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ABSTRACT 

The COVID-19 novel virus, as an emerging highly pathogenic agent, has caused a 

pandemic. Revealing the influencing factors affecting transmission of COVID-19 is 

essential to take effective control measures. Several previous studies suggested that 

the spread of COVID-19 was likely associated with temperature and/or humidity. But, 

a recent extensive review indicated that conclusions on associations between climate 

and COVID-19 were elusive with high uncertainty due to caveats in most previous 

studies, such as limitations in time and space, data quality and confounding factors. In 

this study, by using a more extensive global dataset covering 578 time series from 

China, USA, Europe and the rest of the world, we show that climate show distinct 

impacts on early and late transmission of COVID-19 in the world after excluding the 



confounding factors. The early transmission ability of COVID-19 peaked around 

6.3°C without or with little human intervention, but the later transmission ability was 

reduced in high temperature conditions under human intervention, probably driven by 

increased control efficiency of COVID-19. The transmission ability was positively 

associated with the founding population size of early reported cases and population 

size of a location. Our study suggested that with the coming summer seasons, the 

transmission risk of COVID-19 would increase in the high-latitude or high-altitude 

regions but decrease in low-latitude or low-altitude regions; human intervention is 

essential in containing the spread of COVID-19 around the world.  
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INTRODUCTION 

Recently, a novel coronavirus (defined as SARS-CoV-2 by the International 

Committee on Taxonomy of Viruses) is spreading rapidly in the world. It has caused 

incredible damage to public health around the world. By April 4, 2020, a total of 

1,051,635 confirmed cases of COVID-19 over 200 countries or regions in the world 

were reported. There is an urgent need to contain the fast-expansion of COVID-19 in 

the world. 

Revealing the influencing factors on the spread of COVID-19 is extremely 

important to take effective control measures. There is evidence that human movement 

could facilitated the spread of COVID-19 around the world (Yang et al., 2020), thus, 

lockdown of the epicenter, social distancing and isolation of infected patients have 

been widely adopted to prevent and control COVID-19 (Tian et al., 2020). However, 

the knowledge about the impacts of climate on the spread of COVID-19 is still limited 

and unclear. It is widely speculated that the COVID-19 virus could be prohibited in 

warmer seasons because many viral diseases show an explicit seasonality and annual 

cycles, such as influenza epidemics (Martinez, 2018), human coronaviruses (HCoV-

229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) (Gaunt, Hardie, Claas, 

Simmonds, & Templeton, 2010) and the SARS coronavirus (Chan et al., 2011; Yuan 

et al., 2006). Several studies suggested that the spread of COVID-19 was associated 

with temperature and/or humidity (Araujo & Naimi, 2020; Bannister-Tyrrell, Meyer, 

Faverjon, & Cameron, 2020; Chen et al., 2020; Ficetola & Rubolini, 2020; Ma et al., 

2020; Shi et al., 2020; Wang, Tang, Feng, & Lv, 2020). But, a recent extensive review 

by the National Academy of Sciences, Engineering and Medicine of the United States 

of America indicated that conclusions on associations between climate and COVID-

19 were elusive with high uncertainty due to significant caveats in most previous 



studies such as limitation in time and space, data quality and confounding factors 

(National Academies of Sciences & Medicine, 2020). Therefore, it is necessary to 

reveal the impacts of climate factors on the spread of COVID-19 by using a more 

extensive global dataset covering a large geographic and climatic variation, and by 

excluding the impacts of human factors and spatial autocorrelation.  

Here, by using global data of COVID-19 cumulative cases released by WHO or 

national healthy committee or institutions (Fig. 1), we estimated the maximum daily 

increase rate (early transmission ability without human intervention), the average 

daily increase rate (later transmission ability with human intervention), and the 

regression slope of daily increase rate with cumulative cases (the control efficiency) 

(see Methods). We analyzed associations of these three parameters with both human 

factors (founding population size of the early reported patients within one week and 

population size of a location) and climate factors (air temperature and precipitation) in 

China, USA, Europe and the world. We found that both human and climate factors 

affected the spread of COVID-19, but temperature showed distinct impacts on the 

early and late spread of COVID-19.  

 

RESULTS AND DISCUSSION 

Impacts of climate factor 

Analysis using linear generalized additive models (GAM) models indicated that air 

temperature showed a consistent, significant and negative association with the average 

daily increase rate (𝑟𝑖) in China, Europe and the world, the maximum daily increase 

rate (𝑎𝑖) in the world (Table 1, SI Appendix, Table S2), indicating high temperature 

reduced the transmission ability of COVID-19 with and without human intervention. 

These results are generally consistent with observation of several previous studies using 



different parameters of transmission severity such as incident cases (Araujo & Naimi, 

2020; Bannister-Tyrrell et al., 2020; Qi et al., 2020), reproductive number (M. Wang et 

al., 2020) or mortality (Ma et al., 2020), except for one study (Yao et al., 2020). Using 

niche models, tropical climates are less vulnerable than temperate climates (Araujo & 

Naimi, 2020). Temperature is positively associated with COVID-19 mortality in Wuhan 

(Ma et al., 2020). Triplett (2020) found a downward trend of COVID-19 cases with a 

maximum temperature above 22.5°C (Triplett, 2020). Wang et al. (2020b) reported that 

high temperature and high humidity significantly reduced the effective reproduction 

number of COVID-19 in China (M. Wang et al., 2020). Qi et al. (2020) reported the 

negative association between incidence of COVID-19 and temperature or relative 

humidity in China (Qi et al., 2020). However, in one study, no association between the 

basic reproduction number of COVID-19 with temperature or UV radiation in Chinese 

cities was found (Yao et al., 2020). We found precipitation showed a significant and 

negative association with the average daily increase rate (𝑟𝑖) in China, suggesting a wet 

climate might decrease the transmission ability of COVID-19 (Table 1), which is 

consistent with a previous study (Ma et al., 2020). 

Analysis using nonlinear GAM models (Fig. 2, SI Appendix, Table S1, S3) was very 

similar to those using the linear GAM model. Additionally, we found air temperature 

showed a negative and a weak dome-shaped association with the average daily increase 

rate peaked around -4.4°C (Fig. 2B), a positive association with the maximum daily 

increase rate of Europe (Fig. 2E), and a strong dome-shaped association with the 

maximum daily increase rate in the world which peaked around 6.3°C (Fig. 2F). A few 

previous studies also reported the nonlinear association of temperature with 

transmission severity of COVID-19 using incidence case (Bannister-Tyrrell et al., 2020; 

Bu et al., 2020; Chen et al., 2020; J. Wang et al., 2020) or growth rate (Ficetola & 



Rubolini, 2020; Notari, 2020), but the results were inconsistent. A few studies indicated 

that the optimal temperature for SARS-CoV2 incidence of new cases was at 8.07 °C 

(Chen et al., 2020) or 8.72°C around the world (J. Wang et al., 2020), and 13~19°C in 

China (Bu et al., 2020). The growth rates peaked at about 5°C in temperate regions in 

the Northern Hemisphere during the outbreak month, while they decreased in warmer 

and colder regions (Ficetola & Rubolini, 2020). Bannister-Tyrrell et al. (2020) found 

COVID-19 incidence had a belled-shaped association around 1°C (Bannister-Tyrrell et 

al., 2020). Notari (2020) reported that temperature had a negative association with early 

exponential growth with a weak peak at about 7.7±3.6°C (Notari, 2020). In our study, 

a strong dome-shaped association between the maximum daily increase rate of the 

world and air temperature that peaked around 6.3°C was identified, which was close to 

those (Ficetola & Rubolini, 2020; Notari, 2020) using similar measures, but the dome-

shaped association was much stronger in our study. Our peak temperature was close to 

those using incidences of COVID-19 (Chen et al., 2020; J. Wang et al., 2020), however, 

after excluding the spatial autocorrelation and human factors, we did not find any 

significant association of the number of cumulative cases of COVID-19 with climate 

factors in China, USA, Europe and the world, although it had significant association 

with human factors (SI Appendix, Table S4). 

The dome-shaped relation of organisms with environmental factors is reasonable 

based on the Law of Tolerance (Shelford, 1931). Chin et al. (2020) reported that the 

virus of COVID-19 was highly stable with only a 0.6-log unit reduction at 4°C in 14 

days, with a 3-log unit reduction at 22°C after 7 days and no detection at 14 days, with 

a 3-log unit reduction at 37°C after 1 day and no virus detected afterwards (Chin et al., 

2020). This observation supports our observation on the peak temperature of 6.3°C of 

the virus of COVID-19. Although the virus could be well preserved in cold conditions, 



the lower transmission ability under 6.3°C was likely caused by human behaviors. In 

cold conditions, people are not as active as in warm conditions, which did not favor the 

person to person transmission of COVID-19. Besides, in cold conditions, droplets can 

freeze, which prevent their spreading in the air.   

The impacts of climate on control efficiency have never been assessed before. We 

found air temperature showed a significant and negative association with the control 

efficiency (𝑏𝑖) in China and Europe (Fig. 2G, Table 1). High precipitation showed a 

significant and positive association with the control efficiency (𝑏𝑖) in China and the 

world (Table 1). These results indicated that cold and wet climate decreased the control 

efficiency (Note: smaller 𝑏𝑖  indicates the better control efficiency) on COVID-19. 

This is likely because cold and wet conditions did not favor human movement outside, 

thus the lockdown and social distancing measures may have worked better in warm and 

dry conditions rather than in cold and dry conditions. Another possible explanation 

could be that in cold conditions, people and facilities for disease control or prevention 

may not be easily mobilized. The efficiency of detection, disinfection or sanitation may 

be low in cold condition. Therefore, although the COVID-19 virus had an optimal 

temperature around 6.3°C, the poor control efficiency in cold conditions resulted in the 

general negative association of temperature with the average daily increase rate.  

Our results suggest that climate may affect the transmission of COVID-19 directly 

on the viability of the virus, and indirectly through affecting human behavior as well as 

the control efficiency. Human immunity might be lower under cold conditions, which 

makes them more susceptible to the virus (Eccles, 2002; Kudo et al., 2019), however, 

human movement and contact may be low in cold conditions, which might reduce the 

risk of transmission. The virus appears unstable with high UV irradiation and high 

temperatures (Duan et al., 2003; Lowen & Steel, 2014; Tellier, 2009), but it may also 



be arrested in cold condition; thus extreme conditions would make it hard for the virus 

to survive or spread in cough droplets of infected patients or on the surfaces of 

contaminated goods. Besides, the control efficiency would be high in warm conditions 

but low in cold conditions, which might contribute to the observed association between 

climate and transmission ability.  

 

Impacts of human factors 

The effects of human factors on the spread of COVID-19 and control efficiency have 

been widely modelled in previous studies (e.g. (Gilbert et al., 2020; Hellewell et al., 

2020; Tian et al., 2020), but evidence using empirical data is still limited. In this study, 

we found the founding population size of early reported COVID-19 patients showed a 

consistent, significant and positive association with the maximum daily increase rate 

(𝑎𝑖) in China, USA, Europe and the world (Table 1). It had a positive association with 

the control efficiency (𝑏𝑖) in China and the world (but a negative association in Europe). 

These results suggested that human migration increased the transmission severity of 

COVID-19. A higher number of early reported COVID-19 cases stimulated the increase 

of control efforts in Europe, but not in China and the world. The population size of a 

location showed a consistent, significant and positive association with the average daily 

increase rate (𝑟𝑖) and the control efficiency (𝑏𝑖) of COVID-19 in the world (Table 1), 

indicating countries or regions with large susceptible population suffered high infection 

of COVID-19 but with a smaller control efficiency (Note: smaller 𝑏𝑖  indicated the 

higher control efficiency). The spread of disease is very similar to the biological 

invasion defined by the Allee effect (Allee, Park, Emerson, Park, & Schmidt, 1959). 

The Allee effect suggested that founding population size was essential for the successful 

establishment of alien species (Liebhold & Bascompte, 2003). It has been widely 



supported in studies of biological invasions (Courchamp, Clutton-Brock, & Grenfell, 

1999; Stephens & Sutherland, 1999), as well as by our observations. 

 

Implications for prevention  

Our study suggested that both human and climate factors determined the spread of 

COVID-19 by altering the transmission ability of COVID-19 and its control 

efficiency. Temperature showed distinct effects on the early (without human 

intervention) and later stage (under human intervention) transmission of COVID-19. 

Based on our results in Fig. 2F, C, we projected the influences of seasonal change of 

temperature on the contagious risk of early transmission without or with little human 

intervention (Fig. 3A-D), and the later transmission under human intervention (SI 

Appendix, Fig. S1) in the world. Summer seasons would decrease of the early 

transmission risk of COVID-19 from low-latitude or low-altitude regions but increase 

the transmission risk in the high-latitude or high-altitude regions. The summer season 

would decrease the late transmission ability of the northern hemisphere but increase 

that of the southern hemisphere.  

We plotted the 6.3°C isocline of COVID-19 in January, April, July and October in 

Fig. 3E. It is notable that countries or regions with heavy infection rates of COVID-19 

are mostly located within the isoclines of 6.3°C (the optimal temperature for COVID-

19) from October to January. From winter, spring to summer, the 6.3°C isocline 

moves from subtropical to temperate, arctic zone; while from summer, autumn to 

winter, it back moves from arctic to temperate, subtropical zone (Fig. 3E). The 

seasonal movement of the 6.3°C isocline of COVID-19 along latitude or altitude 

increases the transmission risk of COVID-19 in different climate zones. Phylogenetic 

analysis suggested that the novel coronavirus was a close relation with the 



coronavirus of Middle East Respiratory Syndrome (MERS) and Severe Acute 

Respiratory Syndrome (SARS) (T.-n. O. J. F. E. I. Team & Li, 2020; Xu et al., 2020; 

Zhu et al., 2020). The whole genome of the COVID-19 virus has a high similarity 

(96%) with that of a coronavirus isolated from bats in Yunnan, China (Zhu et al., 

2020). However, the natural hosts carrying the virus of COVID-19 and their habitats 

remain unclear. The area with the 6.3°C isocline between October and January should 

be investigated as a priority in the search for the natural hosts of COVID-19, their 

habitats and migration routes.    

 

Our study indicated that both human and climate factors played a significant role in the 

spread of COVID-19. It is not wise to rely upon climate factors to control this dangerous 

virus. Human intervention, such as lockdown and travel restrictions at the epicenter, as 

well as identification and isolation of infected patients or people with close contact, 

have been demonstrated to be successful in preventing the spread of COVID-19 (Tian 

et al., 2020). Thus, human intervention is essential to contain the rapid expansion of 

COVID-19 around the world. More efforts and collaboration are urgently needed in 

containing the spread of COVID-19 around the world.  

 

METHODS 

Epidemic data 

We obtained data of cumulative cases of COVID-19 in cities and prefectures in China 

from 1 January to 11 March from daily reports or announcements by each provincial or 

prefectural health commission (making up 99.23%), the World Health Organization 

(making up 0.61%), and news from official media such as the CCTV news channel 

(making up 0.10%), and announcements by local governments (0.06%). Data consisted 



of the following information: reference, date, province, prefecture, coordinates, and 

cumulative case. The latitude and longitude coordinates of geographical locations were 

assigned by their capital site using a Baidu map (lbsyun.baidu.com). The data covered 

each prefecture of 27 provinces and autonomous regions, each district or county of 4 

central municipal cities (i.e. Beijing, Tianjin, Shanghai, and Chongqing), 2 special 

administrative regions (Hong Kong and Macau SAR) and Taiwan. Cumulative cases in 

China after 11 March were not used because the daily increase rate after 11 March was 

smaller than 1%, indicating the approximate end of an epidemic. This data selection 

(the same as the other time series below) avoided biased estimation on the average, 

maximum daily increase rate and control efficiency with excessive data when the 

epidemic was close to an end. 

We obtained data of cumulative COVID-19 cases of other countries, territories or 

regions from 20 January to 4 April from COVID-2019 situation reports by the World 

Health Organization on their website 

(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-

reports/). We obtained the cumulative cases of COVID-19 of 50 states and the District 

of Colombia in the United States from 22 January to 4 April from Systems Science and 

Engineering (CSSE) at Johns Hopkins University (JHU) 

(https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467

b48e9ecf6) (Dong, Du, & Gardner). Data consisted of date, country/territory/region, 

coordinates, cumulative cases and transmission category. The coordinates were 

assigned by referring to the capital city of each country or region using Google maps 

(www.google.com/maps/). For China, Japan, South Korea and Thailand, there are some 

missing cumulative case values (making up 0.71%); we assigned these missing values 

with those of the previous day. The model analysis was conducted separately for China, 

https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6


the USA, Europe, and the rest of the world, which represent the incidence of COVID-

19 of three large epicenters and the world (Fig. 1, Table 1, SI Appendix, Table S1-3). 

Similarly, cumulative case data was not used for countries or regions when the daily 

increase rate was smaller than 1%. Cumulative cases were normalized by (average 

value-minimum value)/range of the value for easily demonstrating the growth patterns 

of different locations in Fig. 1, whereas the original data of cumulative cases was used 

for modeling analysis. It is notable that our data had various spatial resolution from 

prefecture to state or countries. However, spatial resolution was relatively comparable 

within China, USA and Europe.  

 

Anthropogenic and climate proxy data 

The human population size (𝐻 ) of a city or prefecture was obtained from China 

Population & Employment Statistics Yearbook 2018 complied by the Population and 

Employment Statistics Division, National Bureau of Statistics of China. The human 

population size of countries outside China was obtained from the World Bank 

(https://data.worldbank.org/indicator/SP.POP.TOTL). Gridded human population 

density was obtained from the Socioeconomic Data and Applications Center (SEDAC) 

(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-admin-unit-center-points-

population-estimates-rev11) (Center for International Earth Science Information 

Network, 2018). Prefectural GDP in China was obtained from the provincial and 

national bureau of statistics in China, GDP of each state and District of Columbia in the 

USA was obtained from the U.S. Bureau of Economic Analysis 

(https://www.bea.gov/data/gdp/gdp-state) and the GDP of each country or region was 

obtained from World Bank (https://data.worldbank.org/indicator/NY.GDP.PCAP.CD). 

Human population size was log transformed (with base = e) to make the data normally 

https://data.worldbank.org/indicator/SP.POP.TOTL


distributed.  

The daily average air temperature and 20:00-20:00 cumulative precipitation (during 

2010-2019) from Chinese surface meteorological stations in China were obtained from 

the dataset of daily surface observation values 

(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.htm

l) (Ren et al., 2020), which was derived from daily report by 699 meteorological stations. 

The temperature and precipitation of each location (a sum of 333 locations in this study) 

in China was assigned by the temperature and precipitation of the nearest 

meteorological station. The average daily air temperature ( 𝑇 ) and average daily 

precipitation (𝑃) of an epidemic of a location was calculated by assigning the date of 

incidence of COVID-19 to the date of corresponding month of the historical data during 

2010-2019.  

 

We obtained monthly average temperature and precipitation (during 1970-2000) with a 

spatial resolution of 5 minutes from Worldclim 2 as climate proxy of countries except 

for China (Fick & Hijmans, 2017), the temperature and precipitation of each country 

was assigned by the temperature and precipitation of its capital city. Monthly 

precipitation was transferred to daily precipitation by dividing by 30 days in further 

analysis. 

 

Estimation of transmission ability and control efficiency of COVID-19 

We used a logistic model to estimate the transmission parameters of COVID-19 by 

following our previous study on SARS (Zhang, Sheng, Ma, & Li, 2004). The logistic 

model is widely used for studying population dynamics of animals (Krebs, 2014). The 

number of cumulative cases of COVID-19 can be well fitted as follow:  



𝑁𝑡+1  = 𝑒𝑟𝑚(1−
𝑁𝑡
𝐾

)
 

𝑁𝑡 was the number of cumulative cases at day 𝑡, 𝐾 was the maximum cumulative 

cases of COVID-19 patients. The daily increase rate (𝑟𝑡) of the number of cumulative 

cases of patients was defined as follow: 

𝑟𝑡 = ln (
𝑁𝑡+1

𝑁𝑡
) = 𝑟𝑚(1 −

𝑁𝑡

𝐾
). 

Thus, the daily increase rate should be negatively associated with the number of 

cumulative cases of patients under human intervention: 

𝑟𝑡  =  𝑎 −  𝑏𝑁𝑡  -------------------------------(1) 

Here, 𝑎, 𝑏 are constants, and all > 0. a represents the maximum daily increase rate 

(𝑟𝑚 ) without human intervention, 𝑏  represents the control efficiency under human 

intervention.  

Because the mean incubation period of COVID-19 patients was estimated to be 5.2 

days (Li et al., 2020), and the incubation time of SARS was about 5 or 6.4 days (Lipsitch 

et al., 2003), we defined the number of cumulative cases of COVID-19 of a location in 

the first week as the founding population size (𝐹) of early reported COVID-19 reported 

cases. We removed data of cumulative cases when the daily increase rate was less than 

1% of the cumulative cases, intending to remove excessive data after the approximate 

end of an epidemic. We estimated the transmission parameters by using equation 1 and 

data of cumulative cases of an epidemic of a location covering the period from the 7th 

day to the date of last observation or when the daily increase rate was less than 1% of 

the cumulative cases. Five locations (making up 0.86% of the data) with 𝑎  < 0 

(indicating minus maximum daily increase rate due to small sample size, no biological 

meaning) was removed in the analysis. A total of 578 time series of cumulative cases 

of COVID-19 from China (n = 333, 1 January- 11 March), USA (n = 51, 22 January- 4 

April), Europe (n = 52, 25 January- 4th April) and the rest of world (n = 142, 20 January- 



4 April) was constructed for estimating the transmission parameters (Fig. 1). 

 

Statistical Analysis  

The process of a virus invading a new place is likely similar to the biological invasion 

of alien species. The founding population is very essential for the successful invasion 

as defined by the Allee effect (Allee et al., 1959). Besides, the population size and 

climate factors may also play a significant role in affecting the spread of COVID-19 

both directly and indirectly. Thus, we assumed that the transmission parameters (𝑟𝑖, 𝑎𝑖, 

𝑏𝑖) should be determined by the founding population size (𝐹𝑖), human population size 

of a location (𝐻𝑖), air temperature (𝑇𝑖) and precipitation (𝑃𝑖) in an 𝑖th location. 𝑟𝑖, 𝑎𝑖, 

and 𝑏𝑖 represent the average daily increase rate of cumulative cases, maximum daily 

increase rate, and control efficiency of COVID-19, respectively. 𝑟𝑖  represents the 

transmission ability of COVID-19 under human intervention. 𝑎𝑖  represents the 

maximum transmission ability (𝑟𝑚 ) without human intervention. 𝑏𝑖  represents the 

control efficiency under human intervention. Because GDP per capita, population 

density had strong correlation with the population size (r = 0.67 for China, r = 0.84 for 

USA), thus, we only used population size for analysis.  

GAMs were used to model the effects of the founding population size (𝐹𝑖), human 

population size (𝐻𝑖), and climate factors (air temperature 𝑇𝑖 and precipitation 𝑃𝑖) on 

the average daily increase rate (𝑟𝑖 ), maximum daily increase rate (𝑎𝑖 ), and control 

efficiency (𝑏𝑖) in the 𝑖th location by following (Wood, 2011). A Gaussian GAMs was 

firstly fitted by using a linear regression formula: 

Y = 𝑎 + 𝑏𝐹𝑖 + 𝑐𝑖𝐻𝑖 + 𝑑𝑖𝑇𝑖 + 𝑒𝑖𝑃𝑖 + 𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡)+𝜀𝑖  ------ (2) 

Here, Y  represents the three transmission parameters (𝑟𝑖 , 𝑎𝑖 , 𝑏𝑖 ) separately. To 

examine the potential nonlinear effect of climate factors, we fitted the data using the 



following model: 

Y = 𝑎 + 𝑏𝑖𝐹𝑖 + 𝑐𝑖𝐻𝑖 + 𝑠(𝑇𝑖) + 𝑠(𝑃𝑖) + 𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡)+𝜀𝑖  ------ (3) 

Here, 𝑠(𝑇𝑖) , 𝑠(𝑃𝑖)  and 𝑠(𝐿𝑜𝑛, 𝐿𝑎𝑡)  were 2D smooth function (with k value, 

dimension of the basis = 4) for removing the effects of spatial autocorrelation. 𝜀𝑖 was 

uncorrelated random errors of zero mean and finite variance. To obtained model 

robustness as to the effects of human and climate factors on the transmission of 

COVID-19, we conducted the modeling analysis by using the cumulative cases > 0, 10, 

20 and 30 infected cases of COVID-19 (SI Appendix, Table S2, S3). Only significant 

effects of a factor on a transmission parameter detected in two modeling analyses were 

selected for making conclusions and discussions (Table 1, SI Appendix, Table S1). 

Using equation (2), (3), we also analyzed the association of the number of cumulative 

cases with human and climate factors (SI Appendix, Table S4). 

Pearson’s correlation analysis was introduced to detect significant correlations 

among variables (SI Appendix, Fig. S2-S5). Loess regression was introduced to show 

the changing trend of cumulative cases of COVID-19 in Fig. 1E-H. The relation of 

average or daily increase rate and control efficiency with climate factors were shown 

in Fig. S6-7 (not partial relation). For variables with strong and significant correlations 

(r < -0.6 or r > 0.6; p < 0.05) with the other variables, only one variable with the largest 

correlation coefficient to transmission parameters was selected to avoid the potential 

collinearity effect in model analysis. GAM was carried out using the mgcv library (v. 

1.8-15) (Wood, 2011) in R (v. 3.6.1). Associations of the average daily increase rate or 

the number of cumulative cases with environmental variables of each city or prefecture 

were analyzed by using raster (v.2.9-22) and rgdal (v.1.4-4) libraries in R (v. 3.6.1) 

(Bivand, Keitt, & Rowlingson, 2016). Correlation analysis, linear regression, and loess 

regression was performed with the stats library (v. 3.6.1) in R (v. 3.6.1) (R. C. Team, 



2019). 
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Figure legends 129 

 130 

Figure 1. The number of cumulative cases of COVID-19 from 1 January to 4 April, 131 

2020 in Europe (A), China (B), USA (C), and the world (D), and the normalized 132 

time series of cumulative cases of each location in China (E), USA (F), Europe (G), 133 

and rest of the world (H). A-D. The spread of COVID-19 around the world. The color 134 

of the circles shows the time of the first reported coronavirus case to the recipient 135 

location (number of days from 1 January; the earlier, the darker). The relative size of 136 

the circle shows the number of patients of the location represented by the capital of the 137 

country of administrative regions. E. Time series of the normalized cumulative cases of 138 

different cities or prefectures in China. F. Time series of the normalized cumulative 139 

cases of different states in USA. G. Time series of the normalized cumulative cases of 140 

various countries in Europe. H. Time of the normalized cumulative cases of other 141 

countries or regions in the world excluding China, USA and Europe. The solid red line 142 

indicates loess regression with span = 0.25. The dash grey line indicates temporal 143 

change of cumulative cases of COVID-19 for a given location. The date with first report 144 

of COVID-19 patient was set to zero. 145 

 146 

Figure 2. Significant partial effects of temperature and precipitation on daily 147 

increase rate (𝒓𝒊), maximum daily increase rate (𝒂𝒊), and control efficiency (𝒃𝒊) 148 

(Note: smaller bi means better control efficiency) based on results of the nonlinear 149 

models using Eq.3 after excluding the confounding factors of humans and spatial 150 

autocorrelation. A-C. Effects of temperature on 𝑟𝑖 in China, Europe and the world. 151 

D. Effects of precipitation on 𝑟𝑖 in China. E-F. Effects of temperature on 𝑎𝑖 in Europe 152 

and the World. G. Effects of temperature on 𝑏𝑖 in China. H-I. Effects of precipitation 153 



on 𝑏𝑖 in China and the World. Dashed lines are 95% nominal confidence bands. Solid 154 

lines are statistically significant (*p < 0.05, ** p < 0.05, *** p < 0.05). The country of 155 

region was shown in the top-left corner. The short and black vertical lines along x axis 156 

indicated the data distribution of temperature (°C) or precipitation (mm/day). 157 

 158 

Figure 3. Seasonal projected partial effects of air temperature on the maximum 159 

daily increase rate (𝒂𝒊) without human intervention (A-D) and 6.3°C isoclines of 160 

COVID-19 in January, April, July and October (E). Colors (green to red: negative 161 

to positive) in Panel A - D indicate the temperature effects on maximum daily increase 162 

rate (𝑎𝑖) in different months, colors of isoclines in Panel E indicated different months. 163 
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 167 

Figure 1. The number of cumulative cases of COVID-19 from 1 January to 4 April, 168 

2020 in Europe (A), China (B), USA (C), and the world (D), and the normalized 169 

time series of cumulative cases of each location in China (E), USA (F), Europe (G), 170 

and rest of the world (H). A-D. The spread of COVID-19 around the world. The color 171 

of the circles shows the time of the first reported coronavirus case to the recipient 172 

location (number of days from 1 January; the earlier, the darker). The relative size of 173 

the circle shows the number of patients of the location represented by the capital of the 174 

country of administrative regions. E. Time series of the normalized cumulative cases of 175 



different cities or prefectures in China. F. Time series of the normalized cumulative 176 

cases of different states in USA. G. Time series of the normalized cumulative cases of 177 

various countries in Europe. H. Time of the normalized cumulative cases of other 178 

countries or regions in the world excluding China, USA and Europe. The solid red line 179 

indicates loess regression with span = 0.25. The dash grey line indicates temporal 180 

change of cumulative cases of COVID-19 for a given location. The date with first report 181 

of COVID-19 patient was set to zero. 182 

 183 

 184 
Figure 2. Significant partial effects of temperature and precipitation on daily 185 

increase rate (𝒓𝒊), maximum daily increase rate (𝒂𝒊), and control efficiency (𝒃𝒊) 186 

(Note: smaller bi means better control efficiency) based on results of the nonlinear 187 

models using Eq.3 after excluding the confounding factors of humans and spatial 188 

autocorrelation. A-C. Effects of temperature on 𝑟𝑖 in China, Europe and the world. 189 



D. Effects of precipitation on 𝑟𝑖 in China. E-F. Effects of temperature on 𝑎𝑖 in Europe 190 

and the World. G. Effects of temperature on 𝑏𝑖 in China. H-I. Effects of precipitation 191 

on 𝑏𝑖 in China and the World. Dashed lines are 95% nominal confidence bands. Solid 192 

lines are statistically significant (*p < 0.05, ** p < 0.05, *** p < 0.05). The country of 193 

region was shown in the top-left corner. The short and black vertical lines along x axis 194 

indicated the data distribution of temperature (°C) or precipitation (mm/day). 195 

 196 

 197 

 198 
Figure 3. Seasonal projected partial effects of air temperature on the maximum 199 

daily increase rate (𝒂𝒊) without human intervention (A-D) and 6.3°C isoclines of 200 

COVID-19 in January, April, July and October (E). Colors (green to red: negative 201 

to positive) in Panel A - D indicate the temperature effects on maximum daily increase 202 

rate (𝑎𝑖) in different months, colors of isoclines in Panel E indicated different months. 203 

 204 
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Table 1 Significant associations of the average daily increase rate (𝒓𝒊) of cumulative cases, the maximum daily increase rate (𝒂𝒊), and the 206 

control efficiency (𝒃𝒊) with the founding population size of COVID-19 patients during the initial 7 days after the first reported patient 207 

(𝑭𝒊), human population size of a location (𝑯𝒊), climate factors (temperature, 𝑻𝒊, and precipitation, 𝑷𝒊), and spatial autocorrelation 208 

based on analyses using Equation 2 (linear model). + denotes the significant effects of spatial autocorrelation or temperature (p < 0.05), NS 209 

denotes non-significant effects. * p < 0.05, ** p < 0.01, *** p < 0.001. To obtain robust results, the linear model for each country or region was 210 

repeated four times with the cumulative cases >0, 10, 20, and 30, respectively (SI Appendix, Table S2). Models presented here were based on the 211 

observation that human or climate variables should have significant association with the average daily increase rate (𝑟𝑖), the maximum daily 212 

increase rate (𝑎𝑖) or the control efficiency (𝑏𝑖) in at least two repeated models from SI Appendix, Table S2. 213 

 214 

Cumulative 

cases > 
Region 

Transmission 

parameters 

Founding 

population 

Human 

population 
Temperature Precipitation 

Spatial auto 

correlation 

Variance 

explained 

Sample 

size 

0 China 𝑟𝑖 -1.80E-05 0.0025 -0.0074 *** -0.013 * *** 8.48% 333 

0 USA 𝑟𝑖 0.00018 0.0045 0.00029 -0.0021 NS 14.76% 51 

0 Europe 𝑟𝑖 -0.00012 0.0062 . -0.0066 * -0.0091 * 23.15% 52 



0 Global 𝑟𝑖 -5.30E-06 0.0074 *** -0.0015 ** 0.0026 *** 23.61% 578 

0 China 𝑎𝑖 0.00099 *** -0.012 0.0032 -0.019 NS 10% 333 

0 USA 𝑎𝑖 0.0028 *** -0.025 . 0.0038 -0.0023 NS 45.53% 51 

0 Europe 𝑎𝑖 0.0032 *** -0.0014 0.0064 -0.019 NS 32.94% 52 

30 Global 𝑎𝑖 0.0011 *** -0.0086 * -0.0025 * 0.00085 *** 40.65% 328 

20 China 𝑏𝑖 3.7e-05 *** 0.0018 *** -0.00041 * 0.0016 * NS 24.20% 177 

0 USA 𝑏𝑖 -3.50E-06 0.00029 *** -4.60E-05 6.20E-05 * 49.06% 51 

0 Europe 𝑏𝑖 -9.6e-06 * 9.8e-05 * -5.5e-05 * -4.80E-06 ** 37.74% 52 

0 Global 𝑏𝑖 9.7e-05 *** 0.0037 *** -6.50E-05 0.0021 *** *** 21.94% 578 
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Correlation between the transmission severity and human/climate factors 

Using Pearson’s correlation analysis on data from 1 January to 11 March in China, we 

found the average daily increase rate was negative correlated with temperature (r = -

0.11, p < 0.05), the maximum daily increase rate was positive correlated with founding 

population size during the initial 7 days after the first patient (r = 0.28, p < 0.001), the 

control efficiency was positive correlated with founding population size during the 

initial 7 days after the first patient (r = 0.21, p < 0.001), human population (r = 0.19, p 

< 0.001), and precipitation (r = 0.24, p < 0.001) (Fig. S2). 

 

Using Pearson’s correlation analysis on data from 20 January to 4 April in the USA, we 

found the maximum daily increase rate was positive correlated with founding 

population size during the initial 7 days after the first patient (r = 0.63, p < 0.001), the 

control efficiency was positive correlated with human population (r = 0.41, p < 0.01), 

and precipitation (r = 0.40, p < 0.01) (Fig. S3). 

 

Using Pearson’s correlation analysis on data from 20 January to 4 April in Europe, we 

found the maximum daily increase rate was positive correlated with founding 

population size during the initial 7 days after the first patient (r = 0.49, p < 0.001), the 

control efficiency was positive correlated with founding population size during the 

initial 7 days after the first patient (r = -0.33, p < 0.05) (Fig. S4). 

 

Using Pearson’s correlation analysis on data from 1 January to 4 April for the world 

data, we found the average daily increase rate was positive correlated with precipitation 

(r = 0.11, p < 0.01), maximum daily increase rate was positive correlated with founding 

population size during the initial 7 days after the first patient (r = 0.30, p < 0.001), but 



negative correlated with human population (r = -0.14, p < 0.01), temperature (r = -0.22, 

p < 0.001), and precipitation (r = -0.12, p < 0. 01), the control efficiency was positive 

correlated with founding population size during the initial 7 days after the first patient 

(r = 0.15, p < 0.001), temperature (r = 0.10, p < 0.05), and precipitation (r = 0.19, p < 

0.001) (Fig. S5). 

 

 

  



 

Fig. S1. Seasonal projected partial effects of air temperature on the average daily 

increase rate (𝒓𝒊) under human intervention in January (A), April (B), July (C) 

and October (D). Colors (green to red: negative to positive) indicate the temperature 

effects on average daily increase rate (𝑟𝑖). 

 

  



 
Fig. S2. Correlation of the average daily increase rate (𝒓𝒊) of cumulative cases, 

maximum daily increase rate (𝒂𝒊), and control efficiency (𝒃𝒊) of COVID-19 with 

founding population size during the initial 7 days after the first patient, human 

population, and climate factors (temperature and precipitation) in China. 

 



 

Fig. S3. Correlation of the average daily increase rate (𝒓𝒊) of cumulative cases, 

maximum daily increase rate (𝒂𝒊), and control efficiency (𝒃𝒊) of COVID-19 with 

founding population size during the initial 7 days after the first patient, human 

population, and climate factors (temperature and precipitation) in the USA. 

 



 
Fig. S4. Correlation the average daily increase rate (𝒓𝒊) of cumulative cases, 

maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊) of COVID-19 with 

founding population size during the initial 7 days after the first patient, human 

population, and climate factors (temperature and precipitation) in Europe. 

 



 

Fig. S5. Correlation of the average daily increase rate (𝒓𝒊) of cumulative cases, 

maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊) of COVID-19 with the 

founding population size during the initial 7 days after the first patient, human 

population, and climate factors (temperature and precipitation) in the world. 

 



 

Fig. S6. Relationship of temperature with the average daily increase rate (𝒓𝒊 ), 

maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊) of COVID-19 in China 

(A, E, I), USA (B, F, J), Europe (C, G, K), and the world (D, H, L). The blue lines 

indicate the loess regression with span = 1. 

  



 

Fig. S7. Relationship of precipitation with the average daily increase rate (𝒓𝒊 ), 

maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊) of COVID-19 in China 

(A, E, I), USA (B, F, J), Europe (C, G, K), and the world (D, H, L). The blue lines 

indicate loess regression with span = 1. 

 

  



Table S1 Significant associations of average daily increase rate (𝒓𝒊) of cumulative cases, maximum daily increase rate (𝒂𝒊), control 

efficiency (𝒃𝒊) of COVID-19 with founding population size during the initial 7 days after the first patient (𝑭𝒊), human population, 

climate factors (temperature and precipitation), and spatial autocorrelation. Bold values indicated the coefficients represent the significant 

effects (p < 0.05). + denotes the significant effects of spatial autocorrelation or temperature (p < 0.05), ns denotes non-significant effects. NA 

denotes not available (* p < 0.05, ** p < 0.01, *** p < 0.001). The significant association was extracted from Table S3. Models presented here 

were based on the observation that human or climate variables should have significant association with the average daily increase rate (𝑟𝑖), the 

maximum daily increase rate (𝑎𝑖) or the control efficiency (𝑏𝑖) in at least two repeated models from Table S3. 

Cumulative 

cases > 
Region 

Transmission 

parameters 

Founding 

population 

Human 

population 
Temperature Precipitation 

Spatial 

auto 

correlation 

Variance 

explained 

Sample 

size 

0 China Increase rate (𝑟𝑖) -1.80E-05 0.0025 *** * *** 8.48% 333 

0 US Increase rate (𝑟𝑖) 0.00015 0.0052 NS NS NS 17.02% 51 

0 Europe Increase rate (𝑟𝑖) 0.00027 0.007 * ** NS ** 37.02% 52 

0 Global Increase rate (𝑟𝑖) -5.30E-06 0.0074 *** ** NS *** 23.61% 578 

0 China 
Maximum 

increase rate (𝑎𝑖) 
0.001 *** -0.011 NS NS NS 10.98% 333 

0 US 
Maximum 

increase rate (𝑎𝑖) 
0.0026 *** -0.022 . NS NS NS 50.91% 51 



0 Europe 
Maximum 

increase rate (𝑎𝑖) 
0.0035 *** -0.00072 * NS NS 41.31% 52 

10 Global 
Maximum 

increase rate (𝑎𝑖) 
0.0011 *** -0.0088 * ** NS *** 27.89% 578 

0 China 
Control efficiency 

(𝑏𝑖) 
4.6e-05 ** 0.0037 *** *** * * 24.39% 252 

0 US 
Control efficiency 

(𝑏𝑖) 
-2.70E-06 0.00028 *** NS NS NS 52.14% 51 

0 Europe 
Control efficiency 

(𝑏𝑖) 
-8.7e-06 . 0.00011 ** NS NS ** 54.11% 52 

0 Global 
Control efficiency 

(𝑏𝑖) 
8.6e-05 *** 0.0036 *** NS *** *** 24.20% 578 

 

  



Table S2 Associations of average daily increase rate (𝒓𝒊) of cumulative cases, maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊), of 

COVID-19 with founding population size during the initial 7 days after the first patient (𝑭𝒊), human population, climate factors 

(temperature and precipitation), and spatial autocorrelation based on analyses using Equation 2 (linear model) for locations with more 

than 0/10/20/30 cases. Bold values indicated the coefficients represent the significant effects (p < 0.05). + denotes the significant effects of 

spatial autocorrelation or temperature (p < 0.05), ns denotes non-significant effects. NA denotes not available (* p < 0.05, ** p < 0.01, *** p < 

0.001). 

Cumulative 

cases > 
Region 

Transmission 

parameters 

Founding 

population 

Human 

population 
Temperature Precipitation 

Spatial auto 

correlation 

Variance 

explained 
Sample size 

0 China ri -1.80E-05 0.0025 -0.0074 *** -0.013 * *** 8.48% 333 

10 China ri -4.70E-05 -0.0014 -0.0035 * -0.0051 NS 6.45% 252 

20 China ri -1.10E-05 0.0048 -0.0036 * -0.0018 NS 7.53% 177 

30 China ri -2.20E-06 0.0076 -0.0034 . 0.00041 NS 8.78% 134 

0 USA ri 0.00018 0.0045 0.00029 -0.0021 NS 14.76% 51 

10 USA ri 0.00018 0.0045 0.00029 -0.0021 NS 14.76% 51 

20 USA ri 0.00018 0.0045 0.00029 -0.0021 NS 14.76% 51 

30 USA ri 0.00018 0.0045 0.00029 -0.0021 NS 14.76% 51 

0 Europe ri -0.00012 0.0062 . -0.0066 * -0.0091 * 23.15% 52 

10 Europe ri -0.00012 0.0062 . -0.0066 * -0.0091 * 23.15% 52 

20 Europe ri -0.00012 0.0062 . -0.0066 * -0.0091 * 23.15% 52 

30 Europe ri -0.00012 0.0062 . -0.0066 * -0.0091 * 23.15% 52 

0 Global ri -5.30E-06 0.0074 *** -0.0015 ** 0.0026 *** 23.61% 578 

10 Global ri -7.20E-05 0.0053 ** -0.0016 *** 0.0022 *** 34.28% 467 



20 Global ri -5.10E-05 0.0048 ** -0.0011 * 0.0024 *** 43.62% 376 

30 Global ri -6.60E-05 0.0049 ** -0.0013 ** 0.0025 *** 42.16% 328 

0 China ai 0.00099 *** -0.012 0.0032 -0.019 NS 10% 333 

10 China ai 0.00092 *** -0.008 0.0055 -0.0073 NS 11.17% 252 

20 China ai 0.00081 *** -0.006 -0.0046 -0.018 NS 19.86% 177 

30 China ai 0.00081 *** -0.0098 -0.011 . -0.019 NS 21.55% 134 

0 USA ai 0.0028 *** -0.025 . 0.0038 -0.0023 NS 45.53% 51 

10 USA ai 0.0028 *** -0.025 . 0.0038 -0.0023 NS 45.53% 51 

20 USA ai 0.0028 *** -0.025 . 0.0038 -0.0023 NS 45.53% 51 

30 USA ai 0.0028 *** -0.025 . 0.0038 -0.0023 NS 45.53% 51 

0 Europe ai 0.0032 *** -0.0014 0.0064 -0.019 NS 32.94% 52 

10 Europe ai 0.0032 *** -0.0014 0.0064 -0.019 NS 32.94% 52 

20 Europe ai 0.0032 *** -0.0014 0.0064 -0.019 NS 32.94% 52 

30 Europe ai 0.0032 *** -0.0014 0.0064 -0.019 NS 32.94% 52 

0 Global ai 0.0012 *** -0.0077 * -0.00017 -0.00075 *** 26.04% 578 

10 Global ai 0.0012 *** -0.0088 * -0.00047 -0.0012 *** 29.54% 467 

20 Global ai 0.0011 *** -0.0059 . -0.0022 * 0.00034 *** 38.93% 376 

30 Global ai 0.0011 *** -0.0086 * -0.0025 * 0.00085 *** 40.65% 328 

0 China bi 8.5e-05 ** 0.0094 *** -0.00063 0.0063 *** NS 24.79% 333 

10 China bi 5.2e-05 *** 0.0038 *** -0.0013 *** 0.0016 ** 22.25% 252 

20 China bi 3.7e-05 *** 0.0018 *** -0.00041 * 0.0016 * NS 24.20% 177 

30 China bi 2.6e-05 *** 0.0012 ** 0.00024 0.0014 * NS 25.15% 134 

0 USA bi -3.50E-06 0.00029 *** -4.60E-05 6.20E-05 * 49.06% 51 

10 USA bi -3.50E-06 0.00029 *** -4.60E-05 6.20E-05 * 49.06% 51 

20 USA bi -3.50E-06 0.00029 *** -4.60E-05 6.20E-05 * 49.06% 51 

30 USA bi -3.50E-06 0.00029 *** -4.60E-05 6.20E-05 * 49.06% 51 



0 Europe bi -9.6e-06 * 9.8e-05 * -5.5e-05 * -4.80E-06 ** 37.74% 52 

10 Europe bi -9.6e-06 * 9.8e-05 * -5.5e-05 * -4.80E-06 ** 37.74% 52 

20 Europe bi -9.6e-06 * 9.8e-05 * -5.5e-05 * -4.80E-06 ** 37.74% 52 

30 Europe bi -9.6e-06 * 9.8e-05 * -5.5e-05 * -4.80E-06 ** 37.74% 52 

0 Global bi 9.7e-05 *** 0.0037 *** -6.50E-05 0.0021 *** *** 21.94% 578 

10 Global bi 5.3e-05 *** 0.0015 *** -4.70E-05 0.00096 ** *** 30.80% 467 

20 Global bi 2.8e-05 *** 0.00056 *** 2.80E-05 0.00051 *** *** 44.89% 376 

30 Global bi 1.9e-05 *** 0.00048 *** 3.80E-05 0.00028 ** *** 48.38% 328 

 

 

  



Table S3 Associations of average daily increase rate (𝒓𝒊) of cumulative cases, maximum daily increase rate (𝒂𝒊), control efficiency (𝒃𝒊) of 

COVID-19 with founding population size during the initial 7 days after the first patient (𝑭𝒊), human population, climate factors 

(temperature and precipitation), and spatial autocorrelation based on analyses using Equation 3 (non-linear model) for locations with 

more than 0/10/20/30 cases. Bold values indicated the coefficients represent the significant effects (p < 0.05). + denotes the significant effects 

of spatial autocorrelation or temperature (p < 0.05), ns denotes non-significant effects. NA denotes not available (* p < 0.05, ** p < 0.01, *** p < 

0.001). 

Cumulative 

cases > 
Region 

Transmission 

parameters 

Founding 

population 

Human 

population 
Temperature Precipitation 

Spatial auto 

correlation 

Variance 

explained 
Sample size 

0 China ri -1.80E-05 0.0025 *** * *** 8.48% 333 

10 China ri -4.70E-05 -0.0014 * NS NS 6.45% 252 

20 China ri -1.10E-05 0.0048 * NS NS 7.53% 177 

30 China ri -2.20E-06 0.0076 NS NS NS 8.78% 134 

0 USA ri 0.00015 0.0052 NS NS NS 17.02% 51 

10 USA ri 0.00015 0.0052 NS NS NS 17.02% 51 

20 USA ri 0.00015 0.0052 NS NS NS 17.02% 51 

30 USA ri 0.00015 0.0052 NS NS NS 17.02% 51 

0 Europe ri 0.00027 0.007 * ** NS ** 37.02% 52 

10 Europe ri 0.00027 0.007 * ** NS ** 37.02% 52 

20 Europe ri 0.00027 0.007 * ** NS ** 37.02% 52 

30 Europe ri 0.00027 0.007 * ** NS ** 37.02% 52 

0 Global ri -5.30E-06 0.0074 *** ** NS *** 23.61% 578 

10 Global ri -7.20E-05 0.0053 ** *** NS *** 34.28% 467 



20 Global ri -5.10E-05 0.0049 ** * NS *** 44.36% 376 

30 Global ri -6.20E-05 0.0049 ** * NS *** 42.36% 328 

0 China ai 0.001 *** -0.011 NS NS NS 10.98% 333 

10 China ai 0.00092 *** -0.008 NS NS NS 11.17% 252 

20 China ai 0.00081 *** -0.0059 NS NS NS 19.88% 177 

30 China ai 0.00081 *** -0.0098 NS NS NS 21.55% 134 

0 USA ai 0.0026 *** -0.022 . NS NS NS 50.91% 51 

10 USA ai 0.0026 *** -0.022 . NS NS NS 50.91% 51 

20 USA ai 0.0026 *** -0.022 . NS NS NS 50.91% 51 

30 USA ai 0.0026 *** -0.022 . NS NS NS 50.91% 51 

0 Europe ai 0.0035 *** -0.00072 * NS NS 41.31% 52 

10 Europe ai 0.0035 *** -0.00072 * NS NS 41.31% 52 

20 Europe ai 0.0035 *** -0.00072 * NS NS 41.31% 52 

30 Europe ai 0.0035 *** -0.00072 * NS NS 41.31% 52 

0 Global ai 0.0011 *** -0.0088 * ** NS *** 27.89% 578 

10 Global ai 0.0011 *** -0.0094 ** ** NS *** 31.83% 467 

20 Global ai 0.0011 *** -0.0061 . *** NS *** 41.53% 376 

30 Global ai 0.0011 *** -0.0087 * ** NS *** 41.92% 328 

0 China bi 6.7e-05 * 0.0088 *** NS *** NS 27.87% 333 

10 China bi 4.6e-05 ** 0.0037 *** *** * * 24.39% 252 

20 China bi 3.7e-05 *** 0.0018 *** * * NS 24.20% 177 

30 China bi 2.5e-05 *** 0.0012 ** NS * NS 27.83% 134 

0 USA bi -2.70E-06 0.00028 *** NS NS NS 52.14% 51 

10 USA bi -2.70E-06 0.00028 *** NS NS NS 52.14% 51 

20 USA bi -2.70E-06 0.00028 *** NS NS NS 52.14% 51 

30 USA bi -2.70E-06 0.00028 *** NS NS NS 52.14% 51 



0 Europe bi -8.7e-06 . 0.00011 ** NS NS ** 54.11% 52 

10 Europe bi -8.7e-06 . 0.00011 ** NS NS ** 54.11% 52 

20 Europe bi -8.7e-06 . 0.00011 ** NS NS ** 54.11% 52 

30 Europe bi -8.7e-06 . 0.00011 ** NS NS ** 54.11% 52 

0 Global bi 8.6e-05 *** 0.0036 *** NS *** *** 24.20% 578 

10 Global bi 4.9e-05 *** 0.0015 *** NS *** *** 33.26% 467 

20 Global bi 2.8e-05 *** 0.00059 *** ** *** *** 48.57% 376 

30 Global bi 1.9e-05 *** 0.00048 *** NS * *** 48.65% 328 

 

  



Table S4 Associations of the number of cumulative cases (N) of COVID-19 with founding population size during the initial 7 days after 

the first patient (𝑭𝒊), human population, climate factors (temperature and precipitation), and spatial autocorrelation based on analyses 

using Equation 2 (linear model) and 3 (non-linear model) for locations with more than 0/10/20/30 cases. Bold values indicated the 

coefficients represent the significant effects (p < 0.05). + denotes the significant effects of spatial autocorrelation or temperature (p < 0.05), ns 

denotes non-significant effects. NA denotes not available (* p < 0.05, ** p < 0.01, *** p < 0.001). 

Equation 
Cumulative 

cases > 
Region 

Founding 

population 

Human 

population 
Temperature Precipitation 

Spatial auto 

correlation 

Variance 

explained 

Sample 

size 

2 (linear) 0 China 9.6 * 420 * -43 21 NS 3.76% 333 

2 (linear) 10 China 9.9 * 650 * -97 2.1 NS 4.51% 252 

2 (linear) 20 China 10 . 970 * -170 -18 NS 5.67% 177 

2 (linear) 30 China 11 1300 * -280 -69 NS 6.51% 134 

2 (linear) 0 US 350 *** 7400 *** -130 -570 NS 48.72% 51 

2 (linear) 10 US 350 *** 7400 *** -130 -570 NS 48.72% 51 

2 (linear) 20 US 350 *** 7400 *** -130 -570 NS 48.72% 51 

2 (linear) 30 US 350 *** 7400 *** -130 -570 NS 48.72% 51 



2 (linear) 0 Europe -400 . 8100 *** -190 620 * 47.28% 52 

2 (linear) 10 Europe -400 . 8100 *** -190 620 * 47.28% 52 

2 (linear) 20 Europe -400 . 8100 *** -190 620 * 47.28% 52 

2 (linear) 30 Europe -400 . 8100 *** -190 620 * 47.28% 52 

2 (linear) 0 Global 29 * 1700 *** 16 440 *** 14.08% 578 

2 (linear) 10 Global 33 * 2100 *** 2.3 440 *** 14.87% 467 

2 (linear) 20 Global 35 * 2300 *** -13 390 ** 15.39% 376 

2 (linear) 30 Global 38 * 2600 *** -62 520 ** 15.52% 328 

3 (non-

linear) 
0 China 9.6 * 420 * NS NS NS 3.76% 333 

3 (non-

linear) 
10 China 9.9 * 650 * NS NS NS 4.51% 252 

3 (non-

linear) 
20 China 9.8 . 970 * NS NS NS 5.85% 177 

3 (non-

linear) 
30 China 9.1 1300 * NS NS NS 7.83% 134 

3 (non-

linear) 
0 US 350 *** 7400 *** NS NS NS 48.72% 51 

3 (non-

linear) 
10 US 350 *** 7400 *** NS NS NS 48.72% 51 



3 (non-

linear) 
20 US 350 *** 7400 *** NS NS NS 48.72% 51 

3 (non-

linear) 
30 US 350 *** 7400 *** NS NS NS 48.72% 51 

3 (non-

linear) 
0 Europe -400 . 8100 *** NS NS * 47.28% 52 

3 (non-

linear) 
10 Europe -400 . 8100 *** NS NS * 47.28% 52 

3 (non-

linear) 
20 Europe -400 . 8100 *** NS NS * 47.28% 52 

3 (non-

linear) 
30 Europe -400 . 8100 *** NS NS * 47.28% 52 

3 (non-

linear) 
0 Global 29 * 1600 *** NS NS *** 14.29% 578 

3 (non-

linear) 
10 Global 31 * 2000 *** NS NS *** 15.20% 467 

3 (non-

linear) 
20 Global 34 * 2300 *** NS NS ** 15.82% 376 

3 (non-

linear) 
30 Global 37 * 2600 *** NS NS ** 15.87% 328 
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