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Abstract

Prediction of infection trends, estimating the efficacy of contact tracing, testing
or impact of influx of infected are of vital importance for administration during
an ongoing epidemic. Most effective methods currently are empirical in nature
and their relation to parameters of interest to administrators are not evident. We
thus propose a modified SEIRD model that is capable of modeling effect of
interventions and in migrations on the progress of an epidemic. The tunable
parameters of this model bear relevance to monitoring of an epidemic. This
model was used to show that some of the commonly seen features of cumulative
infections in real data can be explained by piece wise constant changes in
interventions and population influx. We also show that the data of cumulative
infections from twelve Indian states between mid March and mid April 2020 can
be generated from the model by applying interventions according to a set of
heuristic rules. Prediction for the next ten days based on this model, reproduced
real data very well. In addition, our model also reproduced the time series of
recoveries and deaths. Our work constitutes an important first step towards an
effective dashboard for the monitoring of epidemic by the administration,
especially in an Indian context.

Keywords: COVID-19; SARS-CoV-2; contact tracing; testing; epidemiology;
compartment models

Introduction
Mathematical treatment of epidemics has its origins more than a century ago [1, 2].

The recent interest in modeling epidemics was rekindled with the onset of the Severe

Acute Respiratory Syndrome (SARS) epidemics during the early part of the century

[3]. The classical model of epidemics (SIR) was designed as a dynamical system

with the fraction of Susceptible(S), Infected(I) and Recovered(R) population as

state variables. The SARS epidemics were modeled with a modified model with an

additional state for the fraction of exposed population(E) that is latent and as yet

uninfected, but still contributes to spreading the disease. This modified model, the

SEIR model, is currently being used to characterize the epidemics caused by a group

of coronaviruses including the ongoing COVID-19 [3]. Modified SEIR models have

also been designed to understand the effect of quarantining [3] and multiple active

strains of the pathogen simultaneously active in populations [4]. SIR, SEIR and

related models are also known as compartment models, as population groups are

modeled as a single compartment. In contrast, agent-based approaches, model the

transitions of individual agents in a population and hence can capture the effects

of non-homogenous populations. While agent based and stochastic models [5] have
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been explored, it has been shown that for people to people contact networks that

are small world, random, fully connected or scale free, the compartmental models

work quite well [6]. Thus, compartmental models are an efficient tool for modeling

epidemics.

Some of the important parameters that characterize an epidemic are the rate at

which new infections are created (β), mean duration of infection (Tinf ) and their

product (R0), which gives the mean number of infections spawned by an individ-

ual during the infectious period when the entire population is susceptible. The

emergence of R0 in epidemiology owes its origins to the mathematics of popula-

tion growth, and in past few decades, emerged as an important diagnostic of the

epidemic progression [7, 8]. R0 owes its importance [9] to the fact that, it is a prog-

nosticator of the epidemic, with values less than 1 indicating a fade out and values

greater than 1 prognosticating a large scale epidemics. R0 can easily be calculated

from the set of differential equations describing SIR and SEIR systems [7].

The method can be applied with modifications for calculating the reproduction

numbers for extended models with more number of compartments if they satisfy

certain conditions[10]. While R0 is the value of R at the start of the epidemic,

Rt represents its evolution with time t. The change in Rt with time could be due

to a number of factors, namely a change in transmission β or an intervention in

the form of lockdowns, social distancing, testing and / or quarantining. While the

dynamics of transmission of epidemic diseases are well understood, estimating these

parameters during the course of an ongoing epidemic is not trivial, except in special

circumstances of small isolated population clusters as in the quarantined cruise

ship [11]. For the purposes of monitoring and predicting the course of an ongoing

epidemic, the most important metric used is r, the slope of the cumulative infections

on the log scale. This follows from the observation that the rate of new infections

is proportional to the cumulative infections. The parameters r and R are related to

each other through the shape of the serial interval distribution [12, 13]. Since the

cumulative deaths follow the infections with a lag, the cumulative death count has

also been used to estimate the parameters of the epidemic model [14]. R has also

been estimated using maximum likelihood based methods from the serial intervals

distribution for subsets of populations where the chain of infection transmission are

documented [15].

Methods used to recreate the time varying parameters underlying an epidemic, in

particular COVID-19 are largely of two kinds. First, the class of mechanistic models

which use modified SEIR compartment models to simulate epidemics. The second,

is empirical in nature and rely on fitting of parameters of mathematical formulations

to real data. The mechanistic models are largely used to evolve strategies for man-

agement of the epidemic - like evaluate effect of social distancing, lockdowns, exits

from lockdowns [16], projection for periodic recurrence of outbreaks and impact

of multiple strains of the pathogen [4]. The parameters and formulations used in

these methods are grounded in epidemiology theory and are useful to evolve broad

strategies. But they are not frequently used for short or medium term prediction of

trends or evaluation of efficacy of interventions in real time. For such predictions,

the second class of empirical methods are deployed. One particular study modeled

the transmission as a geometric process. Using Monte Carlo simulations, Rt and
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percentage of undetected infections were estimated by fitting to epidemiological

data from Wuhan [17]. Another study used convolution of daily reported infections

with the serial interval distribution to estimate the cumulative number of infections

and deaths. Interventions are modeled as contributing factors to a country specific,

time varying Rt. The contribution of various interventions were estimated by fitting

to data [14].

On the issue of estimating epidemic parameters certain salient problems limit

efficacy of current methods. Foremost among these are the gap between observed

and true variables like infections and recoveries. This is less of a problem in case of

deaths, as they are not easily hidden, which was used in estimation [14]. However, it

requires about 2-3 weeks for the effect of interventions to be reflected in the number

of deaths, which severely limits the utility of the method for real time analysis.

Empirical methods have a general limitation that they make assumptions on various

parameters like serial interval distributions or the form of priors [14, 17]. Due to

the lack of mechanistic details, the results of these methods are often incapable

of offering intuitive explanations on how interventions work or fail. Mechanistic

methods require that standard models be modified to incorporate interventions,

testing efficacies and quarantining often making estimation of Rt very difficult. Over

and above all of these, we believe that a common shortcoming in most mechanistic

models proposed are a conflation of observables and non-observables. For instance,

the deaths and recoveries are almost always modeled as single compartments and

outcomes resulting from both detected and undetected infections move into the

same compartment, although one is observable and the other is only partially so

[3, 4, 16, 18].

Thus, there is a clear need for models that can explain short and medium term

trends in epidemic data while providing clear mechanistic link to the effect of inter-

ventions amidst epidemics. We propose a mechanistic model that retains the sim-

plicity of the standard SEIR model, but with the power to model interventions and

time varying transmission. A key constraint we impose on our model is that while it

should be able to explain short term trends and effects of interventions, it must also

be capable of providing intuitive connections between observed trends and changes

in underlying parameters. In this work we present one such SEIR model suitably

modified to model interventions. We then proceed to demonstrate how changes in

model parameters can generate oft-seen patterns in cumulative infections on the

logarithmic scale. Based on these results, we propose heuristic algorithm for es-

timating time varying interventions that recreate trends in cumulative infections

by applying suitable interventions, thereby estimating the underlying changes in

epidemic dynamics. We use this method to recreate the real data from 12 Indian

states between mid-March and mid-April. We finally observe how this model fares

in predicting the trends of the succeeding 10 day period.

Methods
The key principles for the design of the epidemic simulator were as follows:

• Less is more: We choose to represent just enough compartments as required.

A compartment or a transition that neither has a correlate in real data nor

can be used to estimate an observable and useful quantity is discarded or

merged.
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• Simplicity: Model must use as little sophistication as possible. Expressions

for key quantities such as reproduction number must remain as close as pos-

sible to the standard SEIR models.

• Intuition: An administrator should be able to intuitively identify the param-

eters used in the model with interventions deployed on the ground in tackling

the epidemic.

Model Design

Compartments

We use a modified version of the SEIRD model on the lines of [3]. We duplicate the

standard SEIRD pipeline to create two parallel pipelines - undetected and detected

/ isolated. In particular, we also duplicate the deceased and recovered compartments

in both pipelines.

The motivation for the same is as follows. Daily confirmation of cases, recoveries

and deaths are both released and tracked. These numbers count only the detected

infections and their recoveries. However number of fatalities can come from amongst

the detected and undetected infections. Recently the Indian government has man-

dated COVID-19 screening for all cases with severe acute respiratory infections.

These are with a high probability critical cases and many succumb. These num-

bers are often added to count of deceased, but in an inconsistent manner. Thus the

trends of reported deaths would tend to fluctuate between true death numbers and

those coming from the detected infections.

We do not use other possible sub compartments within the infected - like mild

infection, hospitalized, critical etc. While we do believe that these are important,

the number of hospitalizations and grades of infections are not available in the

public domain. Separate compartments for quarantined susceptible are important

when estimating the cost, and resources spent due to numbers of people that are

quarantined although not exposed. Since we do not, at the moment consider this

aspect, we dispense with a separate compartment for susceptible-quarantined.

Thus we arrive at a total of 9 compartments which include two compartments

each for Exposed, Infected, Recovered and Dead and a single compartment for

susceptible.

Interventions

We recognize two interventions commonly deployed for identifying infections as part

of epidemic management.

• Contact tracing and isolation: When an infection is detected, immedi-

ately their contacts are traced and placed under quarantine. They are tested

for infection periodically until they test positive or the observation period

ends. Within our model, we represent the efficiency of this intervention by the

fractional value c, which represents the fraction of exposures and transmitted

infections that are detected and quarantined. This parameter lends itself to

model simplicity, yet intuitive and actionable for administrators.

• Random testing and self-presentation: A patient voluntarily reports

symptoms and is then tested. Alternately, random tests are administered to
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the public and positive reports are quarantined. Within our model, we rep-

resent the efficiency of this intervention by the fractional value q , which

represents the fraction of infections that are detected and quarantined. ,

We assume that during the exposed phase, people are largely asymptomatic and

undetectable by tests. Thus the exposed are quarantined only by contact tracing.

However, the infected can be detected by either contact tracing or random tests

/ self-reporting. Further we make a simplifying assumption that during stage 2 of

an epidemic, detection is mostly due to contact tracing and during stage 3, when

community transmission takes over, detection of infections from random testing or

self-reporting far outnumber the ones due to contact tracing.

Transitions and flow of people between compartments

In order to keep the model simple enough for numerical analysis, we employ two

rules for designing transitions

• All transitions must follow the same order as S → E → I → R. For instance,

all exposed compartments or their sub compartments (quarantined or unde-

tected) must have transitions only to an infected compartment or one of its

sub compartments.

• When there are multiple transitions out of a compartment, the sum of the

rates out of the compartment must be conserved (compared to un-branched

rates)

Starting from the standard SEIRD model, we observe that the exposed population,

consists of 2 sub populations – the quarantined and free. Since quarantining of

exposed is only due to contact tracing, a fraction c of the exposed flow to the

compartment Eq. Thus we split the S → E transition into two transitions S → Eq
and S → E. The rates of these transitions are in the ratio c : : (1− c) and the sum

of their rates continues to be β.S.I as in the standard SEIRD model. It must be

noted that I in the standard model includes all infected, while here it refers only

to the undetected infections. See Fig. 1 for more details.

Similarly, the infected population may be thought of as consisting of 2 sub pop-

ulations – infected by direct contacts or through community spread. The fraction

of contact spread infections and community spread infections are denoted by a and

(1− a) respectively. For simplicity we assume that only contact tracing is effective

in detecting contact spread infections and only random testing or self reporting can

detect community spread infections. This leads to 4 sub populations within the so

far undetected infected population. Rates of transition to and fro the four infected

populations Iq1 through Iq4 are computed as described before.

Migration and influx of infected

An important modification to standard models is necessitated by migrations. Influx

of infected changes the seeding pattern of epidemic and plays a critical role in evolu-

tion of epidemic. Influx of infections are represented in our model as a combination

of inflow rate and probability that an incomer is infected. Given the inflow rate is

φ and the probability of infection is pI, in-migration is implemented as an addition

of φ.pI
2.N to the undetected E and I compartments each, per day. We assume that

this inflow is finite and very small compared to the total population and hence the

stable population assumption is not violated.
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Figure 1 Flow of people through compartments The compartments Eq , Iq , Rq , Dq represent
the populations that are quarantined. Compartments E, I, R represent the exposed, undetected
infections or recoveries. D represents the fatalities from the undetected population, but they may
be detected close to death or post-mortem. a is the fraction of Infected that acquired it by direct
contact with another infected. c is the fraction of exposed or contact infected individuals that are
detected. q is the fraction of community infected that are detected by self reporting or random
testing. δ is the rate of mortality.

Model Parameters

It may be noted that because of the way transitions were designed in section on

Transitions, the net rates of transition, Rate{C1 → C2} ∀ C1, C2 ∈ {S,E, I,R,D}
remain the same as in the standard SEIRD model when the compartments are

interpreted as unions of their sub compartments, i.e. C = ∪ {C,Cq}. The mean

stay times in an Exposed (E) state and Infected (I) state were set to 1
k = 7 days

and 1
γ = 9 days respectively. The mortality rate δ is a constant value for the

entire duration of simulation. Permissible values are in the range 5% ± 3%. The

rate of transition of S → I is proportional to the fraction of total population that

is infected (I + Iq) and the transmission rate (β). But since Iq is quarantined and

cannot influence this rate, only the undetected infections I contribute to this rate.

Only a fraction (1−c) of possible exposures reach E. Out of this number, a fraction

a.(1− c) are contact transmission cases and missed by the contact tracing exercise.

A fraction (1 − a).(1 − q) of the undetected exposed are community transmitted

infections and are missed by random testing. Thus the net effective rate of the

transition S → E (union of E and Eq) under the influence of interventions is given

by β.I or βeff .(I + Iq), where

βeff = β.(1− c).{a.(1− c) + (1− a).(1− q)} (1)

βeff is the effective beta in the standard model that corresponds to modified model

with interventions. βeff is β scaled by the product of inefficiencies of two phases of

interventions - isolation of exposed and isolation of the infected. The inefficiency of

detecting the exposed is given by (1− c) as testing cannot detect them and contact

tracing is the only effective measure. The inefficiency of the detecting the infected
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is a convex combination of the inefficiencies of contact tracing (1− c) and random

testing or self reporting (1−q). In stage 2 it is given by (1−c) and in stage 3 by (1−q).

The net transitions out of E and Eq each continue to be k. The rates of E → Iq
are given by the sum of rates E → Iq1 and E → Iq3. The rates of E → I are given

by the sum of rates E → Iq2 and E → Iq4. These details are evident from the Fig. 1

and Fig. 2. For the SEIR model with a stable bounded population, time varying re-

production rate Rt is given by βeff .
1
γ . The term (1− c).{a.(1−c) + (1−a).(1−q)}

that scales β and hence Rt is the fraction of generated infections that go undetected.

This fraction is an index of the inefficiency of interventions by the administration

to control the epidemic. The inefficiency index assumes a simple form (1 − c)2 in

stage 2 of the epidemic when contact transmission is the norm and takes the form

(1− c).(1− q) during community transmission driven stage 3 of the epidemic.

The values of c, q, β and φ.pI constitute the free variables of the models that are

tuned to reproduce the true field data. Each of these quantities is assumed to be

a piece wise constant function [14]. δ is a constant throughout a simulation and is

chosen within the permissible range for each data set. a is of the form of a decreasing

sigmoid function of the number of active infections. It has a transition from 0.99 to

0.01 between 0.2 ∗ e−4 ∗N and 0.8 ∗ e−4 ∗N numbers of actively infected.

Modelling response of Indian states

We use this model to estimate the dynamics of epidemic transmission underlying

the time series of data from Indian states. Data of daily infections, recoveries and

deaths between 13th March 2020 and 17th April 2020 for all Indian states were

obtained from www.covid19india.org. We chose 12 states with active COVID-

19 cases for our analysis. The states chosen were Delhi, Punjab, Uttar Pradesh,

Rajasthan, Madhya Pradesh, Gujarat, Maharashtra, Telangana, Karnataka, Tamil

Nadu, Kerala, and West Bengal. Using the data upto 17th April 2020, we use a

heuristic algorithm to generate these trends from our model. The algorithm will be

derived from the results of model characterisation and will be described in section

on Model Characterization. The goal of this exercise was to identify the time varying

piece wise constant functions for c, q, β and φ.pI that result in best visual fit of the

cumulative infections on the log scale. The focus was on reproducing the predomi-

nant features of data sets on the log scale such as, piecewise linear slopes, steepening

of slopes, plateauing effects and changing y-intercepts with constant slope. We did

not use any empirical learning methods for discovery of these parameters as we

were keen on developing intuition regarding the relation between trend patterns

and their underlying processes. Once the cumulative data of infections was well fit,

no further changes in parameters were undertaken except for tuning δ in order to

bring the curve of cumulative deaths within the band defined by the curves Dq and

Dq + D. This band was necessitated because deaths reported are sometimes from

one or both buckets. Ever since the Indian government has mandated the testing of

all Severe Acute Respiratory infections for COVID-19, undetected infections have

been confirmed positive for COVID-19 from time to time in ICUs and post mortem.

A fixed reporting delay delay of 8 days was used for calculating recoveries. This is

observed in empirical explorations of data from Indian States
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Figure 2 Modified SEIRD model The compartments Eq , Iq , Rq , Dq represent the populations
that are quarantined. Compartments E, I, R represent exposed, undetected infections or
recoveries. D represents the fatalities from the undetected population, but they may be detected
close to death or post-mortem. a is the fraction of Infected that acquired it by direct contact with
another infected. c is the fraction of exposed or contact infected individuals that are detected. q is
the fraction of community infected that are detected by self reporting or random testing. δ is the
rate of mortality. the rates γ and k are respectively the inverses of mean infection time and mean
latency times. β is the transmission rate given by product of contact rate and probability of
infecting a contact

Model characterization

In order to explain the performance of the model and capture the dynamics we

administered several scenarios to the model. Each of the scenarios are explained

below. In each of the scenarios, we set a = 1 implying that epidemic is in stage 2.

Thus efficiency of intervention is given by 1 − (1 − c)2. All the discussion relating

to c, efficiency of intervention (1 − (1 − c)2) or inefficiency of intervention ((1 −
c)2) in succeeding discussions apply equally to q (if transmission is community

transmission), 1−(1−c)[a.(1−c)+(1−a)(1−q)] and (1−c)[a.(1−c)+(1−a)(1−q)]

Effect of varying β and c with fixed Rt

It is well known that as Rt increases, the infections peak earlier and have higher

peaks. But from the equation 1 we can see that same Rt can be achieved by varying

combinations of β and intervention inefficiencies. To understand this effect, we fixed

Rt at 3 and varied numerators of transmission rate (β) were set successively at values

between 6 and 8.4. c was varied to obtain required Rt as per Eqn. 1 in the Model

parameters section. From Eqn. 1, we can observe that at constant Rt, increase in β

will have to be accompanied by a decrease in inefficiency (1− c)2 and a consequent

increase in efficiency (1 − (1 − c)2) and detection c. Latency of infection is set at

7 days, efficiency of random testing and self-presentation (q) is set at 0, influx of

population (φ ∗ pI) is set at 0. Initial infected cluster is set at 1 for a state with a

population of one million and it is assumed that epidemic is at contact transmission

stage (Stage-2).

Varying Rt by variations of β and interventions

We vary Rt from 5/3 through 7/3 in steps of 0.5/3. We achieve these reproduction

numbers, by varying either β or c.
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To understand the effect of varying β when intervention (c = 1 −
√

1
3 ) is held

constant, we simulated the model with the above-mentioned parameters but with

β values of 5, 5.5, 6, 6.5 and 7. The other parameters were held at the same value

as the previous section.

Next, we study the effect of varying intervention (c) when β = 6/9 is held constant,

we simulated the model with the above-mentioned parameters but with c values as:

1− 1/
√

6/x where x ∈ {5/3, 5.5/3, 6/3, 6.5/3, 7/3 } thereby achieving required Rt.

The other parameters were held at the same value as the section on Effect of Rt.

Effect of influx of infected cohort

To understand the effect of influx of infected persons we simulated an influx of

infected over a small window of 3, 9 and 18 days. We set the influx rate to 38

people per day (φ = 75; pI = 0.5) during the influx window. The other parameters

were held at the same value as the section on Effect of Rt.

Transitory effects of varying β and c over short time windows

β and interventions sometimes change transitionally over short periods of time.

Lock-downs, focused campaigns of contact tracing or testing are examples.

To study the effect of varying β and c over short periods, the scenarios as follows.

Starting with a β = 6/9 and c = 1 −
√

1
2 we apply an (i) increase in β over a 21

day window to 8/9 and a (ii) pulsed decrease in β for 21 days to 4/9. All other

parameters were held at the same value as the previous section. Thus starting from

a base Rt = 3, the Rt was stepped up and down respectively to 4 and 2 respectively.

To study similar effects induced by c, starting from the same baseline values, we

apply (i) an increased c = (1 − 1/
√

3) over a 21 day window (Rt = 2) and a (ii)

pulsed decrease in c for 21 days to (1 − 1/
√

1.5) (Rt = 4). The other parameters

were held at the same value as the section on Effect of Rt.

Effects of intervention on influx of infections

We coupled an influx of infections with varying levels of intervention and with

varying delays to study how they affect the overall evolution of the epidemic. We

started with a β = 5/9 and a c = 0.2 and applied an influx at the rate of 20 per

day for 5 days. Interventions with different efficiencies were applied on the first

day of influx using c = 0.4, 0.6, 0.8 successively. Additionally, we also applied an

intervention c = 0.8 starting 5 days after the end of the influx to assess the effect

of delay in intervention.

Results
Model characterization

Effect of interventions with fixed Rt

Fig. 3 presents the model responses for Rt=3 respectively. Increased β requires

proportional increase in c to keep Rt constant (Refer Eqn. 1). At fixed Rt, while
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the time course of the epidemic remains the same, the total numbers of infected

increase with increasing beta. But due to commensurate increase in c, the excess

infections are sucked into the pool of detected and quarantined infections. Since

only the undetected infections influence transmission, βeff , Rt and time course of

epidemic remain same, while the peak of reported infections are higher as can be

seen in Fig.3(a).

Figure 3 Effect of β and c at constant R = 3 Reff is set to 3. Plots showing (a) Evolution of
active cases of infected persons, (b) Cumulative number of cases over a 300 day epoch on log
scale.

Varying Rt by variations of β and interventions

Fig. 4 a and b presents the model responses to varying interventions and constant β,

while Fig. 4c and d depict model responses to varying β at constant interventions.

All simulations start with the same parameters and the variations are executed

midway on day 50. It may be seen from Fig. 4 that increase in Rt effected by

increase in β or decrease of c results in steepening of the slope in Fig. 4b and d and

earlier peaks in Fig. 4a and c. Similarly decreasing Rt decreases the slope and later

peaks. However at the same Rt, the peak values of infections are proportional to

β. This is evident from the Fig. 4c where grey and indigo curves have taller peaks,

but red and blue curves have shorter peaks compared to corresponding peaks in 4a.

Note that the correspondence is between the pairs of curves in gray and blue, red

and indigo.

Effect of influx of infected cohort

Fig. 5 describes the effects of an influx of infected individuals into the population.

It can be seen that this influx does not change the slope of the trajectory. Rather,

the trajectory maintains its slope, but now has an increased y intercept. Influxes

over windows of 3, 9 and 18 days have progressively larger y intercepts as seen in

Fig. 5b and the peaks occur earlier in time as seen in Fig. 5a. However the change in

y intercepts are not uniform. Another significant effect is that the excess infections

due to this influx are constant on the log scale. Thus with time, the cost of this

influx become progressively larger in absolute terms.

Transitory effects of varying β and c over short time windows

The effect of variations in β and c on the slopes of cumulative infections on log scale

are similar to that mentioned in section on Effect of varying Rt during the short
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Figure 4 Effect of varying β with a constant intervention: Plots showing (a) Evolution of active
cases of infected persons at various c and constant β (b) Cumulative number of cases over a 300
day epoch on log scale at various c and constant β(c) Evolution of active cases of infected
persons at various β and constant c (d) Cumulative number of cases over a 300 day epoch on log
scale at various β and constant c. All simulations start with the same values of β and c. The
variations of β and c are applied on day 50 (See Methods for values of parameters used)

Figure 5 Effect of pulsed influx infected persons: Plots showing (a) Evolution of active cases of
infected persons, (b) Cumulative number of cases over a 300 day epoch on log scale. (See
Methods for details)

window of variation. However at the end of the window, the trajectory is restored

back to its original slope and now proceeds parallel to the original trajectory. Thus

the net effect of change in Rt in a short window results in a change in y intercept

akin to that of an influx of infected cohort. This effect is clearly seen in Fig. 6b

and d where the decrease or increase of y-intercept is evident. It may also be noted

that the effect of β sets in almost instantaneously, while that of c shows up after a
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short lag. It may be explained as the lag required for the reduction in undetected

infections to show up as a decrease in effective transmission.

Figure 6 Transitory effects of varying β and c over short time windows Plots showing (a)
Evolution of active cases of infected persons at various c and constant β (b) Cumulative number
of cases over a 300 day epoch on log scale at various c and constant β(c) Evolution of active cases
of infected persons at various β and constant c (d) Cumulative number of cases over a 300 day
epoch on log scale at various β and constant c. All simulations start with the same values of β and
c. The variations of β and c are applied on day zero (See Methods for values of parameters used)

Effects of intervention on influx of infections

The effects of contact tracing as a response to influx of infected is elucidated in Fig.

7. As already seen in section on Effect of infected cohort, an influx accompanied by

no response in the form of change in contact tracing efficiency results in a trajectory

that runs parallel to the original trajectory with increased y intercept. However if as

a response to the influx, the level of contact tracing is increased concurrent with the

first day of influx, it leads to a peculiar 2 phase change in trajectory. There is a steep

increase in slope almost instantaneously on increase of c, followed by a significant

reduction in slope with respect to the original slope. With increasing levels of contact

tracing c, the sharp increase in the initial phase is even steeper, and so is the

flattening that follows. The initial steep rise can be attributed to large numbers of

infections being detected and quarantined due to increased contact-tracing efforts.

This results in a drastic reduction in the slope soon after, as quarantined infected

cannot spread the disease. This effect leads to a characteristic plateauing effect.

When the intervention is delayed, the plateau effect seen is identical in nature

but shifted in time. Hence the resultant flattening is achieved at a higher level of

infections.

Heuristics for reconstructing the time varying interventions in real data

The salient features seen in real data of cumulative infections on the log scale have

been reproduced in the previous sections. These features are:

• Piece wise linearity
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Figure 7 Effect of influx of infected followed by contact tracing exercises with various efficacies
Plots showing (a) Evolution of active cases of infected persons and its response in the form of
varying intensities and timing of intervention (b) Cumulative number of cases over a 100 day
epoch on log scale (c) Rt and interventioninefficiency over the duration of the epidemic (d)
Time course of the influx of infected given by φ(t).pI(t) and c. (See Methods for values of
parameters used). Notice the green, red, indigo and gray lines exhibit progressively stronger
plateau effect. The effect of delayed intervention in orange runs parallel to the gray line. The cost
of the delay is the difference in the y intercept between the orange and gray lines on the log scale.

• Changes in slope in each piece wise segment

• Temporary deviations due to transitory change in slope resulting in parallel

trajectories with altered y intercept

• Plateau effect: Sudden rise followed by a flattening

Based on the results encountered so far, we propose the following set of heuristics

to reconstruct using our model, the observed trajectory of cumulative infections in

real data:

1 The first piece of the piece wise linear curve is reconstructed by using a suitable

combination of β and c. This indirectly fixes the underlying Rt. As seen in

section on Effect of interventions with fixed Rt although there are multiple

combinations of β and c can recreate the Rt, each of these combinations has

a unique trajectory of active infections.

2 For each subsequent piece of the piece wise linear curve, modify β and / or c

to match the slope of the piece

3 For each parallel shift of trajectory introduce an influx of infected. While it

is possible to account for this using a transitory change in β or c as well, we

assume that transitory and self restoring changes in β or c over short periods

are not very likely except in the case of lock downs. Thus we use population

influx as the first choice tool to account for this feature

4 For steep rise followed by a significant flattening in the span of a short interval,

we use an influx with increased heightening of contact tracing levels c.

Modelling epidemic data from Indian states

Based on the heuristics arrived at in section on Heuristics for reconstructing in-

terventions we recreate the curves of cumulative infection, recovery and death on
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the log scale for twelve Indian states. In order to recreate, we set c, q, β and φ.pI

as a piecewise constant time varying function based on the heuristics described in

the previous section. This activity is performed only on the data up to -10 days.

No further changes in parameters are allowed after this day. But the model gener-

ates outputs upto day zero. The model output for the days -10 to zero are model

predictions.

The piece wise functions are set in order to recreate the cumulative infections

only. No explicit attempt is made to recreate the trends of recoveries and deaths

except the following.

1 The recoveries are shifted right by a fixed lag of 8 days for all states.

2 A single value of mortality (deaths per infection) is chosen for each state such

that the curve of real data(dark gray) is bounded by the two model generated

cumulative death curves (by counting deaths from only detected infections,

and by counting deaths from both detected and undetected infections).

A few general comments may be in order on the agreement between model predic-

tions and real data.

1 The model predictions for the last 10 days agree very well with the true data

2 For a recovery to be declared, at least 2 successive negative tests are required.

It is likely that states are being extremely conservative in declaring recoveries

and want to err on the side of safety. This could explain the lag of about 8

days which is required to fit the real data with the model generated output.

3 The real recoveries seem to follow the model generated curves, but with a

staircase effect. This effect could possibly be due to a procedural issue where

test reports are processed in batches on a slightly lower priority(which recov-

eries are compared to critical cases).

The full details of the piece wise constant functions used for each state in recon-

struction and the reasoning applied to generate the same can be found in the sup-

plementary materials. Supplementary materials also include an evaluation of the

predictions based on the same model for an epoch of 20 days upto 7th May 2020. It

can now be seen that as expected there are significant deviations in prediction for 5

states. This is expected as small underlying changes in the intervening period widen

the gap between real data and prediction. But it is also significant that for more

than half the states considered, predictions held well over a 20 day epoch. However

in general we believe that this model must be evaluated weekly to recognise and

register the underlying dynamic changes in the epidemic progress. This exercise also

provides inputs on efficacy of interventions and new influxes or new clusters that

have emerged over the week.

Discussion
This work presents a modified SEIRD model with ability to represent population

influx and interventions including contact tracing and random testing. This model

was used to show that some of the commonly seen features of cumulative infections

in real data can be explained by piece wise constant changes in interventions and

population influx. We also show that the data of cumulative infections from twelve

Indian states between mid March and mid April 2020 can be generated from the
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Figure 8 Maharashtra and Gujarat: Recreation Plots on the top row show the real and model
generated curves, while the bottom row plots the time varying piece wise functions c, q, β and
φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section on Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.

Figure 9 West Bengal and Madhya Pradesh: Recreation Plots on the top row show the real and
model generated curves, while the bottom row plots the time varying piece wise functions c, q, β
and φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.
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Figure 10 Kerala and Tamil Nadu: Recreation Plots on the top row show the real and model
generated curves, while the bottom row plots the time varying piece wise functions c, q, β and
φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section on Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.

Figure 11 Telangana and Karnataka: Recreation Plots on the top row show the real and model
generated curves, while the bottom row plots the time varying piece wise functions c, q, β and
φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section on Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.
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Figure 12 Delhi and Rajasthan: Recreation Plots on the top row show the real and model
generated curves, while the bottom row plots the time varying piece wise functions c, q, β and
φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.

Figure 13 Uttar Pradesh and Punjab: Recreation Plots on the top row show the real and model
generated curves, while the bottom row plots the time varying piece wise functions c, q, β and
φ.pI used to recreate the same. The piece wise functions were created in accordance with the
heuristic algorithm described in section on Heuristics for reconstructing interventions. On the top
row, dark colours indicate the real data from the states, while the lighter shades are model
generated. The red shades are cumulative infections, green shades are recoveries and grays are
deaths. The dotted light gray line indicates the curve output from the model if deaths from both
the undetected and undetected infections are counted. The light gray solid line counts only the
deaths from detected infections in the model. The band in green highlights the prediction epoch.
Day zero corresponds to April 27th 2020.
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model by applying interventions according to a set of heuristic rules. The model

with interventions so designed was allowed to generate prediction data for ten more

days with no further modifications. This predicted trend matched well with the data

for the twelve states. Matching the infections curve ensured that the recoveries and

deaths too matched well with no additional effort.

We thus provide a mechanistic model for short term prediction of COVID-19 epi-

demic data. Compared to empirical measures [14, 19, 17] this method recreates data

using parameters that are intuitive and directly related to operation on the field.

While similar to other mechanistic models [3, 4, 16], it differs in its design focus on

separating observable and non observable compartments. Connecting elementary

piece wise changes in interventions to features of real data like slopes and plateaus

are a singular contribution of this work. While the piece wise constant form of

interventions have been proposed [14], instead of creating interventions functions

based on known events and identifying their contributions to data fit, we compose

the piece wise interventions directly based on intuitive connections between data

features and elementary piece wise functions of interventions.

The model discussed in this manuscript signifies efforts, not to merely model the

evolution of the epidemic but also captures the effects of various interventions by

the administration. It presents a method by which administration may get an ob-

jective estimate of several aspects of an ongoing epidemic such as the efficacy of

contact tracing apparatus, possible influx of infected, extent of social distancing or

transmission. The parameters c and q as fraction of infected detected are generic

enough for a wide variety of cases. While administrations may use a wide variety

of methods to characterize their testing or tracing strategies, their eventual success

lies in tracing or detecting all infected, which is what is captured by c and q. Thus

insights from our model provides an independent and objective feedback on how

effective the efforts have been. This model also provides an estimate of Rt which is

highly sought after and provides insights on whether the observed Rt results from

interventions or transmission. The population influx mechanisms provide a way for

administrations to estimate the effect of influx in the past and plan for impending

arrivals and calibrate their responses.

A few notes may be in order in interpreting the results from the methods pro-

posed in this work. The insights coming out of our models must be interpreted in

the context of the specific clusters contributing to the epidemic. For instance in-

creased or unchanged transmission does not imply that general population flouted

lock down rules. It must instead be interpreted specifically as applicable to the

specific clusters of spread. β is interpreted as the product of contact rate and prob-

ability of transmission. Thus large captive households or even hospitals can keep

the contact rates high without any flouting of norms. Again, influx of infected

in its general sense represents a seeding of infection. Thus an influx of population

indicated by our results could as well imply the emergence of a new infection cluster.

The primary intention behind building the model is to monitor localized response

using dashboards. This can be possible with better data availability at the local
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level (district in the case of India). Our model design principles are generic enough

to be applied to model extensions incorporating hospitalized or critical cases. Since

the model captures the active cases as a function of response of the administrative

response, this can be a valuable tool to plan and allocate resources and deploy the

right response, where necessary. This model can further be extended to estimate the

effort required for achieving a level of contact tracing c or testing q. This can be of

vital importance for the administration in planning their strategies and estimating

requirements of health workers, law enforcement agencies for contact tracing. We

currently manually fit the parameters to evolution of active cases in each of the 10

states using heuristics. Going forward, the manually obtained piece wise interven-

tions may be treated as seed for empirical discovery of piece wise functions. Further

incorporating confidence intervals for our current predictions will be an important

goal of future work.
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