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Abstract 

 

Background: The study aimed to utilize machine learning (ML) approaches and genomic data to 

develop the prediction model for bone mineral density (BMD), and to identify the best modeling 

approach for BMD prediction. Method: The genomic and phenotypic data of Osteoporotic 

Fractures in Men Study (n=5,130), was analyzed. Genetic risk score (GRS) was calculated from 

1,103 associated SNPs for each participant after a comprehensive genotype imputation. Data 

were normalized and divided into a training set (80%) and a validation set (20%) for analysis. 

Random forest, gradient boosting, neural network, and linear regression were used to develop 

prediction models for BMD separately. The 10-fold cross-validation was used for 

hyperparameter optimization. Mean square error and mean absolute error were used to assess 

model performance. Results: When using GRS and phenotypic covariates as the predictors, the 

performance of all ML models and linear regression in BMD prediction is similar. However, 

when replacing GRS with the 1,103 individual SNPs in the model, ML models performed 

significantly better than linear regression, and the gradient boosting model performed the best. 

Conclusion: Our study suggested that ML models, especially gradient boosting, can improve 

BMD prediction in genomic data.     

Keywords: Machine Learning, Bone Mineral Density, Osteoporosis, Genomics, Comparison 
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Abbreviations 

 

MrOS: Osteoporotic Fractures in Men Study 

BMD: Bone Mineral Density 

ML: Machine Learning 

GRS: Generic Risk Score 

LR: Linear Regression 

RF: Random Forest 

GB: Gradient Boosting 

NN: Neural Network 

SNPs: Single Nucleotide Polymorphisms 

GWAS: Genome-Wide Association Study 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 19, 2020. ; https://doi.org/10.1101/2020.01.20.20018143doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.20.20018143
http://creativecommons.org/licenses/by-nc-nd/4.0/


Wu et al - 5 - 
 

Introduction 

Osteoporosis is a major bone disease characterized by reduced bone mineral density (BMD) 

and deteriorated bone architecture, leading to increased fracture risk. Osteoporosis and its major 

complication, osteoporotic fracture, which affects both men and women, cause substantial 

morbidity and mortality worldwide [1]. Although women have a higher risk of osteoporosis, men 

suffer much higher morbidity and mortality rates following osteoporotic fractures, especially at 

an advanced age. With populations aging worldwide, osteoporosis has become a critical public 

health problem globally. The worldwide fracture incidence in hip alone is projected to increase 

by 310% in men and 240% in women by 2050, compared to rates in 1990 [2]. The potentially 

high cumulative rate of fracture, which often results in excess disability and mortality [3], has 

caused an inevitable increase in the social and economic burden associated with bone health.  

BMD has remained the operational definition of osteoporosis since 1994. Osteoporosis is 

defined by the World Health Organization as a BMD that lies 2.5 or more standard deviations 

below the average value for young, healthy women. BMD is the single strongest predictor of 

primary osteoporotic fracture [4]. Each standard deviation decrease in BMD is associated with a 

1.5-3.0 fold increase in the risk of fracture, depending on the skeletal region measured, type of 

fracture, and ethnicity of the study population [5]. 

BMD is a highly heritable trait. Genetic differences in BMD are well documented [6]. 

Family and twin studies show BMD variances of 50-85% are attributable to genetic factors [7]. 

Other studies report BMD heritability estimates of 72-92 [8]. In the past decade, major genome-

wide association studies (GWAS) and genome-wide meta-analyses have successfully identified 

numerous BMD-associated Single Nucleotide Polymorphisms (SNPs) associated with decreased 

BMD [9]. However, combining these large number of highly significant SNPs, surprisingly, only 

explained a very small percentage of BMD variance [10]. Such inconsistency may be caused by 

limitations of the conventional regression approaches employed as these traditional approaches 

lack the flexibility and adequacy to model complex interactions and regulations. 

Linear regression has been widely used as the conventional approach to predicting the BMD 

outcome [11]. Machine learning (ML) focuses on implementing computer algorithms capable of 

maximizing predictive accuracy from complex data. ML has a much better capacity to model 

complex real-world relationships, including variable interactions. Several ML techniques have 
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been applied in clinical research for disease prediction, and ML has shown much higher accuracy 

for diagnosis than conventional methods [12]. Gradient boosting, random forest, and neural 

network are widely used ML approach for modeling complex medical data [12]. However, the 

performance of these ML models for BMD prediction remains unknown, especially with 

genomic data.  

Hence, the aims of the current study are 1) to develop models using ML algorithms to 

predict BMD from the data with genomic variants, and 2) to compare these models to determine 

which ML model performs the best for BMD prediction. We hypothesize that when we utilize 

the ML models to predict BMD, ML models will perform better than linear regression.  

Materials and Methods 

Data Source 

The Osteoporotic Fractures in Men Study (MrOS) was used as the data source for this study. 

MrOS is a federal funded prospective cohort study that was designed to investigate 

anthropometric, lifestyle, and medical factors associated with bone health in older, 

community�dwelling men. Details of the MrOS study design, recruitment, and baseline cohort 

characteristics have been reported [13] elsewhere. With the approval of the institutional review 

board at the University of Nevada, Las Vegas, and National Institute of Health (NIH), the 

genotype and phenotype data of MrOS were acquired from dbGaP (Accession: 

phs000373.v1.p1). MrOS consisted of 5,130 subjects, all of whom had both genotype and 

phenotype data available for authorized access. 

Study participants 

Participants in the MrOS were at least 65 years old, community-dwelling, ambulatory, and 

had not received bilateral hip replacement [14] at the study entry. At enrollment, participants had 

to provide self-reported data, understand and sign the written informed consent, complete the 

self-administered questionnaire, attend a clinic visit, and complete at least the anthropometric, 

DEXA, and vertebral X-ray procedures. The participants could not have a medical condition that 

would result in imminent death, which was based on the judgment of the investigators. A total of 

5,994 men were enrolled between March 2000 and April 2002, all from six communities in the 
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United States (Birmingham, AL; Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, 

OR; and San Diego, CA.) [15]. 

Outcome BMD measurements 

Total body, total femur BMD, and lumbar spine (L1 to L4) were measured using a fan-beam 

dual-energy X-ray absorptiometry (QDR 4500 W, Hologic, Inc., Bedford, MA, USA) at the 

second visit of MrOS. Participants were scanned for BMD measurements by licensed 

densitometrists using standardized procedures. All DXA operators were centrally certified based 

on the evaluation results of scanning and analysis techniques. Cross-calibrations, which were 

conducted prior to participants’ visits for BMD measurement, found no linear differences across 

scanners, and the maximum percentage difference between scanners was 1.4% in mean BMD of 

the total spine [16]. No shifts or drifts in scanner performance was found, based on daily quality 

control in each clinical center. 

Assessment of covariates 

Bone health-related information, including demographics, clinical history, medications, and 

lifestyle factors, were obtained by self-administered questionnaires. The information collected 

contained the variables used in this study, including age, race, smoking, and alcohol 

consumption. Height (cm) was measured using a Harpenden stadiometer, and weight (kg) was 

measured by a standard balance beam or an electric scale. 

Smoking was categorized as “never,” “past,” and “current.” Alcohol intake was quantified in 

terms of the usual number of drinks per day. Walking speed was determined by timed 

completion of a 6-meter course, performed at each participant’s typical walking speed. Mobility 

limitations were quantified by using a participant’s ability to rise from a chair without using his 

arms, as well as his ability to complete five chair stands. Each participant’s function status was 

quantified by assessing the difficulty of daily living on a scale of 0-3, with five instrumental 

activities of daily living, which include walking on level ground, climbing steps, preparing 

meals, performing housework, and shopping. 
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Genotyping Data 

Whole blood samples at the baseline were used for DNA extraction. Consent for DNA use 

was obtained through written permission. Quality-control genotype data files were acquired 

through dbGaP. Genotype imputation was conducted at the Sanger Imputation Server. The 

Haplotype Reference Consortium imputation reference panel, and Positional Burrows-Wheeler 

Transform imputing algorithm, were used to ensure high quality of genotype imputation. Based 

on the study published by Morris et al. in 2019, a total of 1,103 associated SNPs were extracted 

for this analysis [9]. All the 1,103 SNPs were successfully imputed in the MrOS data and were 

included in the analysis. The imputation quality was excellent, with a mean R2 of 0.99. 

Genotyping for MrOS samples was performed with the Illumina HumanOmni1_Quad_v1-0 H 

array. A total of 934,940 SNP markers with known chromosome locations, and SNP markers 

with minor allele frequencies greater than or equal to 0.05, were analyzed. 

Genetic risk score 

A genetic risk score (GRS) is a standardized metric that allows the composite assessment 

of genetic risk in complex traits. The GRS was derived from the number of risk alleles and their 

effect size for each study subject. We performed a linkage disequilibrium (LD) pruning in 

advance in order to eliminate possible LD between SNPs; however, none of the SNPs were 

eligible for removal during the pruning process. The weighted GRS was then calculated with the 

algorithms described previously [17]. Briefly, for each participant in MrOS, weighted GRS was 

calculated by summing the number of risk alleles at each locus weighted by regression 

coefficients related to BMD [9].  

Data processing  

Figure 1 shows an overview of our data process flow for this study. After genotype 

imputation, the phenotype data set (n=5,143) and genotype data set (n=5,130) were merged, and 

13 participants were removed from the analysis due to the lack of all phenotype data. We 

normalized all continuous variables in the data, then randomly divided the dataset into a training 

set (80%, n=4,104) and a test set (20%, n=1,026). The median imputation [18], the most 

common imputation method for continuous variables, was used to replace missing values in the 

data so as to maximize the sample size for analysis. 
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Data analysis 

 The outcomes variables were BMD measured from various skeletal regions, which 

included femoral neck, total spine, and total hip. The predictors included GRS, age, race, body 

weight, height, smoking, alcohol consumption, walking speed, impairment of instrumental 

activities of daily living, mobility limitations. Linear regression, random forest, gradient 

boosting, and neural network with backpropagation were used to train the model separately. We 

also conducted analyses that replaced the GRS with the 1,103 individual SNPs in each model. 

We encoded each risk SNP as three different genotypes (dominant homozygous allele, 

heterozygotes, homozygous minor allele) with 0, 1, and 2, respectively. 

In model training, 10-fold cross-validation was used for hyper-parameter optimization. We 

divided the training set into 10-folds, and chose one fold as a validation set, with the remaining 

folds used as the training set. We used the method of Scikit-learn’s randomized search cross-

validation [19] to find the best hyperparameters for different algorithms. The training set was 

used to train and construct the models of linear regression, random forest, gradient boosting, and 

neural network. A small learning rate and relatively small depth were used for random forest and 

gradient boosting algorithms in order to reduce the risk of overfitting [20]. With phenotype 

covariate and GRS as predictors, we used the depth of three for total hip BMD, the depth of two 

for femur neck BMD, and the depth of one for total spine BMD. With phenotype covariate and 

1,103 individual SNPs as predictors, we used the depth of four for total hip BMD, the depth of 

three at femoral neck BMD, and the depth of one for total spine BMD. In the neural network 

model, with individual SNPs as predictors, Lasso was used to address the overfitting problem 

[21]. 

The testing set (20%) was used to evaluate the prediction performance of the developed 

model. Metrics for model performance evaluation are mean squared error and mean absolute 

error [22]. We adopted both metrics: 

• Mean Squared Error (MSE) 

��� �  1
� �	
� � 
���

�

���
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• Mean Absolute Error (MAE) 

��� �  1
� � |
� � 
��|

�

���

 

where � is the sample size, 
�  is the actual value for each observation, and  
��  is the estimated 

value for each observation from the model. We first used MSE as a loss function to develop the 

model in a training set. We also calculated MSE for each model in the test set and used the MSE 

for model evaluation. We then reanalyzed the data by replacing MSE with MAE, in which MAE 

was used as a loss function to develop the model in a training set, and was calculated in the test 

set for model evaluation. Wilcoxon signed-rank test was employed to examine the difference of 

MSE or MAE between ML models, as the data distribution assumption for the student t-test was 

not met.  All of the analyses were performed in the Python Software Foundation and Python 

Language Reference, version 3.7.3, with the package Scikit-learn: Machine Learning in Python 

[19]. 

Results 

Baseline characteristics 

Table 1 shows the characteristics of participants within the training (� � �, ���) and the test 

(� � �, ���) datasets. Demographic and clinical variables were not significantly different in 

training and test datasets. All BMD measurements from the femur neck, total spine, and total hip 

were normally distributed, with means 0.78, 0.96, 1.07, and standard deviations 0.13, 0.14, 0.19, 

respectively.  

Model Performance 

Figure 2 shows the performance of each model in the test dataset (� � �, ���. The upper panel 

in Figure 2 compared model performance when using phenotype covariates and GRS as 

predictors. MSE in each model became similar in the test data with increased training iterations. 

Although the linear regression model had a relatively higher MSE in the first few iterations, the 

performance of linear regression and ML models became nearly identical after 100 iterations of 

training for BMD in each skeletal region. All models had the best performance in femur neck 

BMD (Figure 2A) with the lowest MSE during training iteration, followed by total hip BMD 

(Figure 2B), and then total spine BMD (Figure 2C). The lower panel in Figure 2 compared 
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model performance when using phenotype covariates and 1,103 individual SNPs as predictors. 

MSE in linear regression was much larger than that in other ML models in the test data, even 

after 100 iterations of training; the results were consistent with BMD measured at the three 

different skeletal regions. 

Tables 2 show the results of MSE and MAE for each model with phenotype covariate and GRS 

as predictors. In the test dataset (� � �, ���), MSEs were similar between all models in each 

BMD, and the same results were observed for MAE. When we replaced GRS with 1,103 SNPs in 

the predictors (Table 3), in the testing dataset, ML models had smaller MSE than that in the 

linear model, and similar results were observed with MAE. Overall the gradient boosting model 

had the lowest MSE and MAE in the testing dataset. 

The nonparametric Wilcoxon signed-rank test results for multiple comparisons of MSE between 

models are shown in Table 4; when using phenotype covariates and GRS as the predictors. With 

Bonferroni corrections for multiple comparisons (α = 0.05/6=0.0083), none of the comparisons 

were statistically significant except the comparison between gradient boosting and random forest 

at femur neck BMD and total spine BMD. However, as shown in Table 5, when using phenotype 

covariates and 1,103 SNPs as the predictors, the difference of MSE in most pairwise 

comparisons was statistically significant with p< .0001. The only exceptions are the comparison 

between neural network and random forest at femur neck BMD and the comparison between 

gradient boosting and random forest at total hip BMD with p> .05.  

Discussion 

This study presented findings that employing various ML models and linear regression in 

BMD prediction in older men, by using both genotype and phenotype data. Interestingly, we 

found that if we use GRS, the summarized genetic risk from associated SNPs, as the genetic 

predictor in the model, all ML approaches did not perform better than linear regression in 

predicting BMD. In contrast, if we replace GRS with the 1,103 individual risk SNPs as 

predictors in the model, ML models all have significantly better performance than linear 

regression for BMD prediction. With the increasing availability of genomic and health big data, 

ML technologies, which employ a wide-ranging class of algorithms, have increasingly been 

utilized in medical research, especially in disease prediction using genomic and health big data. 

However, our study findings suggested that the conventional approach may be sufficient if we 
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use GRS, a summary metric for genetic risk, as the genetic predictor in the prediction model. ML 

approaches are recommended if a large number of individual genetic variants are included as 

predictors. 

ML models have been used widely for prediction in classification problems, especially 

for disease prediction. However, studies that utilized ML technologies to predict the quantitative 

trait are still few. Reportedly, artificial neural networks were utilized for BMD prediction in a 

small sample of Japan postmenopausal women by using common risk factors and a BMD 

previously measured [11]. However, to the best of our knowledge, the present study is the first 

attempt to predict BMD using both advanced ML approaches and genomic information, as well 

as the first to identify the best ML model for BMD prediction. Our study demonstrated ML 

technologies perform better than conventional methods for the prediction of quantitative traits in 

complex data that include a large number of genomic variants as predictors. 

Risk SNPs, identified in GWAS and Genome-Wide meta-analyses, have posed a 

challenge in conventional statistical analysis because their effect size is so small. Each associated 

SNP contributes minimally to the variance of BMD. Thus, GRS is widely used to integrate the 

effects of individual associated SNPs into a single genetic summary variable for the prediction 

research in many studies. Although such an approach improves the prediction ability, many 

uncertainties remain.  For example, this approach does not account for gene interaction and 

regulation. To address these limitations, we utilized ML approaches in the current study so that 

individual SNPs can be included to replace GRS in the modeling process. ML approaches are 

able to incorporate the various nonlinear interactions between genetic variants/predictors, which 

cannot be addressed by conventional modeling methods. Thus, ML approaches provide great 

potential for improving BMD prediction. In the present study, we employed random forest, 

gradient boosting, and neural networks, as well as 1,103 individual related SNPs, to find a more 

accurate BMD prediction model. We found that the gradient boosting model performs best in 

predicting BMD as it has the lowest MSE and MAE in the validation for all three BMD 

outcomes. The highest predictive performance of the gradient boosting model has been used 

widely in predicting various diseases and outcomes, including hip fractures [23] ], sepsis [24], 

urinary tract infections [25], hepatocellular carcinoma [26], and bioactive molecules [27]. The 
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present study suggested that the gradient boosting approach, combined with individual SNPs as 

the predictors, can provide a more accurate prediction for BMD. 

Our study has several strengths. To ensure our study results are robust, first, we have 

used two metrics, MSE and MAE, to examine and compare the prediction accuracy of the four 

models we developed. The study findings are consistent between analyses using the two metrics; 

second, we performed data analysis separately for the outcome variable BMD measured in three 

different skeletal regions, and the study results were consistent. Finally, we employed the 

nonparametric Wilcoxon signed-rank test to examine the significance of the difference MSE (and 

MAE) between any two models in order to ensure the data distribution did not bias the results of 

statistical tests. We also used Bonferroni corrections for the multiple comparisons to ensure our 

conclusions were robust. 

However, the study has some limitations as well. First, the study sample size (� �
�, ���) is relatively small for ML methods. ML methods often require a much larger sample size 

for training. To address this limitation, we used 10-fold cross-validation for tuning of the hyper-

parameters within the training dataset, so we do not need to allocate part of the study sample for 

model validation, thus maximizing sample size for the training model. Second, some covariates 

were not available in the MrOS through dbGaP, including related medications, comorbidities, 

and physical activities. Lacking these phenotypic variables can impact the performance of all 

prediction models. Third, the MrOS data only included men � �� years old and who were 

mostly Caucasian (90%), so findings from the present study may not apply to women, younger 

individuals, or other ethnicities. Finally, rare risk SNPs were less likely to be included for 

modeling in this study, because risk SNPs used in this study were identified from a GWAS 

study, which likely discovered common variants, not rare variants [28]. Nevertheless, these 

limitations are unlikely to have altered our findings in the current study because this is a self-

control study, with all models developed and validated by the same datasets. 

In summary, there was not a significant difference in predicting BMD between various 

ML models and linear regression if GRS, a metric used to summarize genetic variants, was used 

for model development. However, when using a large number of individual SNPs as predictors 

to replace GRS, ML models performed significantly better than linear regression in BMD 

prediction. Among these ML models, the gradient boost model performed best for BMD 
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prediction. Our study suggests that ML models, especially gradient boosting, can be used to 

identify patients with low BMD if their genetic information is available. Our study also 

suggested when researchers used a large number of genetic variants or other predictors, ML 

approaches, especially gradient boosting, should be considered. Additional, more comprehensive 

studies, especially those including women, young participants, rare genetic variants, and 

additional risk factors, are warranted to further examine the research findings from the present 

study. 
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Table 1. Baseline characteristics of training and testing dataset. 

Variable* 
Training 
Dataset 

(� � �, ���) 

Test 
Dataset 

(� � �, ���) 
	 
 �alue** 

Femoral Neck BMD 
(g/cm2) 

�. � � �. �� �. � � �. �� 0.61 

Total Hip BMD 
(g/cm2) 

�. �� � �. �� �. �� � �. �� 0.55 

Total Spine BMD 
(g/cm2) 

�. � � �. �� �. � � �. �� 0.36 

Age (year) �.  � �. �� �. �� � �. �� 0.78 

Height (cm) ��. �� � �. �� ��. �� � �. �� 0.69 

Weight (kg) ��. �� � ��. �� ��. � � ��. � 0.37 

Alcohol use �. �� � �. � �. �� � �. �� 0.57 

GRS*** ��. � � �. �� ��. �� � �. �� 0.81 

Impairment of 
Instrumental 

Activities of Daily Living 
�. � � �. �� �. �� � �. �� 0.79 

Walking Speed �. � � �. � �. �� � �. �� 0.53 

Smoking, No. (%) 

    0.41 No 1,535 (37.4%) 406 (39.6%) 

Past 2,430 (59.2%) 587 (57.3%) 

Current 139 (3.4%) 32 (3.1%) 

Race, No. (%) 

   0.11 

White 3,707 (90.3%) 909 (88.6%) 

African American 141 (3.4%) 40 (3.9%) 

Asian 120 (2.9%) 45 (4.4%) 

Hispanic 87 (2.1%) 24 (2.3%) 

Other 49 (1.2%) 8 (0.8%) 

* Continuous variables were expressed as mean � SD, and categorical variables were expressed 
as number (%).  
** �- values were obtained by � – test for continuous variables and chi-square tests for the 
categorical variable.  
*** GRS: genetic risk score, which was calculated based on 1,103 BMD-related SNPs. 
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Table 2. Mean Square Error (MSE) and Mean Absolute Error (MAE) of different models in 

predicting various BMD in the test dataset (� � 1,026); GRS and phenotypic covariates were 

used as predictors.  

 
MSE MAE 

    Testing Training Testing Training 

Femoral Neck BMD     

    Linear Regression 0.0146 0.0126 0.0941 0.0881 

    Random Forest 0.0152 0.0151 0.0945 0.0960 

    Gradient Boosting 0.0142 0.0141 0.0946 0.0360 

    Neural Network 0.0150 0.0122 0.0958 0.0868 
Total Hip BMD   

    Linear Regression 0.0164 0.0151 0.1008 0.0967 

    Random Forest 0.0163 0.0163 0.1003 0.1005 

    Gradient Boosting 0.0162 0.0157 0.1026 0.0394 

    Neural Network 0.0162 0.0153 0.1005 0.0974 
Total Spine BMD   

   Linear Regression 0.0365 0.0316 0.1489 0.1363 

   Random Forest 0.0353 0.0353 0.1469 0.1439 

   Gradient Boosting 0.0349 0.0347 0.1490 0.0562 

   Neural Network 0.0352 0.0324 0.1460 0.1378 
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Table 3. Mean Square Error (MSE) and Mean Absolute Error (MAE) of different models in 

predicting various BMD in the test dataset (� � 1,026); 1,103 SNPs and phenotypic covariates 

were used as predictors.  

 
MSE MAE 

    Test Train Test Train 

Femoral Neck BMD     

    Linear Regression 0.0151 0.0126 0.0989 0.0971 

    Random Forest 0.0132 0.0151 0.0928 0.0940 

    Gradient Boosting 0.0114 0.0141 0.0878 0.0856 

    Neural Network 0.0125 0.0122 0.0933 0.0951 
Total Hip BMD   

    Linear Regression 0.0185 0.0186 0.1079 0.1067 

    Random Forest 0.0180 0.0183 0.1061 0.1066 

    Gradient Boosting 0.0164 0.0172 0.1000 0.0998 

    Neural Network 0.0155 0.0162 0.0987 0.1002 
Total Spine BMD   

   Linear Regression 0.0455 0.0470 0.1671 0.1675 

   Random Forest 0.0337 0.0341 0.1467 0.1442 

   Gradient Boosting 0.0328 0.0330 0.1444 0.1417 

   Neural Network 0.0378 0.0381 0.1565 0.1549 
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Table 4. Statistical comparisons of mean square errors in the testing dataset (� � 1,026) 
between various models when phenotype covariates and GRS were used as the predictors. The 
Wilcoxon Signed-Rank Test was used to determine all p-values.  

  

Linear Regression Random Forest Gradient Boosting 

Femoral Neck BMD    
 Neural Network �  .05 �  .05 �  .05 

   Gradient Boosting �  .05 �  .0001 -- 

Random Forest �  .05 -- -- 

Total Hip BMD    

 Neural Network �  .05 �  .05 �  .05 

   Gradient Boosting �  .05 �  .05 -- 

Random Forest �  .05 -- -- 

Total Spine BMD  

    Neural Network �  .05 �  .05 �  .05 

    Gradient Boosting �  .05 �  .01 -- 

    Random Forest �  .05 -- -- 
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Table 5. Statistical comparisons of mean square errors in the testing dataset (� � 1,026) 
between various models when phenotype covariates and 1,103 SNPs were used as the predictors. 
The Wilcoxon Signed-Rank Test was used to determine all p-values.  

  

Linear Regression Random Forest Gradient Boosting 

Femoral Neck BMD    
 Neural Network �  .0001 �  .05 �  .0001 

   Gradient Boosting �  .0001 �  .0001 -- 

Random Forest �  .0001 -- -- 

Total Hip BMD    

 Neural Network �  .0001 �  .0001 �  .0001 

   Gradient Boosting �  .0001 �  .05 -- 

Random Forest �  .0001 -- -- 

Total Spine BMD  

    Neural Network �  .0001 �  .0001 �  .0001 

    Gradient Boosting �  .0001 �  .001 -- 

    Random Forest �  .0001 -- -- 
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Figure 1. Overview of data process flow.  
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Figure 2. Mean squared error loss of various models with the number of training iterations for BMD prediction in the test dataset 
(� � �, ����. The upper panel shows the performance of each model with phenotype covariates and GRS as predictors in predicting 
BMD at the femoral neck (A), total hip (B), and total spine (C) in the testing dataset at different BMD sites. The lower panel shows 
the performance of each model with phenotype covariates and 1,103 individual SNPs in predicting BMD at the femoral neck (D), total 
hip (D), and total spine (F). 
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