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ABSTRACT	22	
	23	
New	COVID-19	epicenters	have	sprung	up	in	Europe	and	US	as	the	epidemic	in	24	
China	wanes.	Many	mechanistic	models’	past	predictions	for	China	were	25	
widely	off	the	mark	(1,	2),	and	still	vary	widely	for	the	new	epicenters,	due	to	26	
uncertain	disease	characteristics.	The	epidemic	ended	in	Wuhan,	and	later	in	27	
South	Korea,	with	less	than	1%	of	their	population	infected,	much	less	than	28	
that	required	to	achieve	“herd	immunity”.	Now	as	most	countries	pursue	the	29	
goal	of	“suppressed	equilibrium”,	the	traditional	concept	of	“herd	immunity”	30	
in	epidemiology	needs	to	be	re-examined.	Traditional	model	predictions	of	31	
large	potential	impacts	serve	their	purpose	in	prompting	policy	decisions	on	32	
contact	suppression	and	lockdown	to	combat	the	spread,	and	are	useful	for	33	
evaluating	various	scenarios.		After	imposition	of	these	measures	it	is	34	
important	to	turn	to	statistical	models	that	incorporate	real-time	information	35	
that	reflects	ongoing	policy	implementation	and	degrees	of	compliance	to	36	
more	realistically	track	and	project	the	epidemic’s	course.	Here	we	apply	such	37	
a	tool,	supported	by	theory	and	validated	by	past	data	as	accurate,	to	US	and	38	
Europe.	Most	countries	started	with	a	Reproduction	Number	of	4	and	declined	39	
to	around	1	at	a	rate	highly	dependent	on	contact-reduction	measures.		40	
			41	
	42	
	 	43	
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	44	
1.	Introduction.	45	
	46	
Almost	one	hundred	years	ago,	a	classic	paper	published	in	Proceedings	of	Royal	47	
Society	by	Kermack	and	McKendrick	(3),	entitled	“A	contribution	of	mathematical	48	
theory	of	epidemic”,	started	the	tradition	of	mathematical	modelling	on	the	spread	49	
of	infectious	disease	among	a	susceptible	population.		Current	thinking	in	50	
epidemiology	is	still	deeply	rooted	in	concepts	introduced	in	that	paper,	some	of	51	
which	are	still	relevant,	while	others	need	to	be	modified.	The	mechanistic	model	52	
they	introduced	is	called	the	SIR	model,	for	Susceptible-Infected-53	
Recovered/Removed:		A	susceptible	population	is	infected	by	the	introduction	of	a	54	
few	infected	individuals.	The	infected	population	eventually	recovered,	and	in	the	55	
process	acquiring	immunity	to	the	original	infectious	disease,	or	dead	(removed).		56	
An	epidemic	ends	when	susceptibles	are	exhausted	as	most	of	the	population	is	57	
immunized	this	way,	achieving	“herd	immunity”.		There	have	been	many	variants	to	58	
this	basic	model.		One	common	modification	is	to	add	an	extra	population	of	E	for	59	
exposed	individuals	who	are	not	yet	infectious,	in	the	so-called	SEIR	model.		Other---	60	
agent-based----	models	take	advantage	of	the	modern	computing	power	to	further	61	
subdivide	the	population	into	many	subgroups	and	even	simulate	movements	of	62	
individuals.	But	basic	concepts	are	similar	to	the	SIR	model.		These	mechanistic	63	
models	are	of	critical	importance	before	the	outbreak	starts,	for	the	models	could	be	64	
used	to	explore	various	scenarios	for	policy	decisions	on	social	distancing	and	65	
lockdown.		Once	the	outbreak	starts,	a	different	kind	of	models	are	needed----so	far	66	
not	well	developed----which	are	capable	of	using	real-time	data	to	provide	the	67	
needed	parameters	for	epidemic	management,	predict	various	turning	points	and	68	
peak	medical	resource	needs,	and	monitor	the	effect	of	compliance	of	the	quarantine.	69	
In	this	paper,	we	introduce	such	a	statistical	model,	supported	by	theory	and	70	
validated	by	observed	data.	71	
	72	
There	are	actually	two	possible	end	states	of	an	epidemic:	one	is	through	“herd	73	
immunity”	mentioned	above	when	we	discuss	the	mechanistic	models,	and	the	74	
other	is	an	unstable	state	achieved	by	suppressing	contacts	among	individuals,	75	
called	“suppressed	equilibrium”	here,	which	is	pursued	by	most	countries	in	this	76	
pandemic,	though	many	policy	makers	may	not	be	aware	of	the	distinction	between	77	
the	two.		This	second	state	is	(parametrically)	unstable	because	if	the	social	78	
distancing	measures	are	relaxed	and	the	businesses	reopened,	the	disease	could	79	
initiate	a	second	wave,	as	most	of	the	population	has	not	acquired	immunity.		Even	if	80	
the	epidemic	ends	in	one	country,	there	could	still	be	subsequent	waves	of	infection	81	
by	imports	from	abroad	unless	there	is	strict	quarantine	of	cross-border	travelers.		82	
There	is	also	a	third	route:	to	suppress	just	enough	so	that	the	maximum	cases	of	83	
hospitalizations	are	kept	below	the	maximum	capacity	of	the	medical	system	in	each	84	
district,	delaying	long	enough	either	for	the	population	to	eventually	achieve	herd	85	
immunity	or	for	a	vaccine	to	be	developed	for	the	disease.		More	people	would	be	86	
infected	and	more	would	die	in	this	approach	than	the	suppressed	equilibrium,	but	87	
less	than	that	in	the	herd	immunity	scenario,	where	the	hospitals	may	become	88	
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overwhelmed.		Which	approach	to	take	is	the	difficult	decision	confronting	policy	89	
makers	at	the	beginning	of	an	epidemic.			90	
	91	
It	was	reported	(2)	that	UK	first	contemplated	not	suppressing	the	epidemic	92	
through	lockdowns,	fearing	that	doing	so	would	only	lead	to	a	larger	second	93	
outbreak	because	most	of	the	population	would	not	have	gained	immunity.	So	the	94	
plan	was	to	let	the	epidemic	run	its	course	while	protecting	the	elderly.	But	when	95	
shown	a	model	prediction	(4)	that	such	a	“do-nothing	scenario”	would	lead	to	96	
500,000	deaths	and	81%	of	the	population	infected,	policy	makers	changed	course	97	
and	imposed	strict	counter	measures.	This	is	an	important	and	proper	role	for	a	98	
model,	to	prompt	policy	actions	to	combat	the	spread	of	the	disease.		Once	the	99	
outbreak	started,	the	accuracy	of	the	mechanistic	model	predictions	cannot	be	100	
verified	as	the	forecast	forever	changed	the	course	of	the	epidemic	in	UK.	Health	101	
officials	in	Sweden	didn’t	believe	in	models	and	decided	to	pursue	“herd	immunity”	102	
starting	12	March.	103	
	104	
The	number	of	people	that	will	have	to	be	infected	before	achieving	herd	immunity	105	
depends	on	how	contagious	the	disease	is.	The	16	March	report	of	Ferguson	et	al.(4)	106	
assumed	an	infection	rate,	expressed	in	terms	of	Basis	Reproductive	Number	R0	of	107	
2.4.		For	US	it	predicted	that	81%	of	the	population	would	have	to	be	infected	in	this	108	
do-nothing	scenario,	or	about	250	million,	resulting	in	2.2	million	dead.		Later	109	
updates	in	the	30	March	report	of	Flaxman	et	al.	(5)	suggested	that	R0	should	be	110	
above	4	for	European	countries	studied.		Estimating	this	number	will	be	one	of	the	111	
tasks	in	the	present	work	so	that	one	can	evaluate	what	it	entails	for	the	herd-112	
immunity	approach.		We	will	later	show,	directly	from	data,	that	this	estimate	of	R0	113	
~4	also	holds	for	the	US,	and	in	fact	approximately	so	for	every	country	we	114	
examined.		So	over	90%	of	the	US	population	would	need	to	be	infected	before	herd	115	
immunity	could	be	achieved.		COVID-19	turns	out	to	be	much	more	contagious	than	116	
originally	thought.	See	also	(6).	117	
	118	
Since	a	“suppressed	equilibrium”	is	achieved	in	a	very	different	manner	than	that	for	119	
the	“herd	immunity”,	our	estimate	of	the	end	date	of	the	epidemic	as	a	consequence	120	
of	contact	suppression	is	not	based	on	the	number	of	susceptibles,	S,	approaching	a	121	
small	critical	value	(i.e.	when	most	of	the	population	is	infected,	hence	acquiring	122	
immunity),	but	the	daily	new	cases	N(t)	approaching	zero	and	remaining	so	for	two	123	
incubation	periods.	For	prediction	purpose,	the	date	when	the	N(t)	is	near	zero	is	124	
estimated	by	3	standard	deviations	from	its	peak.		These	two	quantities,	the	peak	125	
and	the	standard	deviation,	can	be	extracted	from	the	data	as	the	epidemic	is	126	
developing.		Our	estimate	of	the	end	of	the	epidemic	is	earlier,	usually	significantly	127	
so,	because	it	does	not	depend	on	a	high	percentage	of	the	population	having	been	128	
infected	to	achieve	herd	immunity.	129	
	130	
For	South	Korea,	the	epidemic	in	that	country	ended	with	just	0.02%	of	its	131	
population	infected.	Wuhan,	the	epidemic	ended	with	less	than	0.5%	of	its	132	
population	infected,	both	less	than	1%	of	that	required	to	achieve	herd	immunity	as	133	
predicted	by	most	mechanistic	models.	Even	if	these	numbers	are	multiplied	by	a	134	
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factor	of	10	(as	some	in	the	media	suggested	that	the	Wuhan	data	may	be	an	135	
underestimate),	it	is	still	one	order	of	magnitude	less.		Furthermore,	it	is	generally	136	
accepted	that	South	Korea’s	data	are	good.	Indeed,	the	situation	in	these	countries	137	
represents	early	examples	of	the	“suppressed	equilibrium”.		Because	of	its	much	138	
lower	number	of	deaths,	such	an	end	state	is	a	goal	that	most	countries	have	139	
decided	to	pursue,	despite	the	enormous	toll	on	the	economy	due	to	the	much	140	
reduced	business	activity	for	the	two	to	three	months	that	it	would	take	to	achieve	it.	141	
	142	
The	above-quoted	numbers	for	Wuhan	and	South	Korea	are	for	the	confirmed	cases,	143	
and	do	not	include	the	asymptomatic	infected.	Recently	(in	early	April)	about	3,330	144	
individuals	in	Santa	Clara	County	in	California	were	tested	for	antibodies	to	the	145	
COVID-19	virus	in	their	blood	(7).	50	were	tested	positive	(meaning	that	they	were	146	
exposed	in	the	past	to	the	virus),	yielding	a	crude	prevalence	rate	of	1.5%.		When	147	
weighed	by	demographics	and	extrapolated	statistically	to	the	whole	county’s	148	
population,	it	was	calculated	that	2.8%	of	the	population	could	have	been	infected,	149	
with	a	95%	confidence	range	of	1.3-4.7%.		These	numbers,	less	than	5%,	are	also	150	
much	less	than	what	is	required	to	achieve	herd	immunity,	in	a	county	where	the	151	
epidemic	is	waning	at	the	time.		152	
	153	
In	pursuing	the	“suppressed	equilibrium”	and	monitoring	the	progress	towards	it,	a	154	
second	type	of	statistical	models	is	required.		This	type	of	models	should	reflect	the	155	
contact-reduction	measures	already	in	place	and	the	degree	of	compliance	by	the	156	
population	in	each	region.		Unlike	China	and	South	Korea,	many	European	countries	157	
imposed	these	measures	in	stages,	and	so	the	contact	rate	among	the	population	158	
was	reduced	in	a	time-dependent	way.	In	US,	even	before	the	epidemic	is	over,	some	159	
states	are	starting	to	reopen	businesses.		Only	a	real-time,	data	driven	model	can	160	
reflect	these	changes.	Such	a	model	should	be	based	on	sound	epidemiological	161	
principles.	Prediction	based	on	a	purely	statistical	model	without	an	epidemiological	162	
foundation,	even	though	using	real-time	and	past	data,	is	akin	to	watching	the	daily	163	
stock	market	fluctuations	and	performing	“technical	analysis”	to	ask	when	the	peak	164	
is	for	an	investor	to	time	a	sell	order.		A	prediction	could	be	made	but	the	165	
uncertainty	would	be	so	large	that	it	is	just	likely	for	the	prediction	to	be	right	as	for	166	
it	to	be	wrong.	167	
	168	
Each	type	of	models	has	its	strengths	and	weaknesses.		For	the	mechanistic	model,	169	
such	as	SIR	and	SEIR	or	agent-based	versions,	a	key	parameter,	the	infection	rate,	is	170	
not	known	for	an	emerging	disease	such	as	SARS-CoV-2,	and	this	has	been	a	source	171	
of	difficulty	with	predictions	using	such	models.		For	the	second	type	of	models,	172	
especially	the	purely	statistical	models	without	epidemiological	basis,	it	is	not	173	
known	which	quantity	of	the	epidemic	is	predictable.	For	example,	there	have	been	174	
many	empirical	models	based	on	the	assumption	that	the	progression	of	daily	cases	175	
follow	a	Gaussian	“epidemic	curve”	in	time,	starting	with	the	early	model	of	William	176	
Farr	in	1840:	“Law	of	Epidemics”	in	his	second	annual	report	to	the	Registrar	177	
General	of	England	and	Wales	(8).	Lacking	the	epidemiological	mechanism	that	178	
Kermack	and	McKendrick	(3)	later	proposed,	the	“law”	simply	reflected	Farr’s	179	
conviction	that	the	observed	deceleration	of	the	rate	of	increase	of	infected	would	180	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2020. ; https://doi.org/10.1101/2020.03.28.20046177doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.28.20046177
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

not	lead	to	an	impending	catastrophe	but		to	a	crest	and	then	accelerated	decline.	181	
The	latest	is	that	of	the	Institute	of	Health	Metrics	and	Evaluation	(IHME)(9).		It	182	
turns	out	that	fitting	three	parameters	that	define	a	Gaussian	to	a	short	time	series	183	
and	then	using	that	Gaussian	to	predict	the	peaks	of	the	epidemic	is	an	ill-posed	184	
problem(10).		The	uncertainty	for	next-day	prediction	is	near	100%,	and	should	185	
increase	further	for	predictions	a	few	days	out	(11).		In	this	work	we	pay	special	186	
attention	to	which	epidemiological	property	is	predictable,	and	we	quantify	the	187	
uncertainty	of	our	prediction.		188	
	189	
The	search	for	the	correct	“geometry	of	epidemic	curves”	has	a	long	history	in	190	
statistical	modelling.	Farr’s	law	is	purely	descriptive.	Farr	did	not	realize	that	his	191	
epidemic	curve	is	Gaussian	but	nevertheless	his	descriptive	law	of	second	ratios	192	
could	be	used	for	prediction,	though	not	very	accurate.		For	example	(see	(12)),	if	193	

		x1 ,x2 ,x3 ,x4 ,x5 ,x6.... 	are	the	successive	weekly	incidence	(i.e.	new	cases)	or	mortality,	194	
his	law	says	that	the	ratio	of	successive	ratios	of	these	numbers	is	a	constant:	195	

		
x4 / x3
x2 / x1

=
x5 / x4
x3 / x2

= .....= K ,		196	

which	is	less	than	1.		That	is,	there	is	a	constant	deceleration	of	the	rate	of	growth	of	197	
the	cases.		After	measuring	this	constant	from	the	early	weeks’	data,	future	198	
incidence	values	can	be	predicted.	It	was	John	Brownlee	in	1907	(13)	who	realized	199	
that	the	above	formula,	when	logarithm	is	taken----turning	the	ratio	of	ratios	to	200	
difference	of	differences----is	a	finite	difference	form	of	the	second	order	time-201	
derivative	of			log x 	being	a	negative	constant	(12):	202	

		
d2

dt2
log x = logK <0. 		203	

Integrating	twice	and	then	taking	exponentiation	lead	to			x(t) 	being	a	Gaussian	form.		204	
Brownlee	thought	this	normal	form	for	the	epidemic	curve	is	a	fundamental	law	in	205	
epidemiology,	but	his	proposed	explanation	for	the	declining	growth	of	the	206	
incidence	of	an	epidemic	as	due	to	decreasing	“infectivity”	was	not	well-received	by	207	
epidemiologists	at	the	time.		208	
	209	
Brownlee	(13)	provided	examples	of	several	epidemics	showing	that	there	was	fore-210	
aft	symmetry	in	their	epidemic	curves.		For	COVID-19,	we	find	that	the	epidemic	211	
curve	for	Wuhan,	China	follows	a	Gaussian,	with	near	fore-aft	symmetry,	but	that	for	212	
US	has	a	rapid	rise	but	slow	decline,	definitely	not	Gaussian.		While	it	may	be	213	
possible	that	without	human	intervention,	a	solitary	outbreak	may	follow	a	214	
Gaussian	curve,	in	the	modern	era	of	contact	suppression,	the	epidemic	curve	is	215	
shaped	by	such	interventions.		We	shall	explain	Wuhan’s	shape	as	due	to	the	fact	216	
that	the	contact	suppression	measures	were	consistently	imposed	throughout	the	217	
course	of	the	outbreak,	while	in	the	case	of	US,	its	states	and	the	populace,	were	218	
relaxing	earlier	measures	on	the	aft	side	of	the	curve,	when	the	new	cases	declined,	219	
creating	a	fore-aft	asymmetry.		Therefore,	one	should	take	into	account	that	in	the	220	
modern	era,	as	countries	pursue	a	“suppressed	equilibrium”	at	great	economic	cost,	221	
there	is	a	tendency	in	countries	with	decentralized	state	governments	to	relax	the	222	
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countermeasures	to	various	degrees	once	the	disease	crested,	giving	rise	to	223	
subsequent	waves	of	infection.	[A	second	reason	is	that	the	US	data	is	an	aggregate	224	
of	data	for	different	epicenters,	with	staggered	recovery.	A	third	reason	for	the	225	
asymmetry	may	be	artificial:	In	many	countries	there	is	usually	an	increase	in	the	226	
testing	of	the	population	as	the	production	of	the	test	kits	and	facilities	to	process	227	
them	ramp	up	after	the	initial	shortage.		Therefore	it	is	to	be	expected	that	there	228	
would	be	more	cases	found	later	in	the	course	of	the	epidemic	than	in	the	beginning.]	229	
	230	
Brownlee	rejected	the	idea	of	herd	immunity,	that	the	epidemic’s	decline	was	due	to	231	
“an	exhaustion	of	susceptibles,	enshrined	20	years	later	in	the	SIR	model	of	232	
Kermack	and	McKendrick	(3).	His	alternative,	“infectivity”	idea	was	based	on	the	233	
thinking	that	the	decline	was	due	to	“the	loss	of	infecting	power	on	the	part	of	the	234	
organism”(13),	and	that	this	biological	property	of	the	pathogen	(“organism”)	235	
should	follow	some	fundamental	law.		This	biological	property	of	the	virus	has	not	236	
been	observed	in	the	current	COVID-19	pandemic,	and	does	not	appear	to	be	a	237	
factor.		However,	Brownlee’s	idea	can	be	resurrected	by	modifying	the	definition	of	238	
“infectivity”	to	include	social	factors,	since	how	many	people	one	infected	individual	239	
can	infect,	as	measured	by	the	Effective	Reproduction	Number,	Rt	,	depends	on	the	240	
product	of	the	number	of	persons	contacted	during	the	infectious	period	and	the	241	
probability	of	the	contacted	person	contracting	the	disease.	After	implementation	of	242	
contact-reduction	measures,	we	can	actually	see	from	the	data	(in	section	2)	the	243	
decline	of	this	measure	of	“infectivity”.		Furthermore	the	decline	is	steeper	in	244	
countries	that	have	the	more	stringent	contact-reduction	policies	and	245	
implementation.		Although	both	the	mechanisms	of	loss	of	susceptibles	and	246	
decrease	in	“infectivity”	are	likely	at	play,	with	the	extremely	small	percentage	of	247	
the	population	infected	in	the	current	pandemic,	the	second	mechanism	appears	to	248	
be	the	dominant	one	as	countries	strive	to	achieve	the	“suppressed	equilibrium”.		249	
Given	this	situation,	model	predictions	of	the	decline	of	the	epidemic	based	the	250	
number	of	susceptibles	decreasing,	as	in	SIR	and	SEIR	models,	may	be	missing	the	251	
main	cause	for	the	observed	progression	of	the	disease	in	the	current	pandemic.		252	
	253	
Brownlee’s	idea,	with	modification	expressed	above,	can	be	cast	in	a	mathematical	254	
form	as:	255	

		xt+1 = Rtxt ,	256	

where		xt 	is	the	incidence	(new	cases)	at	time	t	,	and			xt+1 	is	the	incidence	one	257	
infectious	period	later.	An	infection	period	is	the	duration	an	infected	person	258	
remains	infectious.	Rt		is	defined	earlier	as	the	number	of	people	one	infected	259	
individual	would	infect	during	the	period	when	he	is	infectious.	If	Rt	is	a	constant,	260	

		Rt = R0 ,	the	solution	to	the	above	finite	difference	equation	is:	261	

		xt = x0(R0)
t 	;	262	

the	solution	is	an	unimpeded	exponential	growth	(since			(R0)
t = exp{t logR0} )	for	the	263	

relevant	case	of			R0 >1 .	Brownlee(14)	commented	that	such	an	epidemic	form	is	264	
contrary	to	the	facts:		"The	assumption	that	the	infectivity	of	an	organism	is	constant,	265	
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leads	to	epidemic	forms	which	have	no	accordance	with	the	actual	facts.”		With	Rt	as	266	
a	decreasing	function	of	time,	which	we	find	is	actually	the	case	in	section	2,	the	267	
above	solution	becomes	Gaussian-like.		Specifically,	if	Rt	decreases	by	a	factor			q<1 	268	
after	each	period	(12,	14),	due	to	a	“loss	of	infecting	power”,	i.e.			Rt = R0q

(t−1) ,	then	the	269	
solution	is	Gaussian:	270	

		xt = x0(R0)
t qt(t−1)/2 	,	271	

(since			xt = x0 exp{t logR0 +
1
2t(t −1)logq} 	,	noting			logq<0 	).	272	

The	exponential	growth	from			(R0)
t 	is	eventually	overtaken	by	the	more	rapid	273	

decrease	of			q
t2 .		Note	that	in	this	argument,	no	mention	is	made	of	the	decrease	of	274	

the	number	of	susceptibles;	this	is	not	needed	when	the	decrease	is	so	small	275	
compared	to	the	population	as	a	whole.	276	
	277	
This	paper	is	organized	as	follows:		We	first	introduce	the	relationship	between	the	278	
net	infection	rate	and	the	Reproduction	Numbers.		The	epidemiological	basis	for	our	279	
model	is	discussed.		Then,	we	will	present	a	suite	of	prediction	tools	for	epidemic	280	
management.		We	will	also	provide	a	summary	of	the	COVID-19	inferred	281	
epidemiological	characteristics	for	various	countries	in	Asia,	Europe	and	US.		Finally,	282	
a	discussion	and	conclusion	will	be	given.			The	theoretical	support	is	given	in	the	283	
appendix.			284	
	285	
2.	The	net	infection	rate	and	the	Reproduction	Numbers	286	
Before	we	discuss	our	prediction	model,	we	first	discuss	diagnosing	a	key	parameter	287	
used	as	input	in	most	mechanistic	epidemiological	models,	the	infection	rate,	or	288	
equivalently	expressed	as	the	Basic	Reproduction	Number	or	the	time-dependent	289	
Effective	Reproduction	Number.	Using	real-time	data,	we	diagnose	it	for	different	290	
countries	in	the	world,	which	actually	reflects	the	underlying	influence	factors.	291	
	292	
We	define	in	general	the	net	infection	rate	 	as	the	time-varying	exponential	293	
growth	rate	of	the	active	infected	cases	(15):	294	

.	295	

The	active	infected	number, 	is	given	by	the	equation	that	describes	its	rate	of	296	
increase	as	the	daily	new	infected	cases	 	minus	the	daily	recovered/removed	297	
case,			R(t) :	298	

	299	

The	dead	(“removed”)	is	included	in	R(t)	in	our	calculations.	The	peak	number	of	300	
active	infected	cases	is	a	key	parameter	in	the	planning	for	hospital	resources.		This	301	
turning	point,	denoted	by	 ,	can	be	located	in	a	local-in-time	manner	by	when	R	302	
starting	to	exceed	N,	without	first	accumulate	the	data	in	time	to	find	I(t)	.	Maximum	303	

		α(t)

		
α(t)= d

dt
log I(t)=

d
dt
I(t)
I(t)

		I(t)
		N(t)

		
d
dt
I =N(t)−R(t).

	
tp
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demand	for	hospital	resources	occurs	at	its	peak,	and	not	at	the	peak	of	 ,	304	
although	the	latter	is	a	more	commonly	reported	quantity.	R(t)	is	not	a	factor	in	the	305	
initial	rise	of	the	outbreak,	nor	is	it	needed	to	explain	why	the	rise	slows	and	306	
eventually	crests.		However	in	the	waning	phase,	when	the	new	cases	are	smaller,	307	
the	rising	recovered	cases	need	to	be	taken	into	account	to	determine	tp.	308	
	309	
In	traditional	mechanistic	models,	such	as	the	SIR	model(3)	,	there	is	also	a	time-310	
dependent	net	infection	rate,	which	at	t=0	,	when	the	population	is	completely	311	
susceptible,	is	related	to	the	Basic	Reproduction	Number	R0.	See	ref	(16)	for	a	312	
discussion	of	the	complexities	associated	with	this	key	parameter.		We	will	not	be	313	
using	the	SIR	model	but	it	is	useful	to	relate	our	general	definition	to	what	is	314	
traditionally	used.	The	equation	for	I	in	the	SIR	model	is:	315	
	316	

	317	
where	 	is	the	infection	rate	and	 	is	the	recovery/removal	rate.	318	

Therefore	 	 		319	

So	for	the	SIR	model	 .		So	as	the	population	of	the	susceptible		S(t) 	320	

decreases---“exhaustion	of	the	susceptibles”	as	hosts	for	the	disease----the	Effective	321	
Reproduction	Number	decreases.	More	relevant	for	our	discussion	is	the	possibility	322	
that	the	infection	rate	a	could	change	as	a	result	of	contact	reduction	measures	in	323	
place.			324	
	325	
Initially	when	the	whole	population	is	not	yet	infected,	the	Basic	Reproduction	326	

Number	is	 .	327	

	328	
The	above-defined	time-dependent	net	infection	rate	generalizes	this	concept	to	be	329	
independent	of	the	SIR	or	other	models:	If	in	the	course	of	an	epidemic,	 	is	330	
positive,	the	number	of	infectives	will	grow	exponentially,	reaching	a	peak	number	331	
of	infectives	when	 ,	which	is	a	critical	turning	point	mentioned	332	
above.		Then	the	total	number	of	active	infectives	will	decrease	exponentially.	In	333	
terms	of ,	if	this	number	is	greater	(less)	than	1	the	total	number	of	334	
active	infectives	will	grow	(decrease)	at	time	 .		We	will	here	use	 	directly.		Rt	335	
however	is	the	more	watched	quantity	by	the	mainstream	modelers	(16).		It	can	be	336	
calculated	from	the	net	infection	rate,	but	will	require	a	parameter	b,	the	recovery	337	
rate,	which	may	be	different	for	different	regions.	Furthermore,	many	countries	do	338	
not	keep	adequate	records	on	those	who	recovered,	and	so	there	is	an	uncertainty	in	339	
estimating	b.		In	Figure	2,	Rt	is	obtained	by	estimating	this	parameter	as	340	

,	where	 	is	the	standard	deviation	for	the	distribution	of	the	341	

daily	recovered	and	 	is	that	for	the	daily	newly	infected	numbers.	These	342	

		N(t)

		dI dt = aSI −bI = bI(aS /b−1),	
		aS(t) 	b

		
α(t)= dI /dt

I
= b(aS(t)

b
−1)= b(Rt −1).

		
Rt =

aS(t)
b

		
R0 =

aS(0)
b

= Rt(0)=α(0)b+1

		α(t)

		α(t)=0	at	t = tp

( )/ 1tR t bα= +
	t 		α(t)

		b≈1/σ R ≈1/σ N 	σ R

	σ N
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parameters	are	calculated	for	each	country	(see	Table	1).	R0	is	obtained	from	Rt	in	343	
the	initial	period,	before	there	is	significant	recovered	population.	344	
	345	
For	an	emerging	disease	such	as	SARS-CoV-2,	there	is	not	enough	statistics	for	346	
estimating	the	true	infection	rate	(e.g.	the	parameter	a	in	the	SIR	model).	Models	347	
usually	assume	a	value	of	R0	or	perform	scenario	calculations	for	a	range	of	values	of	348	
R0.	349	
	350	
Figure	1	shows	the	net	infection	rate	for	several	countries.		Since	the	official	data	351	
that	we	use	include	only	the	confirmed	cases	(“cases”	for	short),	and	these	tend	to	352	
have	more	serious	symptoms	that	require	hospitalization,	the	reported	I	cases	are	353	
commonly	referred	to	as	total	hospitalizations.		The	peak	of	total	hospitalizations	is	354	
closely	watched	by	hospital	administrators	and	policy	makers.		 is	commonly	355	
referred	to	as	rate	of	hospitalization.	Its	inverse	gives	the	e-folding	time	in	days	for	356	
the	cases	in	an	outbreak.		A	value,	of	say	 	between	0.3	and	0.4,	where	most	357	
countries	cluster	in	the	initial	period,	implies	an	e-folding	time	of	about	3	days	358	
(doubling	time	of	2	days).		The	much	higher	values	 for	many	regions	in	the	359	
beginning	of	our	data	record	may	not	be	due	to	indigenous	disease	infection.		See	360	
later	discussion.	361	
	362	
	363	

	364	
Figure	1.	The	time-dependent	net	infection	rate	(in	units	of	1/day)	as	a	function	of	365	
time	starting	on	the	date	(listed	in	the	inset)	when	the	newly	confirmed	case	366	
number	first	exceeds	100	for	each	region.	To	obtain	the	actual	calendar	date,	add	367	
the	dates	on	the	horizontal	axis	to	the	starting	date	indicated	in	the	inserted	legend.	368	
The	number	of	confirmed	cases	on	the	starting	date	is	listed	at	the	top.	Three	day	369	
averaging	on	the	raw	data	has	been	used.	370	

		α(t)

α

α
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	371	
The	time	for	different	countries	is	aligned	in	Figure	1	to	begin	the	time	series	when	372	
each	region	reached	100	new	cases.	This	way,	the	progression	of	the	epidemic	in	373	
each	country	can	be	compared.		Figure	1	reveals	the	effects	of	different	policy	374	
measures	each	country	adopted.	First,	South	Korea	and	China	exHubei	have	similar	375	
net	infection	rates	(until	past	their	respective	turning	point);	both	are	much	lower	376	
than	other	countries.	In	the	case	of	South	Korea,	the	government	identified	early	377	
that	its	epicenter	of	the	epidemic	was	at	church	gatherings	in	the	city	of	Daegu	and	378	
North	Gyeongsang	province,	where	90%	of	the	initial	cases	were	found.		Specifically,	379	
a	confirmed	COVID-19	patient	was	reported	to	have	attended	the	Shincheonji	380	
Church	of	Jesus	services	twice	on	February	9th	and	16th.	Then	aggressive	contact	381	
tracing	was	pursued.		After	the	turning	point,	South	Korea	soon	experienced	some	382	
second	wave	episodes,	which	were	successfully	contained.	These	two	regions’	383	
rigorously	implemented	contact	reduction	and	aggressive	pursuit	of	‘test-trace-treat’	384	
measures	led	to	them	being	the	extreme	examples	of	the	“suppressed	equilibrium”.			385	
	386	
Germany	and	Italy	have	similar	exponential	growth	rates	of	the	net	infected	case	387	
numbers,	both	slightly	higher	than	Wuhan.	More	surprisingly,	US	has	the	highest	388	
exponential	net	infection	rate,	1.5	times	that	of	Germany	and	Italy	and	twice	that	of	389	
Wuhan.		This	can	be	attributed	to	the	fact	that	US	so	far	does	not	have	a	nation-wide	390	
lockdown,	and	Europe	has	had	partial	lockdowns	in	phases.	Germany	took	a	week	391	
longer	than	Wuhan	to	reach	its	turning	point,	while	US	will	take	weeks	longer	than	392	
Germany.		China	outside	Hubei	reached	its	turning	point	early,	in	fact	9	days	earlier	393	
than	the	epicenter,	Wuhan.		This	fact	is	significant,	for	it	is	qualitatively	different	394	
than	many	mechanistic	model	predictions,	which	had	the	epicenter	achieving	its	395	
turning	point	1-2	weeks	earlier	than	China	outside	Hubei	(17),	probably	based	on	396	
the	herd	immunity	concept.		397	
	398	
The	net	infection	rates	for	China	outside	Hubei	and	South	Korea	are	more	399	
monotonic	than	other	regions	shown.		This	is	due	to	the	fact	that	there	was	not	a	400	
piece-meal	imposition	of	social-distancing	measures,	unlike	other	western	countries.		401	
The	strict	measures	were	imposed	and	enforced	throughout	the	course.		[For	402	
Wuhan,	the	large	spike	on	day	23(12	February)	was	due	to	a	change	in	the	403	
diagnostic	criteria	from	a	positive	nucleic	acid	test	to	chest	scans,	booking	in	one	404	
day	more	than	13,000	cases.]			405	
	406	
The	case	of	Sweden	needs	a	special	explanation.		The	epidemic	in	Sweden	initially	407	
grows	with	an	e-folding	time	of	around	3	days,	in	line	with	other	countries.		Then	on	408	
12	March	the	government	announced	that	because	of	limited	resources,	it	no	longer	409	
would	test	for	the	COVID-19	infection,	except	for	those	with	serious	symptoms	410	
already	in	the	hospitals	who	furthermore	are	also	in	the	high-risk	group.		As	a	result	411	
the	new	cases	took	a	nose-dive	on	that	day,	leading	to	an	artificially	low	net	412	
infection	rate	of	0.1,	implying	a	10	day	e-folding	time.		The	denominator	in	the	413	
calculation	for	 	is	I(t),	which	is	an	accumulated	quantity,	and	includes	those	414	
who	tested	positive	prior	to	12	March	under	more	liberal	criteria,	and	so	this	415	

		α(t)
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situation	leads	to	a	flat,	low	level	of	 just	above	0.	It	would	eventually	cross	0	416	
with	a	large	enough	death	numbers.	Sweden’s	policy	decision	to	pursue	“herd	417	
immunity”	(while	protecting	the	elderly)	has	been	touted	as	a	viable	and	perhaps	418	
preferable	approach	to	those	of	other	countries	in	their	pursuit	of	“suppressed	419	
equilibrium”.	It	only	encouraged	those	over	70	to	stay	home	and	banned	visits	to	the	420	
nursing	home	and	gatherings	with	over	50	people,	while	business,	stores,	421	
restaurants	and	kindergarten	through	grade	nine	are	open.	The	success	or	failure	of	422	
this	approach	cannot	be	evaluated	by	the	incomplete	data.		Intriguingly,	based	on	423	
the	recorded	death	number,	it	shows	that	Sweden’s	toll	is	5	and	11	times	that	of	its	424	
neighbors	Denmark	and	Norway,	respectively.	The	population	in	each	of	these	425	
neighbors	is	half	that	of	Sweden.	426	
	427	

	428	
	429	
	430	
Figure	2.	Effective	Reproduction	Number	for	each	country	or	region.	The	horizontal	431	
axis	denotes	days	since	day	0	(the	corresponding	calendar	date	is	given	in	the	inset),	432	
which	is	the	starting	date	for	our	calculation.		This	date	is	determined	by	the	433	
threshold	that	the	accumulated	number	of	infectives	first	exceeds	100.		The	actual	434	
number	for	each	region	on	that	day	is	listed	at	the	top.			The	thick	dashed	curve	is	435	
the	average	of	the	curves	for	USA	and	European	countries,	including	Russia.		436	
	437	
Figure	2	converts	Figure	1	to	show	Rt	for	each	country.		It	shows	that	Rt	clusters	438	
around	4	for	all	countries	in	the	initial	period.	Because	of	the	problems	for	the	data	439	
in	the	initial	period,	the	curves	cannot	be	extended	back	in	time	to	deduce	R0.		But	440	
based	on	Rt	a	few	days	later,	R0	for	COVID-19	should	be	around	4,	similar	to	that	for	441	
SARS.		It	was	originally	thought	that	COVID-19’s	R0	was	between	2.0	to	2.5	(18),	442	
seemingly	much	less	contagious	than	SARS	at	4	(19).	It	is	also	much	more	443	

		α(t)
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contagious	than	the	2009	swine	flu	pandemic,	caused	by	the	H1N1	virus,	whose	R0	444	
was	estimated(20)	to	be	1.4	to	1.6.		445	
	446	
In	deducing	the	Reproduction	Numbers	we	should	not	count	the	large	spike	for	447	
China	outside	Hubei	on	day	4.		That	increase	was	not	due	to	indigenous	448	
transmission,	for	most	of	the	initial	cases	were	imported	from	Hubei.	This	should	449	
not	be	used	to	infer	the	Reproduction	Number.		Similarly	for	South	Korea	in	the	first	450	
few	days	shown.	451	
	452	
As	is	in	Figure	1,	the	decrease	of	Rt	from	4	to	1	for	different	countries	reflects	453	
different	level	of	contact-reduction	measures	adopted	and	enforced.		With	China	454	
outside	Hubei	and	South	Korea	sloping	more	steeply	than	Europe	than	US.	The	455	
behavior	of	these	numbers	for	the	European	countries	are	rather	similar	to	the	456	
model	results	of	Flaxman	et	al.(5)	of	Imperial	College	(their	Figure	2),	who	imposed	457	
these	measures	in	their	model	on	the	dates	they	were	actually	imposed.	With	their	458	
emphasis	on	more	accurately	predicting	the	mortality,	when	R0~4	is	used	in	their	459	
SEIR	model	the	modeled	death	numbers	are	close	to	the	reported	deaths,	but	the	460	
number	of	infected	in	the	model	is	an	order	of	magnitude	higher	(Figure	2	in	(5)).		461	
This	is	reasonable	and	consistent	with	our	earlier	statement	that	the	data	of	infected	462	
cases	do	not	include	the	asymptomatics	or	those	with	mild	symptoms	who	were	not	463	
tested,	but	reflect	those	with	more	serious	symptoms	that	required	hospitalization,	464	
and	therefore	more	prone	to	die.		465	
	466	
UK’s	record	for	the	recovered	is	almost	nonexistent,	and	what	is	available	shows	467	
that	the	recovered	number	is	only	a	few	percent	of	the	deaths,	which	does	not	468	
appear	to	be	reasonable.		Without	the	recovered	in	the	data,	UK’s	Rt	hovers	above	1.		469	
There	appears	to	be	a	similar	situation	in	some	other	countries,	such	as	Italy.		470	
Therefore,	the	behavior	of	Rt	in	the	later	stages	of	the	epidemic	(in	the	471	
neighborhood	of	the	turning	point)	is	probably	not	correctly	depicted	by	the	data	472	
shown	for	these	countries.		Nevertheless,	in	the	initial	period,	when	the	number	of	473	
recovered	is	small,	the	data	shown	can	be	used	to	estimate	Rt	and	R0.	474	
	475	
SEIR	model	was	also	used	to	deduce	the	Reproduction	Number	by	Institute	of	476	
Disease	Modeling	(21)	in	an	effort	to	monitor	the	effect	of	social	distancing	477	
measures	adopted	near	Seattle	(King	County,	Washington).		They	found	that	Rt	was	478	
reduced	from	2.7	to	1.4.		Since	it	was	not	below	1,	the	Institute’s	report	advised	479	
continuing	the	measures	in	place.	Since	the	report	rate	p,	that	is,	the	ratio	of	the	480	
number	of	reported	cases	vs.	the	true	infected	number,	was	unknown,	the	authors	481	
assumed	a	range	of	values	and	obtained,			R0 ~2.7±0.9 .		One	can	see	from	this	482	
application	of	the	Reproduction	Numbers	how	important	it	is	to	monitor	in	real-483	
time	the	progress	of	policy	measures	to	determine	whether	it	is	time	to	relax	the	484	
measures	in	place.		And	also	how	difficult	it	is	to	infer	these	numbers.	485	
	486	
The	report	rate	p	is	the	ratio	of	the	confirmed	cases	to	the	true	infected	numbers.		If	487	
it	were	known,	the	case	numbers	can	be	divided	by	p	to	yield	the	true	infected	488	
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numbers.		Because	it	is	largely	unknown	at	the	present	time,	it	creates	the	489	
aforementioned	uncertainty	in	estimating	Reproduction	Numbers	using	models.		490	
However,	since	our	net	infection	rate			α(t) 	is	a	ratio	of	the	derivative	of	I	and	I,	491	
dividing	each	by	p	does	not	change	the	ratio.		We	therefore	recommend	using	the	492	
net	infection	rate	for	real-time	monitoring	instead	of	the	Reproduction	Number.		493	
The	assumption	is	that	the	report	rate	has	not	changed	in	time,	at	least	not	during	494	
the	two-week	period	prior	to	t	that	the	accumulation	takes	place	for	the	495	
denominator	(see	Appendix).	This	same	consideration	is	also	partly	behind	our	later	496	
using	the	ratio	of	new	cases	to	recovered	cases	for	prediction.		497	
	498	
The	problem	with	the	data	for	Sweden	is	that	in	addition	to	the	change	in	the	report	499	
rate,	the	record	for	the	recovered	is	not	available.	500	
	501	
This	discussion	also	highlights	the	difficulty	of	using	mechanistic	models	for	real-502	
time	monitoring.		In	addition	to	not	knowing	the	report	rate	p	to	compare	model	503	
output	with	the	reported	case	numbers,	a	key	parameter	needed	in	the	mechanistic	504	
models,	the	infection	rate	a,	is	largely	unknown	for	the	emerging	disease.		There	is	a	505	
large	population	of	asymptomatic,	untested	and	unreported	infectives.		This	infected	506	
population	is	nevertheless	infectious	and	produces	some	of	the	infected	cases	507	
reported.		It	would	usually	lead	to	an	overestimate	of	the	infection	rate	a	when	only	508	
the	reported	cases	are	used	in	the	estimation.		Our	tools	do	not	need	to	use	an	509	
infection	rate	for	prediction.	510	
	511	
3.	Epidemiological	basis	512	
After	establishing	the	relationship	between	the	net	infection	rate	and	the	513	
Reproduction	Numbers,	we	briefly	summarize	the	main	ingredients	to	establish	the	514	
epidemiological	basis	of	our	model.		Details	of	our	model	are	given	in	the	Appendix.		515	
The	model	is	used	here	only	to	infer	general	properties	of	an	outbreak,	and	to	516	
discover	which	properties	can	be	predicted.			517	
	518	
Based	on	epidemiological	theory,	the	infected	population	is	governed	by	the	Von	519	
Foerster	equation	in	an	age-structure	population	model	(see	(22)),	where	“age”,	s,	is	520	
days	since	first	infected.		The	infection	at	age	0	is	governed	by	the	“birth”	dynamics,	521	
the	infection	dynamics,	and	death	due	to	natural	causes	is	ignored.	An	infected	522	
individual	is	assumed	to	be	infectious	in	an	age-dependent	way	until	T,	when	the	523	
individual	is	either	cured	or	dead,	in	either	case	no	longer	belonging	to	the	524	
population	of	the	infectives,	where	T	is	the	mean	recovery/removal	period.	The	525	
solution	to	this	partial	equation	(via	the	method	of	characteristics)	yields	certain	526	
rather	general	results.			527	
	528	
Conservation	Law.		For	 		529	
	530	

	531	
The	distribution	of	the	newly	recovery/removal	follows	that	of	the	newly	infected	532	
with	a	time	delay	of	T.		When	applied	to	hospitalizations,	it	says	that	those	who	are	533	

	t >T

		R(t)=N(t −T).
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admitted	to	the	hospital	either	recover	after	a	mean	hospital	stay	of	T	days,	or	dead	534	
after	a	similar	number	of	days.		A	more	complicated	relationship	holds	for	 	535	
	536	
Since	hospital	stay	acts	like	a	filter	for	R(t),	the	profile	for	R	is	slightly	wider	than	537	
that	for	N.		Appendix	takes	this	into	account.	538	
	539	
R(t)	here	actually	consists	of	two	parts:		the	recovered	individuals	Rc(t)	and	the	540	
removed	(dead)	individuals,	D(t):	R(t)=	Rc(t)+D(t).		541	
	542	
Validation	after	the	fact:	This	fundamental	relationship	can	be	validated	543	
statistically	with	data,	provided	the	data	is	long	enough.		This	is	one	of	the	ways	the	544	
mean	recovery	period	T	is	determined	statistically	from	data,	but	it	is	not	practical	545	
in	the	early	phase	of	the	epidemic.			546	
	547	
Since	Rc(t)	and	D(t)	are	a	subset	of	R(t),	the	time	lag	relationship	should	also	hold.	548	
Additional	insight	can	be	gained	by	looking	at	them	separately.		Figures	3,	obtained	549	
using	the	longest	data	from	China,	South	Korea	and	Italy	during	the	COVID-19	550	
pandemic,	shows	that	N(t)	and	R(t)	are	highly	correlated:	with	correlation	551	
coefficients	all	over	0.9	when	both	distributions	are	smoothed	with	3-point	boxcar.	552	
The	mean	time	delay	of	the	correlation	is	denoted	by	µ ,	which	can	be	interpreted	as	553	
a	statistical	mean	of	T.	The	spread	of	the	cross-correlation	is	measured	by	its	554	
standard	deviation,	σc;	its	value	is	also	given	in	the	figure.	The	lag	time	(and	555	
standard	deviation)	of	R(t)	for	China	is	19	days	(σc=17.7	days)	for	South	Korea	is	23	556	
days	(σc=19.8	days)	and	for	Italy	is	only	10	days	(σc=21.2days).	Due	to	their	low	Case	557	
Fatality	Rate	(CFR),	there	is	practically	no	difference	between	R(t)	and	Rc(t)	for	558	
China	and	Korea.		But	for	Italy,	which	has	a	high	CFR,	there	are	differences	among	559	
the	constituting	parts.		Why	Italy’s	lag	time	between	R(t)	and	N(t)	is	shorter	than	560	
China	and	South	Korea	needs	a	deeper	examination,	and	it	does	not	necessarily	561	
mean	the	shorter	the	better.	The	lag	time	of	D(t)	for	China	is	7	days,	for	Korea	is	17	562	
and	for	Italy	is	only	3	days.	The	short	survival	time	for	patients	in	the	hospital	is	an	563	
indication	that	the	Italian	hospitals	were	overwhelmed	and	allocation	of	ventilators	564	
was	selective	to	those	more	likely	to	survive.		This	mortality	component	reduces	the	565	
overall	time	for	recovery/removal	for	Italy	to	10	days.		566	
	567	
		568	

		t <T .
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	569	
	570	
Figure	3.	Lagged	cross-correlation	of	Rc(t),	D(t)	and	R(t)	with	N(t)	for	China,	South	571	
Korea	and	Italy.		Collectively	or	individually,	the	conservation	law	and	time	lag	572	
relationship	are	validated.	The	separated	Rc(t)	and	D(t)	reveal	the	stress	the	573	
regional	hospitals	had	experienced.		574	
	575	
Epidemic	curve.	576	
Furthermore,	the	solution	to	the	model	equations	(in	Appendix)	shows	that	the	577	
time-dependent	profile	of	 ,	sometimes	referred	to	as	“the	epidemic	curve”,	is	578	
determined	by	the	“age”	distribution,	and	the	method	of	characteristics	in	the	579	
solution	converts	that	“age”	distribution	into	a	time	profile.	The	details	of	the	“age”	580	
distribution	depend	on	the	“birth”	process	and	on	how	long	it	has	been	since	the	581	
outbreak	first	begins.	We	assume	that	we	do	not	mix	data	from	different	epicenters	582	
(the	homogeneity	assumption).		Focusing	on	a	single	outbreak,	which	starts	at	t=0,	583	
we	examine	the	“age”	distribution	at	a	time	 	much	longer	than	the	initial	584	
incubation	period.		Then	we	assume	there	exists	a	full	spectrum	of	age	with	s	585	
between	0	and	T	in	a	Gaussian-like	form.	To	the	right	of	the	peak	in	the	“age”	586	
distribution,	it	is	easy	to	understand	that	those	who	are	“older”	should	be	less	in	587	
number	because	they	were	infected	during	an	earlier	stage	of	the	epidemic.		As	the	588	
epidemic	grows	exponentially,	there	are	more	and	more	“younger”	infectives.	To	the	589	
left	of	the	peak	in	“age’	distribution	many	infectives	are	at	various	stages	of	590	
incubation.		Those	who	are	newly	infected	may	be	much	large	in	number,	but	since	591	
they	have	not	yet	developed	symptoms,	they	are	less	likely	to	be	tested,	hospitalized,	592	

		N(t)

	tB
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and	contribute	to	the	“case”	record.	For	Covid-19,	the	peak	infectiousness	occurs	in	593	
a	period	just	before	and	after	the	onset	of	symptoms,	around	5-6	days	since	first	594	
infected(23).	The	above	discussion	gives	an	epidemiological	justification	for	a	595	
Gaussian-like	distribution	of	the	“age”	distribution	of	the	“new	cases”,	more	596	
appropriately	called	“new	hospitalization	per	day”.	It	is	consistent	with	the	597	
argument	given	in	the	Introduction	in	favor	of	a	Gaussian-like	epidemiological	curve.	598	
It	should	be	pointed	out	that	historically,	for	obvious	reasons,	asymptomatics	were	599	
also	not	included	in	the	“incidence”,	or	“mortality”,	which	were	used	by	Farr	to	600	
obtain	his	law	of	second	ratios	or	by	Brownlee	to	obtain	his	normal	curves.	601	
	602	
With	the	possible	exception	of	South	Korea,	in	most	countries	there	could	be	603	
multiple	seeding	of	the	outbreak	occurring	at	slightly	different	times.		These	604	
staggered	series	of	outbreaks	merge	in	a	continuum	in	the	data	for	that	country,	605	
leading	to	a	standard	deviation	in	the	new	cases	that	is	wider	than	that	from	the	606	
“age”	distribution.		This	is	a	complication	we	need	to	take	into	account.	607	
	608	
Also,	in	many	countries,	pressure	mounts	for	policy	makers	to	relax	the	contact-609	
reduction	measures	when	case	counts	pass	the	peak	and	are	declining.	In	some	610	
countries	where	the	restrictions	are	gradually	lifted,	we	should	expect	a	long	tail	in	611	
the	epidemic	profile,	which	is	therefore	not	symmetric	with	respect	to	the	peak.		612	
This	external	influence	to	the	original	expected	progression	of	the	course	should	be	613	
monitored	and	adjustment	to	predictions	made	in	real	time.		As	will	be	discussed	in	614	
subsequent	sections,	our	model	has	the	ability	to	adapt	to	these	changes	in	its	role	615	
as	a	monitoring	tool.		Nevertheless,	we	find,	after	the	fact,	that	predictions	for	the	616	
various	turning	points	are	still	accurate	even	without	taking	into	account	the	617	
changes.		It	turns	out	that,	consistent	with	the	above	discussion,	the	relaxation	of	618	
contact-reduction	measures,	which	lengthens	the	standard	deviation	of	the	new	619	
cases,	is	only	significant	in	the	later	stages	of	the	course,	and	can	be	ignored	before	620	
the	peak,	but	the	prediction	on	the	evolution	after	the	peaks	on	quantities	such	as	621	
the	end	of	the	epidemic	and	the	total	number	of	infected	is	likely	not	accurate	unless	622	
the	changes	are	taken	into	account.	(This	has	not	been	done	in	Table	1.)	623	
	624	
4.	A	suite	of	tools	for	tracking	the	epidemic.	625	
Based	on	theoretical	considerations,	we	developed	a	suite	of	tools	for	monitoring	626	
the	evolution	of	the	epidemic.		They	can	be	used	to	predict	the	timing	of	several	627	
turning	points	and	the	number	of	infectives	associated	with	each.		These	include	 ,	628	

the	peak	of	the	daily	new	cases;	 ,	the	peak	of	daily	recovered/removed	cases,	and	629	

,	the	turning	point	where	the	active	infected	cases	(AIC),	or	total	hospitalizations,	630	
is	a	maximum.		This	is	the	point	of	maximum	strain	on	the	hospital	resources.		It	631	
needs	to	be	closely	monitored	to	keep	the	AIC	below	the	hospital	capacity.		We	also	632	
estimate	the	date	when	the	epidemic	ends	and	the	country	can	be	reopened,	tc.	633	
	634	
A	more	accurate	and	robust	prediction	tool	is	based	on	the	ratio	of	N(t)	and	R(t),	635	
designated	as	the	NR	ratio.	This	ratio	also	alleviates	to	some	extent	the	problem	636	

	tN

	tR
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related	to	the	data	of	reported	cases	being	a	fraction	p	of	the	true	numbers,	as	p	637	
cancels	out	in	the	ratio.	Unfortunately,	some	countries,	such	as	UK	and	Sweden,	do	638	
not	keep	adequate	record	of	R(t),	and	many	country	do	not	keep	a	rigorous	standard,	639	
which	could	be	detect	by	the	low	case	recovery	rate,	indicating	the	violation,	or	640	
leakage,	of	the	conservation	law.		For	these	countries	a	less	accurate	method,	in	the	641	
sense	of	having	larger	error	bars,	can	still	be	used	when	only	information	on	N(t)	is	642	
available.		These	are	described	below.		We	have	used	the	data	from	countries	that	643	
have	the	longest	records	for	COVID-19	to	verify	properties	of	these	methods.	644	
	645	
4.1	Log	of	NR	ratio:	646	
	647	
We	define	the	NR	ratio	as		648	

NR(t)=N(t)/R(t).	649	
At	tp,	NR=1.		650	
	651	
We	show	in	Figure	4,	using	the	data	of	the	epidemic	for	COVID-19	for	the	longest	652	
records	available	in	some	countries,	that	the	logarithm	of	NR(t)	lies	on	a	straight	line,	653	
with	small	scatter,	passing	through	the	turning	point	tp.	And	data	for	various	stages	654	
of	the	epidemic,	from	the	initial	exponential	growth	stage,	to	near	the	peak	of	AIC,	655	
and	then	past	the	peak,	all	lie	on	the	same	straight	line.		The	intercept	with	logNR=0	656	
yields	the	turning	point.		This	line,	obtained	by	linear-least-square	fit,	is	little	657	
affected	by	the	rather	large	artificial	spike	in	the	data	on	12	February	for	China,	658	
because	of	its	short	duration	and	the	logarithmic	value.	That	reporting	problem	is	659	
necessarily	of	short	duration	because,	on	the	date	of	definition	change,	previous	660	
week’s	cases	of	infectives	according	to	the	new	criteria	were	reported	in	one	day.	661	
After	that,	the	book	is	cleared,	and	N(t)	returned	to	its	normal	range.	662	
	663	
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Figure	4.	Natural	Logarithm	of	the	ratio	of	daily	newly	infected	to	newly	667	
recovered/removed.	They	lie	on	straight	lines	with	some	small	scatter.	The	straight	668	
line	obtained	by	linear-least	squares	fit	is	in	dotted	line	with	the	same	color	for	each	669	
country.	(a)	For	China,	the	slopes	of	the	lines	are	almost	the	same	but	with	different	670	
intercept;	the	trend	lines	cross	zero	(the	black	solid	line)	at	different	time	for	671	
different	regions	indicating	different	peaking	time	for	AIC.		The	epicenter	Wuhan	672	
(green)	has	latest	turning	point	than	its	province	Hubei	(pink),	which	has	a	later	673	
turning	point	than	China	as	a	whole	(cyan).	As	a	measure	of	confidence	of	the	linear-674	
least	square	fit,	the	95%	confidence	limit	for	China	is	given	in	the	figure.		Similar	675	
confidence	limits	for	other	regions	have	been	calculated	but	are	not	shown	for	the	676	
sake	of	clarity	of	the	presentation.	(b)	Comparing	different	countries.		The	time	is	677	
aligned	by	plotting	the	NR	ratio	only	when	the	recovery/removal	case	numbers	first	678	
exceed	50	(the	actual	numbers	on	that	day	are	listed	at	the	top),	and	T0		is	that	679	
calendar	date,	listed	in	the	inset.	The	figure	in	the	bottom	panel	included	the	China	680	
cases	again,	to	facilitate	comparison	with	other	countries,	except	the	data	used	were	681	
smoothed	by	a	3-point	boxcar	filter	in	the	lower	panel.		682	
	683	
It	would	be	interesting	to	understand	why	the	empirically	determined	log	NR(t)	lies	684	
on	a	straight	line,	and	what	determines	its	slope.		See	Appendix	for	a	theoretical	685	
support.		It	is	shown	that,	if	the	distribution	of	the	new	cases	is	Gaussian-like,	the	686	
natural	logarithm	of	the	NR	ratio,	should	be	a	linear	function	of	time	throughout	the	687	

course	of	the	epidemic.	The	slope	of	the	line	is 	688	

σR,	is	the	standard	deviation	of	the	recovered	case	distribution	and	is	close	to	that	of	689	
the	newly	infected	case,	 ,	twice	of	which	measures	the	duration	of	the	epidemic	690	
in	that	region.	This	expression	is	still	valid	even	for	a	sigma	that	is	changing	in	time	691	
as	a	response	to	changing	social	contact	measures.	692	
	693	
A	comparison	of	the	Logarithm	of	NR	ratio	for	several	countries	is	given	in	Figure	4	694	
(b).	A	steeper	slope	is	associated	with	an	early	turning	point,	and	also	a	predictor	for	695	
a	shorter	duration	of	the	epidemic.	The	shallowest	slopes	in	Figure	4	(b)	was	for	696	
Italy,	where	the	enormous	pressure	strained	their	medical	system	to	the	limit,	697	
resulting	in	the	largest	σR value,	and	one	of	the	highest	case	fatality	rate	in	the	world,	698	
at	more	than	12%.	Germany	and	China	have	similar	slopes.	For	China	outside	Hubei,	699	
the	slope	is	steepest	and	the	turning	point	reached	9	days	earlier	than	Wuhan.	South	700	
Korea’s	slope	is	even	steeper	due	to	that	countries	early	action.	As	a	result,	Italy	701	
took	a	full	month	longer	to	reach	its	turning	point	than	Germany	and	China,	and	702	
more	than	40	days	longer	than	South	Korea.	703	
	704	
4.2	Predictability	705	
Since	the	logarithm	of	NR	ratio	lies	on	a	straight	line	passing	through	the	turning	706	
point	of	AIC,	it	would	be	interesting	to	explore	if	the	turning	point,	tp,	can	be	707	
predicted	by	extrapolation	using	data	weeks	before	it	happened.	Extrapolating	a	708	
straight	line	is	much	more	practical	than	other	more	involved	curve	fitting	709	

		
− T
σ R

2 .

	σ N
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algorithms	some	other	groups	have	adopted.		How	far	in	advance	this	can	be	done	710	
appears	to	be	limited	by	the	poor	quality	of	the	initial	data,	when	R	is	small	and	711	
highly	fluctuating.	Figure	5	(a)	shows	the	results	of	such	predictions	for	China,	and	5	712	
(b)	for	Italy.		It	is	a	hind	cast	since	the	truth	is	now	known	(see	Figure	8	for	how	it	is	713	
determined).	The	horizontal	axis	indicates	the	last	date	of	the	data	used	in	the	714	
prediction.		The	beginning	date	of	the	data	used	is	24	January	for	all	experiments	for	715	
China.		Prior	to	that	day,	data	quality	was	poor	and	the	newly	recovered	number	716	
was	zero	in	some	days,	giving	an	infinite	NR	ratio.		For	China	outside	Hubei,	the	717	
prediction	made	on	6	February	gives	the	turning	point	as	14	February,	two	days	718	
later	than	the	truth.		A	prediction	made	on	8	February	already	converged	to	the	719	
truth	of	12	February,	and	stays	near	the	truth,	differing	by	no	more	than	fractions	of	720	
a	day	with	more	data.		721	
	722	
The	huge	data	glitch	on	12	February	in	Hubei	affected	the	prediction	for	Hubei,	for	723	
China	as	whole,	and	for	Hubei-exWuhan.		These	three	curves	all	show	a	bump	up	724	
starting	on	12	February,	as	the	slope	of	N(t)	is	artificially	lifted.		Ironically,	725	
predictions	made	earlier	than	12	February	are	actually	better.	For	example,	for	726	
China	as	a	whole,	predictions	made	on	9	February	and	10	February	both	give	19	727	
February	as	the	turning	point,	only	one	day	off	the	truth	of	18	February.		A	728	
prediction	made	on	11	February	actually	gives	the	correct	turning	point	that	would	729	
occur	one	week	later.	At	the	time	these	predictions	are	made,	the	newly	infected	730	
cases	were	rising	rapidly,	by	over	2,000	each	day,	and	later	by	over	14,000.	It	would	731	
have	been	incredulous	if	one	were	to	announce	at	that	time	that	the	epidemic	would	732	
turn	the	corner	a	week	later.		Even	with	the	huge	spike	for	the	regions	affected	by	733	
the	Hubei’s	changing	of	diagnosis	criteria,	because	of	its	short	duration	the	artifact	734	
affects	the	predicted	value	by	no	more	than	3	days,	and	the	prediction	accuracy	soon	735	
recovers	for	China	as	a	whole.	For	Hubei,	the	prediction	never	converges	to	the	true	736	
value,	but	the	over-prediction	is	only	2	days.	737	
	738	
Uncertainty	associated	with	prediction	using	this	method	for	China	is	shown	in	739	
Figure	4(a).		The	uncertainty	is	a	few	days	(the	95%	confidence	level	is	 	5	days)	740	
and	is	usually	somewhat	larger	than	the	accuracy.		A	prediction	can	be	found	later	to	741	
be	accurate	but	at	the	time	it	was	made	it	may	be	equally	likely	for	the	prediction	to	742	
be	a	few	days	earlier	or	later.	The	large	uncertainty	is	again	seen	to	be	caused	by	the		743	
1,4000	bump	of	new	cases	in	one	day	on	12	February	due	to	the	change	in	definition.	744	
For	applications	to	other	countries	and	to	future	epidemics	without	a	change	in	the	745	
definition	of	the	“infection”	to	such	a	large	extent,	we	expect	even	better	prediction	746	
accuracy	and	smaller	uncertainty.	747	
	748	
This	can	be	seen	in	the	prediction	for	Italy.		The	error	of	predicting	the	turning	point	749	
3	weeks	in	advance	is	only	1	or	2	days.	In	fact	a	prediction	can	be	made	6	weeks	in	750	
advance	with	an	accuracy	of	5	days	or	less.				751	
	752	
The	prediction	for	US	as	a	whole	is	less	accurate	(with	errors	up	to	10	days)	because	753	
its	data	is	an	aggregate	of	different	epicenters.	More	accurate	predictions	can	be	754	
made	by	treating	each	state	separately.		This	is	not	done	here	because	although	the	755	

±
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data	for	new	cases	and	deaths	are	available	for	each	state,	recovered	data	are	not	756	
individually	available.		It	is	also	not	accurate	for	UK	because	its	data	for	recovered	757	
may	be	suspect.	See	Table	1.	758	
	759	
	760	
	761	

	762	
Figure	5.		(a)	Prediction	of	the	turning	point	in	AIC	for	different	regions	of	China	by	763	
extrapolating	the	trends	in	logarithm	of	NR.		The	horizontal	axis	indicates	the	date	764	
the	prediction	is	made	using	data	from	24	January	to	that	date.		The	vertical	axis	765	
gives	the	dates	of	the	predicted	turning	point.		Dashed	horizontal	lines	indicated	the	766	
true	dates	for	the	turning	point.	(b)	Prediction	of	the	turning	point	in	AIC	for	Italy.	767	
Data	used	for	all	predictions	starts	on	29	February.	The	first	point	shown	predicts	768	
the	turning	point	to	occur	on	19	April	(4	days	early)	6	weeks	in	advance	using	9	769	
days	of	data	from	29	February	to	8	March.	770	
	771	
4.3.	Derivative	of	Log	of	N(t)	and	R(t).	772	
Interestingly,	the	derivative	of	log	N(t)	or	log	R(t)	also	lies	on	a	straight	line,	as	773	
shown	in	Figure	6	(although	the	scatter	is	larger	as	to	be	expected	for	any	774	
differentiation	of	empirical	data).	Moreover,	the	straight	line	extends	without	775	
appreciable	change	in	slope	beyond	the	peak	of	N(t),	suggesting	that	the	distribution	776	
of	the	newly	infected	number	is	approximately	Gaussian-like	at	least	up	to	that	point.		777	
For	an	exponential	function,	the	derivative	of	its	logarithm	being	a	linear	function	of	778	
time	is	highly	suggestive	of	a	general	type	of	distribution	including	Gaussian-like	or	779	
Rayleigh-like.			The	recovery	time	T	can	be	determined	as	tR-tN,	where	tR	is	the	peak	780	
of	R(t)	and	tN	is	the	peak	of	N(t).	These	two	peak	times	can	be	obtained	by	extending	781	
the	straight	line	in	Figure	6	(a)	to	intersect	the	zero	line.	This	predicted	result	can	be	782	
verified	statistically	after	the	fact	by	the	lagged	correlation	of	R(t)	and	N(t).	If	the	783	
distribution	is	indeed	Gaussian	or	even	approximately	so,	the	slope	in	Figure	6	784	
should	be	proportional	to	the	reciprocal	of	the	square	of	its	standard	deviation,	σ,	785	
as:	786	

	787	

	788	
Similarly	result	holds	for	the	daily	number	of	recovered,	R(t).			789	
	790	

		
d logN(t)

dt
=
−(t −tN )

σ N
2 .
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	791	
Figure	6	(a).	The	derivative	of	the	logarithm	of	daily	newly	infected	or	recovered	for	792	
China	and	Hubei.		Notice	the	clear	separation	of	the	new	and	recovered	cases	and	793	
also	the	subtle	difference	of	their	slopes.		The	zero	crossings	of	the	trend	line	give	794	
the	peak	dates	of	the	new	and	recovered	case	respectively.			And	the	slopes	give	an	795	
estimate	of	σ values.  (b).		Same	as	(a)	but	for	Italy.		Best	fit	lines	for	N(t)	and	R(t)	are	796	
shown,	and	95%	confidence	limits	are	shown	for	N(t)	only.	Italy’s	data	appear	to	797	
have	a	7-day	periodic	oscillation,	probably	caused	by	a	reporting	issue.	AR	indicates	798	
accumulated	R.	799	
	800	
For	countries	without	an	adequate	record	of	R(t),	this	method	can	still	be	used	for	801	
N(t).	We	can	obtain	tN	and		σ N .		T	and	tp	cannot	be	obtained,	but	can	be	estimated	802	

roughly	as			tp = tN +T /2 	(see	Theory),	using	T~20	days	applicable	to	countries	with	803	
similar	medical	systems.	804	
	805	
4.4	The	number	of	deaths	806	
Because	of	public	attention,	predicting	the	number	of	deaths	has	been	the	main	807	
emphasis	for	some	models.	There	is	also	the	belief	that	death	numbers	are	more	808	
reliable	than	case	numbers,	although	that	is	not	necessarily	true.			Although	death	809	
number	by	itself	could	not	satisfy	conservation	law,	death	is	a	subset	of	the	newly	810	
confirmed	cases;	therefore,	the	death	case	distribution	should	follow	the	new	cases	811	
with	a	time	delay.		In	fact,	this	delay	time	could	provide	a	measure	of	the	efficacy	of	812	
the	medical	system,	as	explained	earlier.			813	
	814	
In	Figure	7,	we	present	the	cases	for	Italy,	USA	and	UK.			815	
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	816	
	817	
	818	
Figure	7	(a),	(b)	and	(c).	Logarithm	for	death	distribution	for	Italy,	USA	and	UK.		819	
Similar	to	4.2,	the	derivative	of	logarithm	of	D(t)	follows	a	straight	line	820	
approximately,	indicating	that	its	distribution	is	also		Gaussian-like,	similar	to	N(t).		821	
As	a	consequence,	the	peak	of	D(t)	occurs	at	the	intersection	of	that	straight	line	822	
with	zero	and	could	be	predicted	in	advance,	although	in	the	three	countries	shown	823	
this	peak	has	already	occurred.	824	
	825	
5.	Inferred	epidemiological	characteristics.	826	
Table	1	summarizes	predictions	for	USA,	some	European	countries,	South	Korea	and	827	
China.	In	some	countries,	one	or	both	of	the	critical	points	have	just	occurred.		Even	828	
so,	it	is	still	difficult	to	know	if	one	is	at	the	peak	without	using	our	prediction	829	
procedure.	The	TIC 	is	the	Total	Infected	Cases	for	the	whole	epidemic,	calculated	830	
as	twice	the	value	of	TIC	at	 ,	and	AICpeak	is	the	maximum	of	AIC	at	 .	Appendix	831	
discusses	how	these	quantities	are	computed/predicted.	832	
	833	
	834	
	835	
	836	

∞

	tN 	
tp
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	 tp	
(r)	

tN	
(r)	

tD	
(r)	

AICpeak--K	
(r)	

TIC∞--K	
(r)	

AFC∞--K	
(r)	

σN 

Days	
CFR 
--% 

IPM 
--Per M 

FPM 
--Per M 

China	 2-21	
(2-17)	

2-7	
(2-13)	

2-17	
(2-14)	

44.4-54.1	
(58.0)	

87.7-163	
(84.0)	

3.8-6.6	
(4.6)	 8.79	 5.53	 59.98	 3.31	

China
ex-
Hubei	

2-11	
(2-12)	

2-5	
(2-4)	

2-16	
(2-13)	

8.99-9.04	
(8.94)	

15.5-26.1	
(15.8)	

0.14-0.23	
(0.13)	 8.49	 0.79	 11.82	 0.09	

South	
Korea	

3-15	
(3-14)	

3-2	
(3-1)	

3-19	
(3-29)	

7.08-8.35	
(7.49)	

8.84-16.2	
(10.8)	

0.18-0.30	
(0.26)	 6.31	 2.36	 209.42	 4.94	

Italy*	 4-23	
(4-21)	

3-30	
(3-21)	

3-31	
(3-28)	

114-115	
(108)	

203-399	
(213+)	

24.8-42.1	
(29.3+)	 12.18	 13.76+	 3526.7+	 485.3+	

Ger-
many*	

4-4	
(4-7)	

3-31	
(3-27)	

4-14	
(4-15)	

50.7-69.5	
(70.8)	

144-309	
(167+)	

6.86-14.0	
(7.0+)	 9.62	 4.19+	 2014.6+	 84.35+	

Spain*	 4-22	
(4-27)	

4-6	
(3-26)	

4-7	
(4-1)	

114-129	
(105)	

274-495	
(248+)	

28.1-48.4	
(25.6+)	 10.44	 10.32+	 5316.9+	 548.5+	

USA*	 5-12	
(NA)	

4-19	
(4-9)	

4-22	
(4-16)	

1400-1474	
(943+)	

1520-2410	
(1204+)	

90-140	
(71.1+)	 12.21	 5.9+	 3649.5+	 215.3+	

UK*	 6-30#	
(NA)	

4-20	
(4-10)	

4-20	
(4-30)	

11789#	
(165+)	

249-392	
(195+)	

33-62	
(29.4+)	 14.21	 15.1+	 2932.2+	 442.5+	

	837	
Table	1.	Summary	of	the	predictions	made	on	May	5,	2020.	Notes:		Countries	with	838	
“	*”sign	after	a	country	name	indicates	that	the	epidemic	is	still	developing,	although	839	
some	of	the	particular	event	might	have	happened.	The	number	in	the	parenthesis	is	840	
the	actual	data.	A“+”	sign	indicates	the	latest	value	in	the	particular	case	that	is	still	841	
developing	and	that	particular	event	has	not	happened	yet.	The		‘#’	indicated	the	842	
result	might	be	questionable,	for	the	lack	of	recovered	case	numbers.	843	
IPM=	Infection	per	Million	of	Population.	FPM=Fatality	per	Million	of	population.	844	
	845	
6.	Discussions	and	Conclusion.		846	
There	are	actually	two	modeling	approaches:		mechanistic	and	statistical	models.		847	
Mechanistic	model	is	based	on	precisely	defined	epidemical	parameters.		Without	a	848	
priori	knowledge	of	the	disease	characteristic	and	existing	social	contact	conditions,	849	
however,	many	of	the	parameters	used	are	based	on	assumptions	and	educated	850	
guesses.		Nevertheless,	they	are	useful	for	exploring	different	scenarios	for	the	851	
policy	decision	to	fight	an	epidemic	prior	to	the	rapid	rise	of	the	outbreak.		In	this	852	
paper,	we	introduced	a	statistical	model	that	could	also	serve	an	important	role	853	
complementary	to	the	mechanistic	models,	to	be	used	after	the	outbreak	started.		It	854	
can	provide	detailed	tracking	and	prediction	of	the	course	of	the	epidemic.		For	the	855	
statistical	model	to	work	well,	good	quality	data	are	indispensable.		Our	study	856	
indicated	that	with	quality	data,	tracking	and	prediction	of	critical	events	such	as	the	857	
peak	and	the	turning	point	could	be	accurate	within	days.		858	
	859	
Our	model	is	supported	by	underlying	theoretic	foundation	and	validated	by	the	860	
existing	data	from	the	region	where	the	pandemic	is	waning.		Many	parameters	861	
characterizing	an	epidemic	can	be	determined	from	local-in-time	data.		Because	it	is	862	
based	on	general	epidemiological	principles	we	suggest	that	our	approach	could	be	863	
applied	not	just	to	the	current	Covid-19	epidemic,	but	also	generally	to	future	864	
epidemics.		865	
	866	
Importantly,	we	made	explicit	the	concept	of	“suppressed	equilibrium”	as	an	end	867	
state	of	an	epidemic	in	additional	to	the	traditional	“herd	immunity”	state.		Based	on	868	
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the	traditional	mechanistic	model,	an	epidemic	ends	after	a	high	percentage	of	the	869	
population	is	infected	and	recovered	hence	acquiring	immunity.		This	is	the	so-870	
called	“herd	immunity”	idea.		For	COVID-19,	which	we	found	to	be	very	contagious,	871	
more	so	than	previously	thought,	the	“herd	immunity”	end	would	require	almost	all	872	
of	the	population	be	infected	and	therefore	would	bring	unthinkable	toll	in	the	873	
number	of	people	sick	and	dead.		A	second	way	for	an	epidemic	to	end	is	with	strict	874	
contact-reduction	measures,	so	that	although	a	large	pool	of	susceptible	population	875	
still	exists,	the	portion	that	an	infected	person	comes	in	contact	with	is	reduced	by	876	
the	measures	adopted,	again	leading	to	the	Effective	Reproductive	Number	less	than	877	
1.		Unlike	the	first	end	state	mentioned	above,	this	“suppressed”	state	is	878	
“parametrically	unstable”	in	the	sense	that	if	the	social	distancing	measures	are	879	
relaxed	before	the	epidemic	ends	or	new	infection	is	imported	after	the	first	wave	880	
ends,	the	epidemic	will	rebound,	as	a	large	portion	of	the	population	is	still	881	
susceptible.		For	this	second	state	to	be	a	stable	equilibrium,	the	social-distancing	882	
measures,	and	quarantine	of	cross-border	visitors	need	to	be	maintained	until	it	is	883	
clear	that	the	disease	has	died	off.		It	is	this	second	state	that	most	countries	are	now	884	
aiming	for.			885	
	886	
The	second	state	will	have	a	much	earlier	date	for	the	new	cases	to	peak	and	the	887	
epidemic	to	end.		For	the	US	the	peak	of	the	newly	infected	cases	is	April	7-11.	The	888	
epidemic	is	estimated	here	to	end	in	the	first	week	of	June,	assuming	the	current	889	
social	distancing/stay-at-home	measures	are	maintained	till	then,	and	after	that	890	
date	import	of	infected	from	abroad	is	prevented	by	strict	quarantine	of	visitors.	891	
These	assumptions	now	do	not	look	like	they	would	hold	as	states	begin	to	open	892	
their	business	prematurely.	For	the	US,	we	predict	that	the	total	number	of	infected	893	
cases	is	1.5	to	2.4	million,	dependent	on	the	assumption.		These	are	symptomatic	894	
cases	that	require	hospitalization.		895	
	896	
Since	it	is	the	goal	of	most	countries	to	eventually	approach	the	“suppressed	897	
equilibrium”,	it	is	important	to	note	that	the	slowing	growth	of	the	incidence	(daily	898	
newly	infected)	that	is	observed	is	not	a	function	of	biology,	but	is	a	result	of	899	
contact-reduction,	which	is	social	science.	The	mechanism	of	the	exhaustion	of	900	
susceptibles	is	not	relevant	anymore	as	the	number	of	infected	is	such	a	very	small	901	
percentage	of	the	susceptible	population.	Therefore	it	is	not	necessary	to	use	a	902	
model,	such	as	SIR	or	SEIR,	to	keep	track	of	the	change	in	susceptibles	after	the	start	903	
of	the	outbreak.	If	these	mechanistic	models	are	to	be	used	to	track	the	progress	of	904	
an	outbreak,	the	infection	rate	a	in	the	models	needs	to	be	adjusted	constantly,	but	it	905	
is	not	clear	how	to	adjust	it.	In	any	case,	the	solution	is	responding	to	input	of	906	
changing	model	parameters,	and	not	to	the	natural	biological	evolution	built	into	the	907	
model	structure,	such	as	recovery	and	immunity	upon	recovery.	908	
	909	
This	is	a	new	way	to	look	at	the	field	of	epidemiology.		The	observed	slowing	of	the	910	
growth	of	incidence	and	the	cresting	of	the	epidemic	curve	are	dominantly	the	911	
result	of	a	reduction	of	“infectivity”,	as	first	proposed	by	John	Brownlee	one	912	
hundred	years	ago,	except	that	the	change	is	not	due	to	biology----	from	the	“loss	of	913	
the	infecting	power	on	the	part	of	the	organism”	as	he	thought,	at	least	not	in	the	914	
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case	of	COVID-19,	but	as	the	consequence	of	reduced	contacts	among	people	in	915	
lowering	the	Reproduction	Number,	which	is	defined	as	the	number	of	other	people	916	
one	infected	person	would	infect.		This	measure	is	a	product	of	the	average	number	917	
a	typical	infected	person	comes	in	contact	with	and	the	probability	that	a	contacted	918	
person	becomes	infected.		While	the	study	of	the	latter	is	biology	and	medicine,	that	919	
for	the	former	is	social	science	and	public	health.	920	
	921	
	922	
	 	923	
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Appendices:		THEORY	924	
	925	
Definition:	Let	 	be	the	number	of	active	infected	at	time	 	Its	change	is	given	926	
by;	927	

		928	

where	 	is	the	number	of	newly	infected,	and	 that	of	the	newly	recovered	or	929	
removed	(dead).		The	term:	Acting	Infected	Case	(AIC)	number	is	used	to	denote	the	930	
confirmed	I(t)	when	we	deal	with	data.	931	
	932	
Let	 ,	the	turning	point	defined	as	the	peak	of	the	active	infected	number.		At	this	933	
point	maximum	medical	resource	is	needed.		This	maximum	occurs	when	934	

		935	

There	is	no	need	to	first	find	I(t)	to	locate	this	peak.		Figure	8	shows	how	this	is	936	
determined	locally.			This	local-in-time	metric	avoids	the	accumulation	of	poor	early	937	
data.		After	the	turning	point,	the	newly	recovered	starts	to	exceed	the	newly	938	
infected.		The	demand	for	medical	resources,	such	as	hospital	beds,	isolation	wards	939	
and	respirators,	starts	to	decrease.	940	
	941	
We	consider	a	solitary	outbreak.	Let	 	be	when	the	first	infection	began.		For	942	
Wuhan,	China,	this	date	is	near	the	end	of	2019,	perhaps	even	earlier.		Let	 	be	the	943	
beginning	of	the	better	quality	data.		This	time	is	beyond	the	initial	incubation	944	
period	of	the	disease	and	it	can	be	assumed	that	at	that	time	there	is	already	a	945	
population	of	infected,	some	of	them	asymptomatic	but	nevertheless	infectious.	946	
	947	
Let	 	be	the	number	of	infected	cases	at	time	 ,	with 	being	the	“age”	948	
distribution,	i.e.	number	of	days	sick.	949	
The	total	number	of	infected	is	given	by:	950	

	.	951	

After	being	sick	for	T	days,	a	patient	either	recovers	or	is	removed	(dead).	T	is	called	952	
the	recovery	period	(or	removal	period).		It	is	also	called	the	infectious	period	if	the	953	
patient	is	infectious	during	this	period.	Of	course	its	value	varies	by	patient	and	by	954	
the	efficacy	of	treatment	for	each	hospital.	For	the	removed	it	also	depends	on	the	955	
age	of	the	patient	and	whether	there	are	underlying	medical	conditions.		Only	a	956	
mean	recovery	period	is	obtainable	from	data,	and	so	this	is	in	reality	a	statistical	957	
quantity.		We	will	discuss	later	how	this	statistical	quantity	can	be	obtained	from	958	
data.	959	
	960	
Conservation	law	(see	ref(22)):			961	
After	first	infected	and	until	removed	or	cured,	we	have:	962	

		I(t) 		t .

		
d
dt
I =N(t)−R(t),

		N(t) 		R(t)

	
tp

		
d
dt
I =0,	implying	N(tp)= R(tp).

		t =0
	tB

		X(t ,s) 	t 	s

		I(t)= X(t ,s)ds
0

T

∫
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		963	

	964	

	965	

There	are	two	types	of	characteristics:	966	
		967	

The	first	type	of	characteristics	intersects	the	 	axis,	and	since	the	initial	968	
condition	is	zero,	we	have	the	solution:	969	
	970	

		971	
	972	
That	is,	there	is	no	infected	population	who	is	sick	for	more	days	than	the	lapsed	973	
time	since	the	first	infection	occurred.	974	
	975	
For	the	second	type	of	characteristics,	 	the	solution	is	976	
	977	

		978	
with	the	form	of	 	to	be	determined	by	the	boundary	condition.		Even	without	979	
determining	the	form	of	 	we	have	the	following	general	results:	980	
For	 	981	

		982	

		983	

	984	
Since	the	rate	of	increase	of	 	is	by	definition	equal	to	the	newly	infected	number,	985	
N(t),		minus	the	newly	recovered	(or	removed)	number,	R(t),	we	have:	986	

		987	

	988	
For	a	fatal	disease	with	low	fatality	rate,	where	almost	all	infected	cases	eventually	989	
recover	after	a	hospital	stay	of	T	days,	we	can	identify990	

	991	

		 

dX(t ,s)= ∂
∂t
X idt + ∂

∂s
X ids =0,		0< s <T .

So,	since	ds /dt =1,
∂
∂t
X + ∂

∂s
X =0.

		
This	equation	is	to	be	solved	using	the	method	of	characteristics	as
X(t ,s)= constant		along	characteristics	defined	byds dt =1.

		

Boundary	condition:	X(t ,0),	specifies	the	"birth"	process,	
i.e.	how	the	disease	spawns	newly	infected	(with	"age"	s =0).
Initial	condition:	X(0,s)=0	for	s >0,	specifies	the	initial	age	distribution	at	t =0

		(i)			s > t , 	(ii)		s < t .
		t =0

		X(t ,s)≡0	for	s > t .

	t > s

		X(t ,s)= f (s −t)
	f

	f

		t >T , 	and	therefore	t > s :

		

I(t)= X(t ,s)ds
0

T

∫ = f
0

T

∫ (s −t)ds

							 = f
t−T

t

∫ (p)dp.

		
d
dt
I = f (t)− f (t −T).

		I(t)

		
N(t)−R(t)= d

dt
I = f (t)− f (t −T).

		f (t)		with		N(t),	and	f (t −T)	with	R(t).

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2020. ; https://doi.org/10.1101/2020.03.28.20046177doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.28.20046177
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 30	

If	the	disease	has	a	non-negligible	fatality	rate,	we	include	the	dead	in	 		992	
Main	Result:	The	daily	newly	recovered/removed	number	R(t),	is	related	to	the	993	
daily	newly	infected	number	N(t)	as,	for	 	:	994	

	995	
	996	

	997	
The	second	type	of	characteristics	intersects	the	boundary	 .		The	boundary	998	
condition	itself	needs	to	be	solved	as	a	function	of	t	to	describe	how	new	infection	999	
(at	 )	occurs.	This	can	be	done	using	a	birth	model,	such	as	Eq.	(1.56)	in	(23).		1000	
	1001	
Boundary	condition:	Following	Murray’s	Eq.	(1.56),	the	“birth”	is	assumed	to	be	1002	
proportional	to	“parents”	of	suitable	“age”,	with	an	age-dependent	birth	rate,	 .	1003	
	1004	

	.	1005	

This	equation	needs	to	be	solved	numerically,	except	in	the	case	of	constant	a.	The	1006	
solution	for	 	is	generally	an	increasing	function	of	time.	1007	

Since	 ,	at	some	time	 :	 		That	is,	an	1008	
“age”	distribution	can	be	converted	into	a	time	profile	through	the	method	of	1009	
characteristics.	1010	
	1011	
The	solution	of	the	integral	equation	is	not	presented	here.	For	our	purpose	here	it	1012	
suffices	to	assume	that	the	solution	of	this	model	yields	a	distribution	with	age	that	1013	
has	a	full	spectrum	 	of	infectives	at	a	time	 ,	long	after	a	full	incubation	1014	
period	has	passed.	1015	

		1016	

This	distribution	is	justified	as	follows:		1017	
To	the	right	of	the	peak	in	“age”	distribution,	it	is	easy	to	understand	that	the	1018	
numbers	for	those	who	are	“older”	should	be	less	because	they	were	infected	earlier	1019	
during	an	earlier	stage	of	the	epidemic.		As	the	epidemic	grows	exponentially,	there	1020	
are	more	and	more	“younger”	infectives.	To	the	left	of	the	peak	in	“age’	distribution	1021	
many	are	at	various	stages	of	incubation.		Those	who	are	newly	infected	may	be	1022	
large	in	number,	but	they	are	less	infectious	and	contribute	less	to	the	growth	of	the	1023	
subsequent	infection,	and	since	they	have	not	developed	symptoms,	they	are	less	1024	
likely	to	be	hospitalized,	tested	and	contribute	to	the	“case”	record.	For	Covid-19,	1025	
the	peak	infectiousness	occurs	in	a	period	just	before	and	after	the	onset	of	1026	
symptoms,	around	5-6	days	since	first	infected	(23).	The	above	discussion	gives	an	1027	
epidemiological	justification	for	a	Gaussian-like	distribution	of	the	“age”	distribution	1028	
of	the	“new	cases”,	more	appropriately	called	“new	hospitalization	per	day”.	1029	
	1030	

		R(t).

	t >T

		R(t)=N(t −T).

		s =0

		s =0

		a(s)

		X(t ,0)= a(s)X(t ,s)ds
0

T

∫

		X(t ,0)= g(t)
		X(t ,s)= g(t − s) 	tB >T 		X(tB ,s)= g(tB − s)≡ f0(s).

		0< s <T 	tB

		

X(tB ,s)= f0(s)= Aexp{−
(s − s0)2
2b2 };	A	independent	of	s.	

	b= 1
2T .
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It	is	important	to	point	out	that	the	assumption	of	less	“cases”	to	the	left	of	the	peak	1031	
is	the	only	“filter”	that	serves	to	limit	our	theoretical	discussion	to	the	data	of	1032	
symptomatic	cases.		If	all	infected	were	included,	 	should	have	a	maximum	at	1033	

		1034	
Therefore	the	solution	is,	for	 		1035	

		1036	

	1037	

		1038	

where	 	is	the	peak	of	 	and	 	is	the	peak	of	 		1039	
Both	distributions	are	Gaussians.	1040	
	1041	

	

1042	

	

1043	

	

1044	

	1045	

Again,	N(t)	is	Gaussian,	but	there	is	no	recovered	or	removed	during	this	early	stage.	1046	
	1047	
Main	Result:	The	natural	logarithm	of	the	ratio	of	N	and	R	is	a	linear	function	of	1048	
time	for	 :	1049	
	1050	

		1051	

		f0(s)
		s =0.

		t > tB >0:

		

X(t ,s)= X(tB ,s −t)= f0(s −t)

												 = Aexp{− (s − s0 −t)
2

2b2 }.

		

N(t)= Aexp{− (t − s0)
2

2b2 }= Aexp{− (t −tN )
2

2b2 }

R(t)=N(t −T)= Aexp{− (t −tR )
2

2b2 },

	tN 		N(t), 	tR = tN +T 		R(t).

		For	tB < t <T ,

		

I(t)= X(t ,s)ds + X(t ,s)ds
t

T

∫0

t

∫
							 = f (s −t)ds + 0ds

t

T

∫0

t

∫
							 = f (p)dp

−t

0
∫

		
d
dt
I = f (−t)= Aexp[− (t − s0)

2

T2 ].

		

N(t)= Aexp[− (t −tN )
2

T2 ]

R(t)=0.

	t >T

		

NR(t)= N(t)
R(t) =

N(t)
N(t −T)

												 = exp{− (t −tN )
2

2b2 +
(t −tN −T)2

2b2 }= exp{ T
2

2b2 −
T(t −tN )
b2

}.

logNR = −T(t −tN )−
1
2T

2

b2
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a	linear	function	of	 	1052	
	1053	
Heterogeneous	Data	1054	
The	above	results	are	obtained	for	the	case	of	a	single	introduction	into	a	region	of	1055	
infected	at	t=0	and	we	solve	for	the	subsequent	development	of	the	epidemic	from	1056	
that	single	source.		Consider	now	a	large		region	consisting	of	a	number	of	small	1057	
regions,	and	the	“seeding”	of	the	infected	occurs	at	different	times	for	different	1058	
regions.		The	large	region	could	be	China,	and	the	first	infection	could	be	Wuhan,	1059	
Hubei	and	then	the	regions	outside	Hubei.	Then	we	may	have	for	the	China	as	a	1060	
whole	data	for	the	newly	infected	a	sum	of	several	Gaussians	staggered	in	time.		As	1061	
long	as	the	Gaussians	are	not	separated	so	much	that	there	are	different	peaks	in	the	1062	
combined	data,	the	combined	data	can	still	be	considered	as	Gaussian,	as	is	the	case	1063	
in	the	real	data.		However,	the	standard	deviation	 		of	the	combined	Gaussian	is	1064	
inevitably	larger	and	is	no	longer	given	by	b:	1065	

	
		
N(t)= B

2πσ N

exp{− (t −tN )
2

2σ N
2 }. 			1066	

We	still	have	 	since	this	result	holds	for	each	sub-region.	The	result	1067	

that	 	is	a	linear	function	of	time	still	holds:	1068	

	.	1069	

The	slope	of	the	straight	line	is	 	.	1070	
	1071	
Since	the	hospital	stay	can	act	as	a	smoothing	filter	on	N(t)	to	yield	R(t),	the	1072	
standard	deviation	for	R(t)	could	be	slightly	wider	than	that	for	N(t).	So	we	could	1073	
have	two	different	Gaussians	(but	their	integral	over	all	time	should	be	the	same):	1074	

		1075	

Taking	this	into	account,	we	have,	denoting	 	:	1076	

		1077	

	1078	
As	the	values	of	σN and σR are	very	close	based	on	the	empirical	data,	the	quadratic	1079	
term	is	always	small	comparing	to	the	other	terms	for	the	length	of	time	we	are	1080	
considering	here.		Hence,	1081	

	,	1082	

a	linear	function	of	time.		Its	slope	is	 		1083	

A	caveat:	For	widely	separated	countries,	such	as	China	and	US,	the	two	Gaussian	1084	
peaks	are	separated	in	time.		These	two	regions	should	be	treated	separately	so	that	1085	

		t .

σ

		R(t)=N(t −T)
		logNR

		
logNR(t)= log N(t)

N(t −T) = −
T(t −tN )− 1

2T
2

σ N
2

		T σ N
2

		
N(t)= B

2πσ N

exp{− (t −tN )
2

2σ N
2 };		R(t)= B

2πσ R

exp{− (t −tR )
2

2σ R
2 }.

	T = tR −tN

		
logNR− logσ R

σ N

= −{(t −tN )
2

2σ N
2 −

(t −tN −T)2
2σ R

2 }= − (σ R
2 −σ N

2 )(t −tN )2 +2σ N
2T(t −tN )−σ N

2T2

2σ N
2σ R

2

		
logNR(t)= 1

σ R
2 {−T(t −tN )+ 1

2T
2}

		
− T
σ R

2 .
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the	data	for	each	region	has	only	a	single	peak.		Similarly	for	Europe	and	China.	See	1086	
Appendix.	There	is	also	a	problem	with	the	aggregate	data	for	the	US	consisting	of	1087	
different	states	with	outbreaks	separated	in	time.		1088	
	1089	
Result:	The	natural	logarithm	of	the	ratio	of	two	Gaussians	of	slightly	different	1090	
standard	deviation	is	approximately	a	straight	line,	providing	the	data	used	is	1091	
homogeneous	temporally	and	spatially.			1092	
	1093	
Sometimes,	heterogeneity	in	one	variable	could	be	relaxed	in	an	overall	mean.		The	1094	
case	in	China	is	an	example.		The	case	could	be	treated	as	whole	China	even	though	1095	
China	included	Hubei	and	Wuhan	and	the	very	different	region	of	China	outside	1096	
Hubei,	for	the	outbreak	occurred	at	the	same	time.		But	the	cases	in	China	and	1097	
European	countries	and	US	could	not	be	treated	as	a	whole,	for	they	are	separated	1098	
both	spatially	and	temporally.			Consequently,	it	would	be	impossible	to	talk	about	a	1099	
single	distribution	for	the	global	prediction.	1100	
	1101	
Time-varying	 	and	tN	1102	
The	above	derivations	continue	to	hold	even	for	 	being	a	function	of	time.		This	1103	
becomes	relevant	when,	for	example,	after	the	epidemic	passes	its	peak	the	policy	1104	
makers	decide	to	relax	the	restrictions	on	social	distancing.		Such	actions	alter	the	1105	
course	of	the	epidemic	and	create	a	longer	tail	of	new	cases.			N(t)	is	no	longer	1106	
Gaussian	because	it	does	not	have	fore-aft	symmetry.			Since	such	government	1107	
actions	are	not	included	in	the	initial	prediction,	the	prediction	scheme	needs	to	1108	
adapt	using	real-time	data	after	the	peak.		Our	method	allows	for	it.	1109	
	1110	
 1111	
The peak infected cases: 1112	

Writing , and noting , the  1113	

exponent is  Hence the peak infected case number 1114	

can be predicted, using the predicted value for  starting from a conveniently chosen 1115	

time , such as the latest time with data available, as: 1116	

 . 1117	

	1118	
Accumulated	quantities.	1119	
To	calculate	I(t)	using	reported	data,	only	confirmed	cases	are	used	(We	call	it	AIC).	1120	
It	is	given	by	the	accumulated	newly	confirmed	cases	minus	the	accumulated	1121	
confirmed	recovered.		Since	the	accumulation	of	early	poor	data	can	introduce	1122	
errors	a	more	local-in-time	formula	is	given	as:	1123	
	1124	

σ
σ

		
N(tN )=N(tB )exp{ n(t)dt}

tB

tN∫
		
n(t)= d

dt
logN(t)= − (t −tN )

σ N
2

		
n(t)dt = (tN −tB )

2

2σ N
2 = 12tB

tN∫ n(tB )(tN −tB ).

	tN

	tB

		
N(tN )=N(tB )exp{

n(tB )(tN −tB )
2 }
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	1125	

That	is,	to	find	I	at	time	t,	one	only	needs	to	add	up	the	daily	newly	infected	case	1126	
numbers	for	a	period	of	T	preceding	t.	This	is	an	almost	local-in-time	property	even	1127	
for	this	accumulated	quantity.	For	validation,	we	estimate	the	peak	of	the	I	case	1128	
number	on	18	February	by	computing	the	sum	of	daily	newly	infected	case	numbers	1129	
for	15	days,	from	February	4	to	February	18,	which	yields	a	peak	value	for	the	total	1130	
infected	cases	on	18	February	of	54,747.		This	is	within	10%	of	the	reported	number	1131	
of	57,	805,	even	after	taking	into	account	the	deaths	(by	subtracting	the	1132	
accumulated	deaths	of	2,004	from	our	estimate).	1133	
 1134	
The	Total	Infected	Cases	(TIC)	is	one	of	the	most	reported	statistics:	1135	

		1136	

The	total	infected	cases	for	the	epidemic	for	a	region	after	it	is	over	is	given	by	1137	
approximately:	1138	

	,	1139	
assuming	that	N(t)	is	approximately	symmetric	about	its	peak	at	tN.		In	reality	N(t)	1140	
may	not	be	symmetric	and	likely	has	a	long	tail.		However,	since	the	number	of	cases	1141	
along	the	tail	is	small,	the	above	approximation	for	the	total	is	still	good.	Since	TIC	is	1142	
officially	available	at	any	time	t	we	will	use	that	reported	number,	projected	forward	1143	
to	the	peak	tN	,	and	then	doubling	it.			Caveat:	the	official	number	may	include	1144	
accumulation	of	early	bad	data.	Hopefully	it	is	a	small	percentage	of	the	shear	size	of	1145	
the	TIC.	1146	
	1147	
The	peak	AIC	number	can	be	predicted	as	1148	

	where	 	is	the	last	available	data	before	the	1149	

turning	point.		It	is	assumed	that	 	lies	on	a	straight	line	between	 	and	 .	1150	
This is the maximum load that health services need to plan for, and adopt “flatten the 1151	
curve” policies to keep this number under the maximum resources available, such as 1152	
hospital beds and isolation wards. 1153	
 1154	

    

I(t) = N (t)dt−
−∞

t

∫ R(t)
−∞

t

∫ dt = N (t)dt− N (t−T )
−∞

t

∫−∞

t

∫ dt

             = N (t)dt.
t−T

t

∫

		TIC(t)= N(t)dt .
0

t

∫

		TIC∞ =2⋅TIC(tN )

		I(tp)= I(tB )exp{
1
2α(tB )(tB −tp)}, 	tB

		α(t) 	tB 	
tp
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	1155	
	1156	
Figure	8.	The	daily	newly	infected	(in	blue)	and	the	daily	newly	recovered	(in	red),	1157	
as	a	function	of	time	for	China	as	a	whole	(in	solid	lines)	and	Hubei	(in	dotted	red	1158	
and	blue	lines).	The	turning	point	is	determined	by	when	the	red	and	blue	curves	1159	
cross.		1160	
	Inset:	For	China	outside	Hubei.	1161	
	1162	
	1163	
The problem with data quality 1164	
 1165	
The performance of all data-driven models depends on the quality of data.  In general, 1166	
there are problems with data from all countries.  Underreporting is universal to all 1167	
countries at least during the initial period of the epidemic.  The causes might be different.  1168	
In China, for example, the data collection was erratic in the early days for lack of 1169	
awareness of the novel virus.  A more common cause was the shortage of test kits to 1170	
identify the cases.  The situation is made more complicate by the existence of 1171	
asymptomatic cases.  However, whether to include those cases or not depends on the 1172	
definition.  In this study, by definition, the cases are limited to confirmed ones with 1173	
symptoms, for only those cases would tax the medical resources.  In fact, the best any 1174	
country can do is to record the confirmed new case accurately.  The cases for death seem 1175	
to be simple, for the number of deaths has attracted great attention by the government and 1176	
public alike.  Many models are designed to follow only death cases.  However, even here, 1177	
the numbers are not problem-free.  For lack of testing, large number of unattributed 1178	
COVID-19 deaths exists in every country.  Finally, the most critical problem is for the 1179	
recovered case numbers.  It is important to have this record, for it is essential for the 1180	
conservation law discussed above.  Furthermore, the new to recovery/removal case ratio 1181	
(NR Ratio) provides a robust prediction for the turning point of the epidemic.   1182	
Unfortunately, the recovered case numbers had attracted the least attention.  As a result, it 1183	
is not recorded or reported in some countries, such as UK.  Under this condition, many of 1184	
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the tracking and prediction can still be made as demonstrated in the main text.  However, 1185	
we strongly urge data for the recovery case to be recorded accurately, for it could not 1186	
only provide accurate prediction for medical resource preparation, but also as a measure 1187	
of the medical system efficacy. 1188	
 1189	
Finally, a few words on data homogeneity.  All models, statistical or mechanistic, require 1190	
homogeneous condition.  There are actually two types of homogeneity:  temporal and 1191	
spatial.  We believe the temporal homogeneity is more critical.  For example, China can 1192	
be treated as a whole entity even with part of China, such Hubei and Wuhan under strict 1193	
lockdown, and part of China is not.  The result still makes sense because of its temporal 1194	
homogeneity.  Temporal inhomogeneity, however, would render the data nonsensical.  1195	
Let us take the global condition as an example.   There is a gap in time between the 1196	
Chinese cases and the rest of the world (see Figure 9).  No model should treat the two 1197	
events as one. See Figure 10. On the other hand, the European country and the US could 1198	
be treated as the World exChina, for the outbreak in European countries and the US 1199	
happened at about the same time, even though they are spatially separated widely. 1200	
 1201	

 1202	
Figure	9.		This	figure	shows	the	Reproduction	Number	in	real	time	starting	on	20	1203	
January.			In	this	presentation,	one	can	see	the	pandemic	is	consisted	of	a	serial	1204	
event	with	severe	data	inhomogeneity	in	both	space	and	time.		The	outbreaks	were	1205	
almost	over	in	China	and	South	Korea	before	the	earliest	cases	in	Italy	and	Spain	1206	
started	to	rise.		There	were	40	days	difference	between	China	and	South	Korea	on	1207	
one	hand,	and	the	cluster	of	the	pandemic	flared	up	in	European	countries	and	the	1208	
US	on	the	other	hand.		1209	
 1210	
 1211	
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	1212	
	1213	
Figure	10.		China	and	the	rest	of	the	world	should	be	treat	separately.	1214	
	1215	
	1216	
	1217	
	1218	
	1219	
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