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ABSTRACT  
Background. The burden of the coronavirus disease 2019 (COVID-19) pandemic has been 
geographically disproportionate. Certain weather factors and population characteristics are 
thought to drive transmission, but studies examining these factors are limited. We aimed to 
identify weather, sociodemographic, and geographic drivers of COVID-19 at the global scale 
using a comprehensive collection of country/territory-level data, and to use discovered 
associations to estimate the timing of community transmission.  
Methods. We examined COVID-19 cases and deaths reported up to May 2, 2020 across 205 
countries and territories in relation to weather data collected from capital cities for the eight 
weeks prior to and four weeks after the date of the first reported case, as well as 
country/territory-level population, geographic, and planetary data. We performed univariable and 
multivariable regression modeling and odds ratio analyses to investigate associations with 
COVID-19 cases, deaths, and epidemic growth rate. We also conducted maximum likelihood 
analysis to estimate the timing of initial community spread.  
Findings. Lower temperature (p<0.0001), lower humidity (p=0.006), higher altitude (p=0.0080), 
higher percentage of urban population (p<0.0001), increased air travelers (p=0.00019), and 
higher prevalence of obesity (p<0.0001) were strong independent predictors of national COVID-
19 incidence, mortality, and epidemic growth rate. Temperature at 5-7 weeks before the first 
reported case best predicted epidemic growth, suggesting that significant community 
transmission was occurring on average 1-2 months prior to detection.  
Conclusions. The results of this ecologic analysis demonstrate that global COVID-19 burden 
and timing of country-level epidemic growth can be predicted by weather and population factors. 
In particular, we find that cool, dry, and higher altitude environments, as well as more urban and 
obese populations, may be conducive to more rapid epidemic spread.     
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BACKGROUND 
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease that has 

caused unprecedented global suffering and mortality since its emergence in late 2019 in 
Wuhan, China. COVID-19 is caused by the severe acute respiratory syndrome virus coronavirus 
2 (SARS-CoV-2), an enveloped single stranded RNA virus that is closely related to SARS 
coronavirus 1 (SARS-Cov-1) and middle east respiratory syndrome coronavirus (MERS-CoV) 
(1). SARS-CoV-2 is a zoonotic virus that likely originated in horseshoe bats (Rhinolophus 
affinis), with recent genomic evidence suggesting subsequent passage through an intermediate 
mammalian host, possibly the heavily trafficked and critically endangered pangolin (mammalian 
order Pholidota) (2, 3). Following spillover into humans, SARS-CoV-2 displayed remarkably 
efficient human-to-human spread, with transmission likely mediated primarily by aerosols and 
respiratory droplets (4, 5). The exponential spread of the virus quickly overwhelmed initial 
containment efforts, leading to a global pandemic of historic proportions.  

Many aspects of COVID-19 epidemiology have yet to be elucidated. For reasons that are 
not immediately apparent, some countries have experienced significantly higher incidence, 
mortality, and epidemic growth rate than others. Many factors have been proposed to explain 
the marked discrepancies in national incidence and mortality following introduction of COVID-
19, including weather, demographic, health, and geographic factors (6-8). For instance, it has 
been proposed that COVID-19, like other droplet-borne respiratory viruses, may spread more 
efficiently in cold and dry climates (9). Studies in support of this ‘low temperature-low humidity’ 
theory have focused primarily on incidence and weather data from cities across China, with 
contradictory findings (10, 11). COVID-19 severity has also been linked to chronic medical 
conditions, male gender, older age, air pollution, and cigarette smoking (12-15). National case 
and death counts are also expected to be affected by differences in COVID-19 containment and 
mitigation strategies, testing capabilities and coverage, health access, and reporting of cases 
and deaths. Identification of factors that are associated with COVID-19 incidence and mortality 
and rate of spread on the global scale may shed light on COVID-19 risk factors, transmission, 
and epidemic dynamics. Therefore, our objective was to test hypotheses for observed 
differences in global incidence, mortality, and epidemic growth rate by examining country-level 
COVID-19 case and death data in relation to a suite of publicly available weather, demographic, 
health, geographic, and planetary data.  
 
METHODS 
Study design 

In this global country-level analysis, we included all cases and deaths reported across 205 
countries and territories that have reported at least one COVID-19 case. Daily COVID-19 case 
and death counts in each country were collected up to May 2, 2020 from the WHO and 
European Union Centers for Disease Control database (16). We collected the following 
demographic data for the corresponding countries and territories: median age, population age 0-
14 years (%), population age 15-64 years (%), population over 65 years (%), sex ratio, 
population size (number), population density (pop/km2), urban population (%), Gross Domestic 
Product (GDP) per capita, Human Development Index (HDI), number of airports, and number of 
air travelers per annum. Sources of demographic data included the CIA World Factbook (for 
median age, sex ratio, urban population, GDP, number of airports) (17), the World Bank (for age 
structure, number of airline passengers carried) (18), the International Monetary Fund (for GDP) 
(19), and the United Nations Human Development Program (for HDI) (20).  

We collected the following population-level health data: average body mass index (BMI), 
obesity (%), diabetic (%), cigarette consumption (annual average per capita), hospital beds (per 
100,000 population), physicians (per 100,000 pop), health expenditure (US$ per capita), PM2.5 
(µg/m3), ozone exposure (ppb), household air pollution (%), Climate Risk Index (2018), and 
number of COVID-19 tests performed (per 100,000 population). The sources of health data 
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include the World Health Organization (for BMI, health expenditure) (21), the CIA World 
Factbook (for obesity) (17), the World Bank (for diabetes, hospital beds, physicians) (18), the 
Tobacco Atlas (for cigarette consumption) (22), the Health Effects Institute (for PM2.5, ozone 
exposure, and household air pollution) (23), and Germanwatch (for Climate Risk Index) (24). 
We collected the following climate data from weather stations in each capital city from a global 
climate data repository, TuTiempo.net (25), which has been used in previous epidemiological 
studies (26, 27): average temperature (°C), maximum temperature (°C), minimum temperature 
(°C), atmospheric pressure at sea level (hPA), average relative humidity (%), total rainfall and/or 
snowmelt (mm), average visibility (km), average wind speed (km/h), total days with snow, total 
days with thunderstorm, and total days with fog. If the capital city weather station had no data or 
incomplete data, we selected the largest city closest to the capital city. We collected daily 
weather data for up to 8 weeks before and four weeks after the date of the first reported case. 
For countries with a land mass >1,000,000 km2, we collected climate data from the city where 
the first confirmed case occurred for sensitivity analyses. We also gathered data on population 
size, population density, COVID-19 testing, and number of days of sunshine from sources that 
compiled the latest censuses and official estimates or projections.  
 
Statistical analysis 

We used total number of COVID-19 cases, total number of deaths, and cumulative number 
of cases at 28 days after the first reported case as our main outcomes. The number of cases at 
four weeks (28 days) was used as a measure of the epidemic growth rate, and enabled 
normalization of differences in epidemic duration across countries. We averaged (temperature, 
humidity, atmospheric pressure, visibility, wind speed) or summed (precipitation, days of snow, 
days of fog, days of thunderstorm) weather variables by week (for sufficient resolution to 
generate an estimate of the timing of early epidemic spread) and by month prior to the first 
reported case (for regression modeling). We performed univariable and multivariable negative 
binomial regression analyses to examine COVID-19 outcomes in relation to weather, 
demographic, health, and geographic variables as continuous variables. We included variables 
significant in univariate analyses, as well as those selected a priori based on hypotheses 
regarding increased risk of infection, in multivariable analyses. We also calculated the odds of 
all outcomes (total cases, total deaths, and cases at 28 days) as categorical variables (total 
cases <650 or ≥650, total deaths <15 or ≥15, cases at 28 days <100 or ≥100) by stratifying on 
categories of weather, demographic, health, and geographic variables. Variable cutoffs were set 
to obtain roughly equal counts across low, middle, and high categories for each variable, and 
outcome cutoffs were set to obtain roughly equal counts in the low and high outcome 
categories. Temperature was stratified into five categories, for higher resolution, while variables 
with high ‘0’ or ‘1’ count data were stratified into two categories instead of three.  

We fit negative binomial regression models to examine the hypothetical timing of COVID-
19 exposure. This was achieved by subtracting a range of exposure-to-presentation delays from 
the day of first reported case and examining likelihood scores for models fit with the different 
delay durations. Maximum likelihood estimates were generated by calculating the negative log-
likelihood (NLL) from the Akaike information criterion (AIC) of a given model, as previously 
described (26). All log-likelihood scores within 1.92 units of the maximum score were 
considered to be within the 95% confidence interval (28). All statistical analyses were performed 
using R (version 4.0.0). Regressions were performed using the glm.nb function in the MASS 
package with a log-link function. Given overdispersion of count data, a likelihood ratio test was 
used to determine that the negative binomial regression model was required instead of a 
standard Poisson model. The Mann-Whitney test was used for country profile comparisons.  
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RESULTS 
COVID-19 burden by country and continent 

As of May 2, 2020, 3,306,882 COVID-19 cases and 238,424 COVID-19 deaths were 
reported globally (overall case fatality rate: 7.2%). We examined cumulative cases, deaths, and 
epidemic growth rates (cumulative cases in the first 28 days after the first reported case) 
reported in 205 countries and territories reporting at least one COVID-19 case (Supplementary 
Table 1). The epidemic growth rate varied greatly by country/territory: in the first 28 days after 
the first reported case, the cumulative number of cases ranged from 1 to 34,109 cases (median: 
91 cases) (Figure 1A). Of total cases in the first 28 days, 45.7% occurred in Asia, 36.1% in 
Europe, 7.7% in South America, 5.3% in Africa, 4.9% in North America., and 0.4% in Oceania 
(Figure 1B). The number of deaths in the first 28 days was also highly variable and largely 
reflected case distributions (Figures 1C and 1D). The total number of cases and deaths up to 
May 2, 2020 also varied greatly (see Supplementary Figures 1A and 1C), with cases ranging 
from 3 to 1,103,781 (median: 644) and deaths ranging from 0 to 65,068 (median: 13). Of total 
cases, 36.9% occurred in Europe, 36.3% in North America, 19.6% in Asia, 5.7% in South 
America, 1.2% in Africa, and 0.3% in Oceania (Supplementary Figure 1B). Of total deaths, 
57.0% occurred in Europe, 29.9% in North America, 8.5% in Asia, 3.9% in South America, 0.7% 
of deaths in Africa, and 0.1% in Oceania (Supplementary Figure 1D). Countries/territories 
reported their first case in the months of December (n=1), January (n=21), February (n=36), 
March (n=138), and April (n=9). Epidemic duration ranged from 23 to 124 days (median: 54 
days), although countries did not have the same amount of time in observation.  
 
COVID-19 and country weather factors 

Daily weather data for a 12-week period surrounding the date of first reported case (8 weeks 
prior to four weeks after) were extracted for the capital city of each of 188 countries/territories 
with available weather data and analyzed in relation to COVID-19 outcomes (total cases, total 
deaths, and epidemic growth rate). In univariable regression analyses, all examined outcomes 
were strongly associated with lower temperature (average, minimum, maximum) and lower 
relative humidity (Table 1 and Figure 2A-C), as well as lower number of days with thunderstorm 
and lower number of sunshine days (Table 1 and Supplementary Figure 2). In multivariable 
analysis adjusting for temperature, median age, and average BMI, the only weather variables 
that remained significantly associated with epidemic growth rate were lower average 
temperature (p<0.0001), lower minimum temperature (p<0.0001), lower maximum temperature 
(p<0.0001) and lower relative humidity (p=0.0055) (Table 1). When examined by temperature, 
more rapid epidemic growth was evident in countries with average temperatures <15°C (Figure 
2D). Countries with temperatures between 6-15°C showed the highest average epidemic growth 
rate (Figure 2D). Figures 3A and 3B provide a cartographic representation of these data, 
showing the average temperature in the four weeks preceding the first case in each country, 
and the case counts at 28 days and total case counts, respectively. Weather variable findings 
were corroborated when examined in odds ratio (OR) analyses. Countries with low temperature 
(≤15°C) were at markedly increased odds of having increased total cases, increased total 
deaths, and rapid epidemic growth relative to countries with high temperature (≥27°C) (Table 2). 
The odds of rapid epidemic growth were greatest for countries with temperatures between 6 and 
15°C (OR: 8.0, 95% CI: 2.9-22.3), followed by countries with temperatures <6°C (OR: 3.4, 95% 
CI: 1.4-8.6). Countries that experienced at least one day of snow or fog were at significantly 
increased risk of COVID-19 cases and deaths, while countries with more hours of sunshine and 
greater visibility were relatively protected (Supplementary Table 2). Rain, humidity, wind, and 
thunderstorms did not alter the odds of having high case and death counts. For countries with a 
landmass greater than 1,000,000 km2 (n=29), weather data were also collected from the city 
where the first COVID-19 case was reported, for sensitivity analysis. For seven countries, this 
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city was different from the capital city, and all univariable and multivariable regression results 
remained robust to this change.  
 
COVID-19 and demographic characteristics at the country level 

In univariable regression analyses (Table 1), COVID-19 total cases, total deaths, and 
epidemic growth rate were strongly associated with older overall median age, lower percentage 
of population between 0-14 years of age, higher percentage of population over 65 years of age, 
increased population size, increased population density, increased urban population, increased 
GDP, increased HDI, and increased number of annual airline passengers. Sex ratio was not 
associated with cases at 28 days or total cases, but was associated with total deaths 
(p<0.0001) in univariable regression analysis. In multivariable models (which adjusted 
simultaneously for temperature, median age, and BMI), increased population size, increased 
urban population, and higher number of air travelers remained significantly associated with 
epidemic growth rate (Table 1). Median age was no longer significant when adjusting for 
temperature and BMI. Countries with increased population size, urban percentage, higher HDI, 
and annual airline passengers also had greater risk of cases and deaths (Table 2). Sex ratio 
was not associated with increased deaths in the odds ratio analysis (OR: 0.83, 95% CI: 0.41-
1.7) (Supplementary Table 2).  
  
COVID-19 and health factors at the country level 

In univariable regression analyses, epidemic growth rate, cases, and deaths were strongly 
associated with BMI, high prevalence of obesity, diabetes, cigarette consumption, number of 
physicians, and health expenditure (Table 1 and Supplementary Figure 2). Number of COVID-
19 tests performed was positively associated with total cases (p<0.0001) and total deaths 
(p<0.0001), but not with epidemic growth rate (p=0.31). After adjusting for temperature and 
median age, BMI (p=0.005) and obesity (p<0.0001) remained positively associated with 
epidemic growth rate. When adjusting for temperature, median age, and BMI, the number of 
hospital beds was negatively associated with epidemic growth rate. In odds ratio analyses 
(Table 2 and Supplementary Table 2), countries with high BMI and high prevalence of obesity, 
high cigarette consumption, high number of physicians, and high health expenditure were at 
significantly greater odds of having increased epidemic growth rate. COVID-19 mortality was 
associated with increased BMI (OR: 4.4, 95% CI: 2.0-9.6), obesity (OR: 2.7, 95% CI: 1.3-5.7), 
cigarette consumption (OR: 9.5, 95% CI: 3.8-23.8), number of hospital beds (OR: 2.7, 95% CI: 
1.3-5.6), number of physicians (OR: 11.0, 95% CI: 4.6-26.3), health expenditure (OR: 8.2, 95% 
CI: 3.5-19.0), and number of COVID-19 tests performed (OR: 11.0, 95% CI: 2.8-43.1) (Table 2 
and Supplementary Table 2).  
 
COVID-19 and geographic/planetary factors at the country level 

Latitude, longitude, and altitude data were collected for each country/territory and analyzed 
in relation to COVID-19 incidence and mortality. More northern latitude (relative to the equator) 
was significantly positively associated with total cases (p<0.0001), total deaths (p<0.0001), and 
epidemic growth rate (p<0.0001) in univariable analysis; however, when examined together with 
temperature, BMI, and median age in a multivariable model, it was no longer significantly 
associated (p=0.49) (Table 1 and Supplementary Figure 3). More eastern longitude (relative to 
the Prime Meridian) was significantly associated with total cases (p=0.001) and total deaths 
(p<0.0001), but not epidemic growth rate (p=0.23), in univariable analyses. In multivariable 
analysis, the association between longitude and epidemic growth rate was borderline significant 
(p=0.047). Higher altitude was significantly associated with increased epidemic growth rate 
(p<0.0001) and total deaths (0.0003) in univariable analysis, and remained significantly 
associated in multivariable analysis (p=0.0008). Among all planetary factors examined, ozone 
exposure (p<0.0001) was found to be positively associated with cases at 28 days, total cases, 
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and total deaths, while household air pollution and climate risk index were both negatively 
associated with cases, in univariable analysis. In multivariable analysis, household air pollution 
(p<0.0001) and climate risk index (p=0.046) remained significantly negatively associated with 
epidemic growth rate, while ozone exposure did not (p=0.11). In odds ratio analyses, high 
household air pollution (OR: 0.2, 95% CI: 0.09-0.43) and high climate risk index (OR: 0.34, 95% 
CI: 0.16-0.73) were associated with reduced odds of rapid epidemic growth, while high ozone 
exposure was associated with increased odds of high epidemic growth rate (OR: 2.8, 95% CI 
1.3-6.0) (Table 2 and Supplementary Table 2).  
 
Profile of highly COVID-19 susceptible and non-susceptible countries 

Table 3 compares the profiles of countries with the highest epidemic growth rates (top 20%; 
n=40) and lowest epidemic growth rates (bottom 20%; n=42). Countries in the top 20% had a 
median of 1241 cases while countries in the bottom 20% had a median of 9.5 cases at 28 days 
after the first case. Compared to countries in the bottom 20%, countries in the top 20% had 
lower temperature (median: 10.4°C vs 26.0°C), lower relative humidity (69.3% vs 72.2%), higher 
altitude (106m vs 37m), older median age (35.5 vs. 33.3), increased urban population (74.4% vs 
61.3%), higher GDP ($29,441 vs. $15,124), higher BMI (26.3 vs. 25.9), and increased cigarette 
consumption (1204.3 vs. 635.1 annual per capita).  
 
Maximum likelihood estimation of epidemic start date 

The strong association between temperature and COVID-19 cases allowed us to generate a 
conditional estimate of the average epidemic start date, relative to the date of first reported 
case. Temperature was selected because it was the strongest weather predictor of COVID-19 
cases in regression analyses. Comparison of the countries with highest vs. lowest epidemic 
growth rate with the countries with lowest epidemic growth rate revealed significantly lower 
temperatures among the countries with high case counts (Figure 4A). In addition, for countries 
with highest epidemic growth rate in the first 28 days, temperatures were lowest 5-7 weeks prior 
to the first reported case. We used a maximum likelihood approach to generate an estimate of 
the epidemic start date, conditional on the validity of the association with temperature. We 
incorporated hypothetical exposure-to-presentation delays in our regression model linking case 
counts at an intermediate epidemic time point (six weeks) to temperature and compared the 
goodness-of-fit of these models for delays of 0-8 weeks. The likelihood scores incorporating 
these delays indicate that the temperature 5-7 weeks prior to the first reported case best 
predicted the epidemic size at six weeks (Figure 4B), reflecting average temperature patterns 
(Figure 4A). This suggests that community transmission was occurring on average 1-2 months 
before the first laboratory-confirmed case.   
 
DISCUSSION 

The goal of this study was to identify weather, demographic, health, geographic, and 
planetary factors associated with national COVID-19 epidemic growth rate, incidence, and 
mortality. We included all cases and deaths reported globally from the date of the first reported 
case up until May 2, 2020, and examined global weather data contemporaneous to the first 
reported case in each country, as well as a comprehensive suite of demographic, health, 
geographic, and planetary factors. We identified lower temperature, lower relative humidity, 
higher altitude, high prevalence of obesity, and higher number of air travelers as key predictors 
of COVID-19 incidence, mortality, and epidemic growth rate at the country level. In addition, we 
used the strong association with temperature to generate a maximum likelihood estimate of the 
true epidemic start date, revealing that community transmission likely began on average 1-2 
months prior to detection of the first reported case.  

Several studies have examined weather factors (29, 30), demographic factors (12), health 
factors (13), geographic factors (31), and planetary factors (14, 32) in relation to COVID-19 
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incidence and mortality. To our knowledge, this is the first study to do so at high spatial and 
temporal resolution using global incidence, death, and weather data, and to simultaneously 
examine a panel of demographic, health, and geographic factors. Our findings strongly link 
epidemic growth rate, incidence, and mortality with lower temperatures (6-15°C) and lower 
humidity at the global scale, corroborating the findings of two studies in China (6, 30). Our 
results suggest that temperatures <15°C, but especially between 6 and 15°C, may be 
particularly conducive to COVID-19 spread, and argue for especially vigilant surveillance in 
countries anticipating average daily temperatures in this range over the coming year (Figure 5). 
Other weather variables did not offer any additional explanatory power in our analyses. Our 
findings are consistent with the proposed mechanism of COVID-19 transmission, and what is 
known about other viral infections transmitted primarily by respiratory droplet, such as influenza 
(33). Cold and dry climates are thought to be conducive to viral survival in the environment and 
host susceptibility to infection (34).  Relative humidity and temperature have been shown to 
determine respiratory droplet evaporation kinetics and ultimate equilibrium droplet size, which in 
turn determines how long the droplet will remain suspended in air and where it will deposit in the 
respiratory system once inhaled (35). Increased temperature also promotes more rapid viral 
degradation (36). Although UV light has been shown to promote viral degradation in laboratory 
settings (37), including in SARS-CoV-1 (38), our observed association between COVID-19 and 
reduced sunshine appears to be entirely explained by covariation in temperature. Our findings 
regarding temperature and humidity may provide an explanation for outbreaks related to indoor 
air-conditioning systems (39), and highlight the importance of further research on indoor 
transmission risk factors. Our estimation of the true epidemic start date (5-7 weeks prior to first 
reported case) is in line with findings from retrospective screening studies (40, 41). Our analysis 
suggests 1-2 months of undetected COVID-19 community transmission as a ubiquitous feature 
of COVID-19 epidemics, a feature that almost certainly promoted rapid regional and global 
spread. We speculate that the 5-7 week delay in detection that we observe was likely due to 
combination of factors: high degree of pre-symptomatic COVID-19 transmission (42), delayed 
recognition of community spread (40), and delayed roll-out of testing. Our analysis 
demonstrates the feasibility of using a weather variable to estimate and predict the timing of 
community transmission in a fast-moving pandemic, when widespread testing and serologic 
data may not yet be available. 

A number of studies have linked older age, obesity, and chronic medical conditions such as 
diabetes and hypertension to increased COVID-19 severity (13, 43), and it is therefore not 
surprising that BMI and obesity were significantly associated with COVID-19 incidence and 
mortality at the country level. Although we observed a strong association between age and 
COVID-19 outcomes in univariable analyses, age was not independently predictive in 
multivariable models. Prior studies have reported mixed findings on the effect of cigarette 
smoking on COVID-19 risk and severity (44-46). Our analysis points to a clear and significant 
association between increased cigarette consumption and increased national COVID-19 
outcomes in univariate and odds ratio analyses, which aligns with well-established literature on 
increased severity of respiratory infections due to smoking (47). In multivariable modeling, 
however, this association did not reach statistical significance. This may be due, in part, to the 
fact that per capita cigarette consumption is a poor proxy for actual exposure. Our observed 
association with number of air travelers likely reflects a potentiating effect of repeated ‘seeding’ 
of COVID-19 on epidemic initiation and growth. Higher altitude was strongly associated with 
epidemic growth rate, even when adjusting for temperature and humidity. It is possible that the 
air at higher altitudes is more conducive to COVID-19 transmission for unknown reasons, and 
this may explain lay reports of especially explosive epidemics in ski resorts across the world. 
Our observed positive association with increased HDI is surprising and appears to contradict 
our negative association with number of hospital beds. These associations are not explained by 
differences in testing, as they remain significant when adjusting for total tests performed.        
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Our study is limited by its ecologic study design, precluding unbiased inference regarding 
causality or individual risk (48). In addition, although we attempted to include an exhaustive list 
of potentially confounding variables in this study, our analysis did not include data on all 
potential confounders. For instance, we could not control for differences in mitigation efforts 
(such as social distancing and national lockdown orders), accuracy of case and death reporting, 
number of superspreaders, or genetic susceptibility to infection. Use of capital city weather data 
also limited the resolution of our analyses, as these may not necessarily represent the weather 
of the entire country, particularly for countries with larger land masses. This was necessary, 
however, given the unavailability of accurate city-level incidence and death data for most 
countries. In addition, many of the demographic variables included in this analysis are 
measured at the population level and may therefore fail to accurately reflect risks faced at the 
individual level. Finally, it should be noted that the factors included in this analysis are unable to 
explain all of the variability in COVID-19 burden. Some generally warm and humid countries, 
such as Brazil and Indonesia, are experiencing severe COVID-19 epidemics. This suggests that 
epidemic intensity cannot be fully explained by weather or population characteristics, and 
mitigation strategies should be enforced. This study was strengthened by inclusion and 
simultaneous examination of data on a wide range of weather, demographic, health, 
geographic, and planetary factors. Our findings may help guide prevention and mitigation efforts 
by predicting future epidemic hotspots and the likelihood and timing of seasonal peaks in 
incidence. They also highlight the need for widespread and early testing to detect ongoing 
community transmission, particularly in areas anticipating the arrival of lower temperatures. 
Further study of the weather, sociodemographic, and geographic factors governing the rate of 
COVID-19 transmission will be critical to combatting this unprecedented pandemic.  
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Nicole Leung
Figure 1. COVID-19 incidence and mortality by country and continent.

Nicole Leung
(A) Cumulative COVID-19 cases by country up to 28 days since first reported case. Listed are countries with the highest case burden 28 days after first reported case. Each country is colored by continent: Africa (red), Asia (blue), Europe (green), North America (purple), Oceania (orange), and South America (yellow). (B) Total COVID-19 cases by continent at 28 days as of May 2, 2020 (percentage of total; number of cases): Asia (45.69%; 62,771), Europe (36.09%; 49,588), South America (7.65%; 10,515), Africa (5.28%; 7,254), North America (4.90%; 6,728), and Oceania (0.39%; 542). (C) Cumulative COVID-19 deaths by country up to 28 days since first reported case. Listed are countries with the highest total death burden 28 days after first reported case. Each country is colored by continent. (D) Total COVID-19 deaths by continent at 28 days as of May 2, 2020 (percentage of total; number of deaths): Asia (55.50%; 1,993), Europe (25.70%; 923), North America (6.82%; 245), South America (6.21%; 223), Africa (5.57%; 200), and Oceania (0.19%; 7).  
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Nicole Leung
Figure 2. COVID-19 cases in relation to temperature and humidity.  

Nicole Leung
(A-B) Cumulative COVID-19 cases by country at 28 days since first reported case in relation to (A) average temperature and (B) average relative humidity. Average temperature represents the mean of average daily temperatures over the four weeks preceding the first reported case. Average relative humidity represents the mean of average daily relative humidity over the four weeks preceding the first reported case. The regression line is fit using a linear model (dashed). Each country is colored by continent. (C) Cumulative COVID-19 cases at 28 days since first reported case by average temperature and average relative humidity. Each country is colored by continent and the number of cases in each country is represented by the size of the data point. (D) Cumulative COVID-19 cases up to 28 days since first reported case for countries stratified into five groups by average temperature: <6ºC (blue), between 6-15ºC (light blue), between 15-24ºC (yellow), between 24-27ºC (orange), and ≥27ºC (red). The shading represents 95% confidence intervals.�
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Nicole Leung
Figure 3. World maps of COVID-19 cases and temperature.

Nicole Leung
World maps showing (A) COVID-19 case counts by country at 28 days since the first reported case and (B) total COVID-19 cases since first reported case up to May 2, 2020. The number of cases is represented by the size of the data point and each country is colored by the mean daily temperature in the capital city over the four weeks preceding the first reported case.
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Nicole Leung
Figure 4. Maximum likelihood estimation of the timing of early epidemic spread.

Nicole Leung
(A) Weekly average temperatures up to eight weeks preceding the first reported case of countries stratified into two groups according to epidemic growth rate in the first 28 days: top 20%; i.e. highest epidemic growth rates (black; 40 countries) and bottom 20%; i.e. lowest epidemic growth rates (gray; 42 countries). The regression lines are fit using the loess method. The error bars represent ± standard error of the mean (SEM). The shaded regions represent the average minimum-maximum range of temperatures for countries in the top 20% (blue) and bottom 20% (yellow), with the overlapping region shaded green. (B) Negative log-likelihood values from negative binomial regression of cumulative cases at 28 days and weekly average temperatures up to eight weeks preceding the first reported case. The regression line is fit using the loess method (black). The dashed line corresponds to a difference of 1.92 log-likelihood units from the optimum value; points beneath this line fall within the 95% confidence interval. �
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Nicole Leung
Figure 5. World temperature maps.

Nicole Leung
(A-H) World maps of average monthly temperature in each country, shaded by capital city temperature, in (A and B) July 2019, (C and D) October 2019, (E and F) January 2020, and (G and H) April 2020. B, D, F, and H highlight countries that had average monthly temperatures of <6ºC (dark red) or 6-15ºC (red) in the corresponding month.�
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Univariable analysis Multivariable analysis

β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value
Weather
Average temperature, °C -0.14 (0.013) <0.0001 -0.17 (0.016) <0.0001 -0.096 (0.011) <0.0001 -0.076 (0.015) <0.0001
Maximum temperature, °C -0.13 (0.013) <0.0001 -0.17 (0.015) <0.0001 -0.089 (0.011) <0.0001 -0.073 (0.015) <0.0001*
Minimum temperature, °C -0.13 (0.013) <0.0001 -0.16 (0.016) <0.0001 -0.093 (0.011) <0.0001 -0.073 (0.014) <0.0001*
Atmospheric pressure at sea level, hPa 0.00032 (0.0022) 0.89 0.00041 (0.0027) 0.88 -0.0011 (0.0018) 0.54 -0.0013 (0.0015) 0.38
Average relative humidity, % 0.023 (0.010) 0.027 0.044 (0.013) 0.00047 -0.027 (0.0085) 0.0016 -0.023 (0.0083) 0.0055
Precipitation, mm -0.0034 (0.023) 0.88 -0.0079 (0.028) 0.78 0.0074 (0.019) 0.70 0.023 (0.017) 0.19
Average visibility, km 0.020 (0.031) 0.52 -0.040 (0.038) 0.30 0.064 (0.026) 0.013 -0.015 (0.028) 0.59
Average wind speed -0.077 (0.025) 0.0019 -0.059 (0.030) 0.053 -0.027 (0.021) 0.18 -0.034 (0.023) 0.14
Total days with snow 0.034 (0.034) 0.32 -0.025 (0.042) 0.55 0.078 (0.028) 0.0056 -0.0049 (0.033) 0.88
Total days with thunderstorm -0.097 (0.034) 0.0040 -0.11 (0.041) 0.0078 -0.066 (0.028) 0.020 0.050 (0.030) 0.099
Total days with fog 0.24 (0.042) <0.0001 0.31 (0.050) <0.0001 -0.073 (0.036) 0.040 -0.066 (0.041) 0.10
Sunshine, hours in first month of epidemic -0.019 (0.0022) <0.0001 -0.027 (0.0026) <0.0001 -0.0091 (0.0020) <0.0001 -0.0012 (0.0026) 0.64

Univariable analysis

β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value
Demographics
Median age 0.18 (0.015) <0.0001 0.22 (0.018) <0.0001 0.078 (0.013) <0.0001 0.010 (0.020) 0.60
Age 0-14 years, % -0.16 (0.012) <0.0001 -0.19 (0.015) <0.0001 -0.085 (0.012) <0.0001 -0.15 (0.016) 0.33†
Age 15-64 years, % 0.24 (0.022) <0.0001 0.25 (0.027) <0.0001 0.13 (0.019) <0.0001 0.023 (0.023) 0.32†
Age over 65 years, % 0.20 (0.022) <0.0001 0.28 (0.026) <0.0001 0.078 (0.020) 0.00011 0.012 (0.024) 0.62†
Sex ratio -0.35 (0.73) 0.63 44.51 (0.92) <0.0001 -0.086 (0.60) 0.89 -0.27 (0.56) 0.63
Population size 1.92E-08 (9.42E-10) <0.0001 2.88E-08 (1.19E-09) <0.0001 5.12E-09 (-8.41E-10) <0.0001 2.13E-09 (7.84E-10) 0.0066
Population density, pop/km2 -0.00021 (9.92E-05) 0.037 -0.00034 (0.00013) 0.0060 0.0011 (8.52E-05) <0.0001 -0.00016 (0.00019) 0.39
Urban, % 0.065 (0.0057) <0.0001 0.084 (0.0069) <0.0001 0.041 (0.0049) <0.0001 0.030 (0.0067) <0.0001
GDP 5.58E-05 (5.19E-06) <0.0001 7.55E-05 (6.270E-06) <0.0001 2.16E-05 (4.55E-06) <0.0001 3.77E-06 (6.55E-06) 0.56
HDI 10.89 (0.84) <0.0001 13.02 (1.00) <0.0001 6.25 (0.79) <0.0001 6.67 (1.91) 0.00047
Airline passengers carried, annual 2.74E-08 (1.57E-09) <0.0001 3.70E-08 (1.98E-09) <0.0001 1.28E-08 (1.56E-09) <0.0001 5.50E-09 (1.48E-09) 0.00019

Univariable analysis

β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value
Health
BMI 0.44 (0.067) <0.0001 0.56 (0.083) <0.0001 0.41 (0.057) <0.0001 0.18 (0.063) 0.0048
Obesity, % 0.094 (0.016) <0.0001 0.12 (0.020) <0.0001 0.10 (0.013) <0.0001 0.061 (0.015) <0.0001‡
Diabetic, % 0.079 (0.036) 0.027 -0.051 (0.044) 0.24 0.081 (0.029) 0.0059 0.026 (0.029) 0.36‡
Cigarette consumption, annual per capita 0.0012 (0.00016) <0.0001 0.0016 (0.00020) <0.0001 0.0010 (0.00014) <0.0001 0.00013 (0.00029) 0.52
Hospital beds, per 100,000 population 0.0018 (0.00053) 0.00084 0.0027 (0.00065) <0.0001 0.00058 (0.00045) 0.19 -0.0038 (0.00075) <0.0001
Physicians, per 100,000 population 0.011 (0.00093) <0.0001 0.014 (0.0011) <0.0001 0.0037 (0.00082) <0.0001 -0.00044 (0.0015) 0.77
Health expenditure, US$ per capita 0.00066 (7.93E-05) <0.0001 0.00096 (9.46E-05) <0.0001 0.00029 (7.46E-05) <0.0001 0.00013 (9.68E-05) 0.18
COVID-19 tests, per 100,000 population 4.20E-04 (7.39E-05) <0.0001 0.00047 (9.05E-05) <0.0001 7.15E-05 (7.08E-05) 0.31 -5.50E-05 (7.40E-05) 0.45

Univariable analysis

Multivariable analysis

Multivariable analysis

Multivariable analysis

Cumulative cases (day 28)

Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)Cumulative cases (day 28)

Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)

Cumulative cases (day 28)Total cases Total deaths
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β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value
Geographic (weather station)
Latitude 0.034 (0.0059) <0.0001 0.044 (0.0071) <0.0001 0.022 (0.0049) <0.0001 -0.0052 (0.0076) 0.49
Longitude -0.0080 (0.0024) 0.001 -0.012 (0.003) <0.0001 0.0025 (0.0020) 0.23 -0.0044 (0.0022) 0.047
Altitude, m -0.00032 (0.00027) 0.24 -0.00044 (0.00033) 0.19 0.0012 (0.00022) <0.0001 0.00075 (0.00022) 0.00080

Univariable analysis

β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value β coefficient (SE) p value
Planetary
PM2.5, µg/m3 n.d. n.d. n.d. n.d. 0.0074 (0.0074) 0.32 0.012 (0.0079) 0.14
Ozone exposure, ppb 0.11 (0.015) <0.0001 0.10 (0.019) <0.0001 0.079 (0.013) <0.0001 0.026 (0.016) 0.11
Household air pollution, % -0.045 (0.0037) <0.0001 -0.057 (0.0045) <0.0001 -0.028 (0.0032) <0.0001 -0.038 (0.0075) <0.0001
Climate Risk Index (2018) -0.036 (0.0040) <0.0001 -0.056 (0.0048) <0.0001 -0.018 (0.0037) <0.0001 -0.0073 (0.0037) 0.046

Cumulative cases (day 28)
Multivariable analysis

Cumulative cases (day 28)Total cases Total deaths
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Nicole Leung
Table 1. Univariable and multivariable associations between COVID-19 outcomes (cases, deaths, and epidemic growth rate) and weather, demographic, health, geographic, and planetary factors. 

Nicole Leung
All multivariable regression results were generated by simultaneous examination of the variable in question together with average temperature, median age, and BMI, unless otherwise noted. 
*Generated by simultaneous examination with median age and BMI. 
†Generated by simultaneous examination with average temperature and BMI. 
‡Generated by simultaneous examination with average temperature and median age. 
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<650 ≥650 Odds Ratio (95% CI) <15 ≥15 Odds Ratio (95% CI) <100 ≥100 Odds Ratio (95% CI)
Weather Stratification
Average temperature, °C ≥27 33 14 1 (ref) 31 16 1 (ref) 32 14 1 (ref)

≥24 to <27 25 6 0.57 (0.19-1.68) 25 6 0.47 (0.16-1.36) 22 9 0.94 (0.34-2.54)
≥15 to <24 18 18 2.36 (0.78-7.12) 18 18 1.94 (0.64-5.85) 16 20 2.86 (1.03-7.9.00)
≥6 to <15 9 27 7.07 (2.61-19.18) 8 28 6.78 (2.44-18.84) 8 28 8.00 (2.87-22.29)
<6 3 32 25.14 (6.59-95.87) 5 30 11.63 (3.78-35.72) 14 21 3.43 (1.36-8.63)

Maximum temperature, °C ≥30 45 19 1 (ref) 43 21 1 (ref) 43 20 1 (ref)
≥17 to <30 33 28 2.01 (0.96-4.19) 33 28 1.74 (0.84-3.59) 30 31 2.22 (1.07-4.61)
<17 10 50 11.84 (4.99-28.13) 11 49 9.12 (3.95-21.06) 19 41 4.64 (2.17-9.92)

Minimum temperature, °C ≥21 48 18 1 (ref) 47 19 1 (ref) 45 20 1 (ref)
≥8 to <21 30 28 2.49 (1.18-5.26) 29 29 2.47 (1.18-5.19) 28 30 2.41 (1.15-5.04)
<8 10 51 13.60 (5.71-32.39) 11 50 11.24 (4.84-26.11) 19 42 4.97 (2.34-10.59)

Average relative humidity, % ≥76 27 35 1 (ref) 22 40 1 (ref) 29 32 1 (ref)
≥66 to <76 35 26 0.57 (0.28-1.17) 36 25 0.38 (0.18-0.79) 33 28 0.77 (0.38-1.57)
<66 26 35 1.04 (0.51-2.12) 29 32 0.61 (0.29-1.25) 30 31 0.94 (0.46-1.91)

<650 ≥650 Odds Ratio (95% CI) <15 ≥15 Odds Ratio (95% CI) <100 ≥100 Odds Ratio (95% CI)
Demographics Stratification
Population size <2400000 55 11 1 (ref) 55 11 1 (ref) 42 23 1 (ref)

≥2400000 to <16000000 28 41 7.32 (3.27-16.40) 30 39 6.5 (2.91-14.52) 29 39 2.46 (1.22-4.94)
≥16000000 22 48 10.91 (4.80-24.79) 18 52 14.44 (6.23-33.47) 32 37 2.11 (1.05-4.23)

Urban, % <50 50 14 1 (ref) 46 18 1 (ref) 44 18 1 (ref)
≥50 to <75 29 41 5.05 (2.36-10.80) 27 43 4.07 (1.97-8.42) 25 44 4.30 (2.06-8.98)
≥75 25 44 6.29 (2.91-13.57) 29 40 3.52 (1.71-7.28) 33 36 2.67 (1.29-5.50)

HDI <0.66 45 13 1 (ref) 40 18 1 (ref) 38 17 1 (ref)
≥0.66 to <0.805 25 34 4.71 (2.11-10.53) 29 30 2.30 (1.08-4.89) 24 35 3.26 (1.51-7.06)
≥0.805 7 51 25.22 (9.25-68.73) 10 48 10.67 (4.43-25.71) 20 38 4.25 (1.93-9.34)

Airline passengers carried, annual <700000 38 11 1 (ref) 33 16 1 (ref) 31 17 1 (ref)
≥700000 to <7000000 21 32 5.26 (2.21-12.54) 24 29 2.49 (1.11-5.58) 16 37 4.22 (1.83-9.70)
≥7000000 2 50 86.36 (18.06-412.88) 5 47 19.39 (6.46-58.15) 23 29 2.30 (1.03-5.15)

Total cases Total deaths Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)
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<650 ≥650 Odds Ratio (95% CI) <15 ≥15 Odds Ratio (95% CI) <100 ≥100 Odds Ratio (95% CI)
Health Stratification
BMI <25 39 20 1 (ref) 36 23 1 (ref) 41 17 1 (ref)

≥25 to <26.7 14 43 5.99 (2.67-13.45) 15 42 4.38 (1.99-9.64) 16 39 5.88 (2.61-13.23)
≥26.7 23 35 2.97 (1.40-6.30) 26 32 1.93 (0.92-4.02) 25 33 3.18 (1.48-6.86)

Obesity, % <12 38 19 1 (ref) 33 24 1 (ref) 39 17 1 (ref)
≥12 to <23 21 37 3.52 (1.63-7.60) 24 34 1.95 (0.93-4.09) 22 34 3.55 (1.62-7.75)
≥23 17 42 4.94 (2.25-10.86) 20 39 2.68 (1.26-5.69) 21 38 4.15 (1.90-9.06)

Hospital beds, per 100,000 population <150 38 21 1 (ref) 34 25 1 (ref) 32 26 1 (ref)
≥150 to <340 27 35 2.35 (1.13-4.88) 28 34 1.65 (0.80-3.39) 31 30 1.19 (0.58-2.45)
≥340 19 43 4.10 (1.92-8.74) 21 41 2.66 (1.27-5.55) 25 37 1.82 (0.88-3.76)

<650 ≥650 Odds Ratio (95% CI) <15 ≥15 Odds Ratio (95% CI) <100 ≥100 Odds Ratio (95% CI)
Geographic (weather station) Stratification
Longitude <-5 37 23 1 (ref) 37 23 1 (ref) 32 28 1 (ref)

≥-5 to <30 21 39 2.99 (1.42-6.28) 17 43 4.07 (1.89-8.75) 22 37 1.92 (0.92-4.00)
≥30 30 35 1.88 (0.92-3.83) 33 32 1.56 (0.77-3.18) 38 27 0.81 (0.40-1.65)

Altitude, m <20 33 27 1 (ref) 35 25 1 (ref) 37 22 1 (ref)
≥20 to <120 27 34 1.54 (0.75-3.15) 29 32 1.54 (0.75-3.17) 29 32 1.86 (0.90-3.85)
≥120 28 36 1.57 (0.77-3.19) 23 41 2.50 (1.21-5.15) 26 38 2.46 (1.19-5.08)

<650 ≥650 Odds Ratio (95% CI) <15 ≥15 Odds Ratio (95% CI) <100 ≥100 Odds Ratio (95% CI)
Planetary Stratification
PM2.5, µg/m3 <50 80 85 1 (ref) 79 86 1 (ref) 79 83 1 (ref)

≥50 2 14 6.59 (1.45-29.91) 4 12 2.76 (0.85-8.90) 7 9 1.22 (0.43-3.44)

Household air pollution, % <1.5 12 46 1 (ref) 15 43 1 (ref) 23 35 1 (ref)
≥1.5 to <35 23 36 0.41 (0.18-0.93) 27 32 0.41 (0.19-0.90) 21 37 1.16 (0.55-2.45)
≥35 47 17 0.090 (0.040-0.22) 41 23 0.20 (0.090-0.43) 42 20 0.31 (0.15-0.66)

Climate Risk Index (2018) <65 21 35 1 (ref) 21 35 1 (ref) 26 29 1 (ref)
≥65 to <105 19 39 1.23 (0.57-2.66) 18 40 1.33 (0.61-2.90) 21 37 1.58 (0.74-3.35)
≥105 34 24 0.42 (0.20-0.90) 37 21 0.34 (0.16-0.73) 34 23 0.61 (0.29-1.28)

Total cases Total deaths Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)

Total cases Total deaths Cumulative cases (day 28)
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Table 2. Odds of COVID-19 outcomes (cases, deaths, and epidemic growth rate) by weather, demographic, health, geographic, and planetary factors. 
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Top 20% Bottom 20%
Median (±SEM) Median (±SEM) p value

Factor
Total cases at day 28 1,241 (914) 9.5 (0.7) <0.0001
Average temperature, °C 10.4 (1.6) 26.0 (2.2) 0.021
Average relative humidity, % 69.3 (2.5) 72.2 (2.5) 0.273
Altitude, m 106.0 (96.8) 36.5 (45.2) 0.017
Age 0-14 years, % 20.2 (1.2) 26.3 (1.7) 0.022
Age over 65 years, % 11.2 (1.0) 6.9 (1.2) 0.061
Obesity, % 22.5 (1.1) 21.0 (1.7) 0.048
Urban, % 74.4 (2.8) 61.3 (4.5) 0.120
GDP 29,441 (4,552) 15,124 (3,794) 0.039
HDI 0.817 (0.018) 0.735 (0.030) 0.023
Airline passengers carried, annual 15,728,390 (14,580,248) 8,483,180 (35,359,452) 0.420
Cigarette consumption, annual per capita 1,204 (172) 635 (126) 0.033
Health expenditure, US$ per capita 1,492 (314) 573 (430) 0.020
COVID-19 tests, per 100,000 population 1,148 (474) 1,771 (768) >0.9999
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Nicole Leung
Table 3. Profile of countries with the highest (top 20%) and lowest (bottom 20%) epidemic growth rates. 

Nicole Leung
Countries were categorized in the top or bottom 20% for epidemic growth rate according to cumulative case counts at 28 days after the first reported case. 40 countries were included in the top 20%, and 42 countries were included in the bottom 20% (two additional countries were included in the bottom category as they had the same case count at day 28). Three countries/territories (São Tomé and Príncipe, South Sudan, and Yemen) had not reached 28 days after the first reported case as of May 2, 2020 and were omitted. SEM represents the standard error of the median. P values for comparisons were generated using the Mann-Whitney test. �
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