG criteria. Also, 

we show that the weight of the ACMG criteria shows gene specificity which advocates for the 

application of machine learning methods with the ACMG criteria to capture the most relevant 

information for each disease-related variant.  

 

Figure Legend 
Figure 1. Weight matrix of three MODY genes, HNF1A, HNF4A and GCK: normalized weight 
for ACMG criteria for three most common MODY genes. 
Figure 2. Overall accuracy based on logistic regression machine learning tests. Boxplot 
represents the sensitivity and specificity for 2-fold random shuffle tests. 
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Table 1. Weight matrix of the ACMG criteria for three MODY genes 

      Frequency         weight   

Term 

HNF1A 

PLP 

HNF1A 

BLB 

HNF4A 

PLP 

HNF4A 

BLB 

GCK 

PLP 

GCK 

BLB 
HNF1A HNF4A GCK 

PVS1 0.3040 0.0030 0.2582 0.0000 0.2183 0.0033 5.401 11.665 5.275 

PS1 0.0018 0.0000 0.0000 0.0000 0.0039 0.0000 0.018 0.000 0.210 

PS4 0.0000 0.0030 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.000 

PM1 0.5149 0.0030 0.4835 0.0000 0.6326 0.0083 0.866 2.340 0.442 

PM2 0.9772 0.4273 0.7802 0.1450 0.9922 0.5092 0.555 0.290 0.542 

PM4 0.0053 0.0000 0.0055 0.0000 0.0049 0.0000 1.167 1.944 0.923 

PM5 0.0264 0.0000 0.0055 0.0000 0.1335 0.0000 0.375 0.007 0.927 

PP2 0.0000 0.0000 0.5440 0.0012 0.0000 0.0000 0.000 0.000 0.000 

PP3 0.6151 0.0061 0.5769 0.0000 0.7437 0.0050 0.235 0.000 0.347 

PP5 0.1195 0.0000 0.1923 0.0000 0.1540 0.0033 0.975 1.727 0.202 

BA1 0.0105 0.2091 0.0165 0.1708 0.0039 0.1703 -0.696 -0.880 -1.312 

BS1 0.0228 0.5667 0.0440 0.5895 0.0078 0.4891 0.000 0.000 0.000 

BP4 0.0193 0.0727 0.0165 0.0222 0.0458 0.0234 0.000 0.000 -0.665 

BP6 0.0123 0.1182 0.0220 0.0480 0.0029 0.0234 0.000 0.000 -0.253 

BP7 0.0123 0.0636 0.0110 0.0211 0.0400 0.0200 0.000 0.000 0.000 
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