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Abstract

We design a procedure (the complete Python code may be obtained at
https://github.com/abhishtadl/antibody_montecarlo) using Monte Carlo
(MC) simulation to establish the point estimators described below and
confidence intervals for the base rate of occurence of an attribute (e.g.,
antibodies against Covid-19) in an aggregate population (e.g., medical
care workers) based on a test. The requirements for the procedure are the
test’s sample size (IV) and total number of positives (X), and the data on
test’s reliability.

The modus is the prior which generates the largest frequency of obser-
vations in the MC simulation with precisely the number of test positives
(maximum-likelihood estimator). The median is the upper bound of the
set of priors accounting for half of the total relevant observations in the
MC simulation with numbers of positives identical to the test’s number
of positives.

Our rather preliminary findings are:

e The median and the confidence intervals suffice universally.

e The estimator % may be outside of the two-sided 95% confidence
interval.

e Conditions such that the modus, the median and another promising
estimator which takes the reliability of the test into account, are
quite close.

e Conditions such that the modus and the latter estimator must be
regarded as logically inconsistent.

e Conditions inducing rankings among various estimators relevant for
issues concerning over- or underestimation.
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1 Introduction

The Corona crisis revealed several bottle necks regarding testing. Many of these
bottle necks are physical, but one is cognitive: how to interpret the results of
a test. Medical experts seem to have problems in interpreting and combining
statistical information (cf., e.g., Uffrage et al. [2000]). They, as well as politi-
cians, journalists, or the general public, may suffer from the so-called base-rate
fallacy (cf., Bar-Hillel [1980]):

The base-rate fallacy is people’s tendency to ignore base rates in
favor of, e.g., individuating information (when such is available),
rather than integrate the two. This tendency has important im-
plications for understanding judgment phenomena in many clinical,
legal, and social-psychological settings.

The base rate in the quote above can be associated with the incidence of an
attribute in a larger population, such as the occurrence of antibodies against
the Corona virus in a certain region or profession, breast cancer among females,
or Down syndrome among unborn children with mothers aged 41. The indi-
viduating information in the quote above can be associated with information
obtained from a(n individual) test (result).

A widely accepted technique integrating the two kinds of information men-
tioned, involves Bayesian reasoning in which a prior distribution (base rate) is
updated on the basis of information gained from a (possibly imperfect) test,
such that the latter can be interpreted on an individual level. It safe to say that
this technique is not very well known throughout the various scientific commu-
nities, let alone to the general public. It is also safe to say that the technique
yields counter-intuitive answers. There are at least two sides to this science-
versus-intuition gap: on the one hand human intuition seems underrated and
should be taken more seriously, and on the other intuition can be helped by
representing statistical data in a more user friendly manner (cf., e.g., Cosmides
& Tooby [1996], Gigerenzer & Hoffrage [1995]).

The following stylized problem has been used recently for didactic purposes
to inform the general public about the limited use of testing in case the general
population has a low incidence of an attribute (cf., Volkskrant [2020]).

Example 1. A test for antibodies against Corona (Covid-19) has the follow-
ing reliability: if a person really has antibodies, the test gives a positive result
with 75%, hence the test gives a negative result with the complementary prob-
ability, i.e., 25%; if a person really does not have antibodies, the test gives a
negative result with 95% probability, hence the test gives a positive result with
the complementary probability of 5%. This information can be summarized as

follows:
REAL:
Pos Neg
Pos 0.75 0.05
TEST: Neg [ 0.25 0.95 }

The number 0.05 is also known as the rate of false positives (a.k.a. type I error
rate), and the number 0.25 is known as the rate of false negatives (a.k.a. type
IT error rate).
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Now, suppose 2% of the general public have antibodies against Corona. This
is the base rate (a.k.a. prior in statistical jargon), and we test 10,000 people
taking all these probabilities mentioned as given and (exactly) true. Then, the
following natural question arises.

e How many people will test positive (in expectation)?

If 10,000 people are tested, then approximately! 200 will have antibodies for real,
and the complementary number 9800 will not. Of the approximately 200 people
that really have antibodies, approximately 150 test positive, but approximately
50 test negative and this evaluation is incorrect. Of the approximately 9800
people that in reality do not have antibodies, approximately 490 test positive
incorrectly, whereas approximately 9310 test negative. We again put up a matrix
helping us to visualize this information.

REAL:
Pos Neg
200 9800
Pos 150 490 640
TEST: Neg [ 50 9310] 9360

The two numbers above the matrix represent the expected number of people
who have antibodies against Corona (left) and those who do not (right). These
numbers may be recovered from the matrix below by adding the numbers in the
corresponding columns. The two numbers to the right of the matrix represent
the expected numbers of people who receive a positive test result, i.e., 640, and
a negative one, i.e., 9360. These numbers are obtained by adding the numbers
in the corresponding row of the matrix.

We now continue with an analysis based on Bayesian reasoning in order to
make sense of these numbers, to answer the ensuing natural questions.

e What is the probability that a person truly has antibodies if tested posi-
tive?

e What is the probability that a person truly has antibodies if tested nega-
tive?

The probability that a person really has antibodies if tested positive is ap-
proximated by:

Expected number of people having antibodies & testing positive 150 93,449
Expected number of people testing positive 640 R

The probability that a person really has antibodies if tested negative is ap-
proximated by:

Expected number of people having antibodies & testing negative 50 0.53%
Expected number of people testing positive T 9360 0"

So, receiving a negative test result is rather conclusive as more than 99% of
the diagnoses are correct. Receiving a positive test result however, still leaves

1In this paragraph we are not overusing the word approximately. Each use of the word is
intentional.
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a lot of room for doubt and insecurity, as the probability that the test result is
correct is less than 24%. This means that the vast majority of people receiving
a positive test result, receive a misleading diagnosis.

The example above shows that the information gain from a test may be quite
disappointing in quality if the incidence levels on a total population level are
low. This perceived low quality of information of a positive test result may be a
great impediment to promote or justify testing, and it may de-legitimize taking
appropriate measures (e.g., wearing face masks, washing hands, forbidding mass
meetings or travel), especially if other, non-cognitive, bottle necks occur. For
instance, it may be quite costly (reportedly some 45 Euro per test in Robbio?
in Italy) or rather time-consuming to test an individual, hence a re-test after
a positive test result would be unattractive looking at it from the resource-
provision side of the problem, although re-testing in this case will be much,
much more informative. An additional bottle neck might be that tests may not
be available in sufficient numbers.® Then, a priority or a legitimization problem
arises: to use the scarce test for testing people for the first time, or for re-
testing positives. Especially combinations of these bottle necks, and they have
materialized at crucial moments in the Corona crisis, may lead to questioning
the usefulness of testing at all.

The aim of this paper is however not to contribute to solving the issue of the
base-rate fallacy, nor distributional dilemmas induced by the scarcity of tests.
We are interested in solving another bottle neck namely the practical, more
basic problem of lack of knowledge (hence unavailability) of a prior distribution
(or base rates or incidence rates of occurrence) of an attribute in a chosen
aggregate population. We however think there is a psychological connection
between the missing base-rate problem and the base-rate fallacy. We suggest
that it is very likely that a missing base rate shifts the interpretation of the
test’s result unpredictably anywhere between giving a lot of weight (if not all)
to the individuating information, or vice versa in which having no anchor for
the base rate at all might psychologically mean base rate equals zero.

The reasons why base rates might be lacking can be numerous. Take a
Corona test, and suppose that the reliability data were obtained (correctly) in
China or Italy, where the illness occurred early and in rather large numbers.
If one were to use this test in, for instance, Noord Brabant, the earliest hot
spot of Corona in the Netherlands, the validity of the reliability data might be
upheld, but the great missing parameter would be the prior, i.e., the incidence
of antibodies to the Corona virus on a population level. Assuming the priors to
be the same as in Italy or China would be without any scientific base.

An additional aim of this paper is to be able to provide answers regarding
priors on the basis of relatively low numbers of tests. Obviously, larger tests
provide better answers if the base rate is stationary. We have the following rea-
sons for this additional ambition. In case of a disease spreading, the assumption
of stationarity is frivolous, so then more is not necessarily better, more recent
might be better. Moreover, crucial measures may be triggered by data on an
aggregate level, but cannot be delayed until results from large numbers of tests

2https://it.businessinsider.Com/esclusiva-cosa-rivelano—i-primi-test-di-robbio-primo-paese-
italiano-a-fare-i-test-sullimmunita-a-tutti-i-cittadini/

3 At the moment of writing a problem in the Netherlands. The Dutch government had the
aim of testing 17,000 people per day from a certain date onwards, but this date has gone by
and the maximum daily number of tests taken in reality is approximately 7,000.
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have accrued. Furthermore, a sequence of estimated priors (using low numbers
of tests) taken at different moments in time, may provide information regarding
the stationarity issue, in other words: is it spreading or not? Additionally, one
might have the wish to restrict attention to specific groups each possibly having
another base rate, e.g., people working in medical care or care for the elderly,
primary school children and teachers, or family members of those working in
jobs with a high probability of exposure to Corona.

Example 2. We could for instance, use some of the data above to come up
with estimates of the probability that antibodies occur in a population. One
option is to look at the number of positives which is 640 out of 10,000, but this
naive estimate of 6.4% yields a much too high number compared to the real 2%
underlying the computations. A seemingly better option is to solve the equation

0.75pN + 0.05(1 — p) N = 640
subject to N = 10,000

This yields exactly p = 0.02 which is the precise prior used for the illustration.
So, then we have an estimator, but we have absolutely no idea about how reliable
this number is. Let

(M)

M= mi1 Mi2 o 0.75 0.05
o mo1 Moo o 0.25 0.95 ’

Then it is easy to confirm that the estimator p for p given the parameters
presented, is computed in general terms by

(1)

= ( )1 number of positives

=(my1 —m -m
p H 12 number of people tested 12
However, even for the given numbers p = 0.02, m1; = 0.75, m12 = 0.05, to reach
this (640) or any given number of positives we have outcomes resulting from a
combination of three random processes. Suppose that the number of positives
turns out to be 654 instead, which, by the way, may occur with a likelihood quite
close to the likelihood of 640 positives occurring, then although the real p does
not change, its estimator would be p = (0.75 — 0.05) ™! [{330- — 0.05 + 5005 =
0.022.

Observe furthermore that any test result with

number of positives
number of people tested

< mqg I8

. number of positives . .
hard to interpret, or = Seople tested > M1 for that matter, because logic

dictates that the probability computed should belong to the unit interval.

The organization of the remainder of this note is minimalistic. In the next
section, we present results of our Monte Carlo simulations which are used to
derive confidence intervals and point estimators for base rates assuming the
reliability data to be perfect. The conclusions concentrate on perceived regu-
larities in doing a series of such estimations, and reflections on the feasibility of
the aims we started with. The Python codes for anybody wishing to experiment
with the tools are available at the github repository.*

4See https://github.com/abhishta91/antibody_montecarlo
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2 Monte Carlo simulation & estimators of priors

We are interested in finding a point estimator or a confidence interval for the
base-rate probability of a certain attribute based on a test on this attribute. We
operate under the specific assumption that the reliability reported are true. For
this purpose we employ the procedure presented in the next subsection. The
results for three hypothetical cases are presented and compared. Note that the
Monte Carlo simulation can be adapted for many if not all inputs desirable.

2.1 Pseudo code

For a certain test (or sample) size N meaning the total number of people tested,
we find a certain number of positives X. A quick approximation using (1):

~ | X
b= (mn —m12) ! [N —m12] s

may be convenient to establish a region in the unit interval which base rate qual-
ifies as most likely to underly the statistical process providing the test outcome.
In what follows, we make a grid of size 0.001 of the most promising region or
interval to be examined more closely. For a given grid size point p in the latter
interval we perform the following loop in pseudo-code.

Step 0 Set tp(5, X,N) := 0, K; := 1, K5 := 1, K = 1,000, K = 1,000. Go to
Step 1.

Step 1 Draw N times with probability p of success to determine® TP (p, K). Go
to Step 2.

Step 2 Draw T P(p, K) times with probability m1; of success to determine®
TPtp(p, K). Go to Step 3.

Step 3 Draw N — T P(p, K) times with probability mas of success to determine”
TNtn(p, K), then set® TNtp(p, K) := N — TP(p, K) — TNtn(p, K). Go
to Step 4.

Step 4 Set tp(p, K) := T Ptp(p, K) + TNtp(p, K).
If tp(5, K) = X, then tp(p, X, N) := tp(p, X, N) + 1.
If Ky :?, then set Ky :=1 and set K7 := K; + 1 go to Step 1.
Otherwise if K1 = K, then go to Step 5.
Otherwise, set K5 := K5 4+ 1 and go to Step 2.

Step 5 Save tp(p, X, N).

This sub-loop will run K times and larger loop will run K times and register
tp(p, X, N) for each such grid point p, which is simply the number of times in
the total Monte Carlo simulation under base rate p, exactly outcome X occurs.

5The number of True Positives.

6The number of True Positives tested positive.

7"The number of True Negatives tested negative.

8The number of True Negatives tested positive, i.e., the so-called false positives.
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2.2 Interpretation of results from the MC simulation

By Monte Carlo simulation we generate a large number of positives from a test
of size N for a fixed known candidate prior which is taken as underlying the
simulation, and record how many of the positives out of the total number of
positives generated by our Monte Carlo simulation, equal precisely X. We rank
the, say G = 400, candidate priors according to a (n evenly meshed) grid of a
relevant interval p! < p? < ... < p&.

For candidate prior say p’, we take, say, 1000 samples of size N. For each
such sample, we generate a pair consisting of the number of real positives and
the number of real negatives by drawing independently N observations with
probability p/ (1 — p?) of having (not having) the attribute. Then, for each
such pair of numbers, say (T'P,TN), of true positives and true negatives in
the sample, i.e., TP + TN = N, we draw 1000 samples taking TP draws with
the probability of testing positive equal to the upper left element of M and
taking TN draws with the probability of testing positive equal to the upper
right element of M. The former are then the True Positives tested positive
(T'Ptp) and the latter are the True Negatives tested positive (T Ntp).

The sum of those two numbers T'Ptp + T Ntp then provides one observation
of positives X}. Taking independent samples, we find one million different
realizations of positives, say X{, X;..., X{05. Then, we record among them, the
number of positives for known prior p’ being exactly equal to the number of
positives resulting from the test as follows

X9 =#{X], k=1,..,10° | X] = X}.

We do the same for the whole range of candidate priors in exactly the same
manner.

We then construct a histogram of the relative numbers of hits equal to X
for each prior, i.e.,

1 _ X! 2 _ X2 G _ X
=— o ¥=—¢ T = el -,
Zj:l XV Zj:l X7 Zj:l X7

Observe that 2 > 0 for all 4 = 1,2,...,G and that Eil 2% = 1. Then, the
number z° tells us that the prior p’ accounted for generating a proportion z* of
all realizations in the entire Monte Carlo simulation yielding X positives. So,
alternatively these numbers can be interpreted as probabilities.

Let in the same vein

Ca
o =min{j € N | Z:z:’ <al,

=1
P(co) ={p"p% ...p"}.

Then, an interpretation for the latter expression immediately comes to mind
which is close to the one of a cumulative probability distribution, namely the
first ¢, of the (ranked) priors that account for proportion of « of all realizations
in the entire Monte Carlo simulation which yielded exactly X positives. The
‘area under the curve’ formed by the histogram between the lower bound of the
range examined and p°, the latter included, is (approximately) . Continuing
along this interesting analogous interpretation we coin the following expressions.


https://doi.org/10.1101/2020.04.28.20075036
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.28.20075036; this version posted May 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Modus (X, N, M,G) = min{p' | 2' = _rrllaXGccj},
j=

yeeey

Median (X,N,M,G) = p°3,

‘FpiE] ifx>m
cre(x, N mcy={ P "
( ) { [0, p-=] if & < mio

These notions can be interpreted in line with the more standard notions with
the same names widely used in statistics.

Modus (X, N, M,G) is the smallest prior which yields the highest number
(proportion) of positives equal to X in our Monte Carlo simulation for sample
size N using deterministic reliability matrix M, having a grid dividing a relevant
interval of priors into G parts of equal length. There might be more than one
such prior, and in order to obtain a unique prior as Modus we took the lowest.
So, knowing only little, this prior could be interpreted as a mazimum likelihood
estimator and for the (admittedly few) cases examined we seem to have (with p
given by Eq. (1)) Modus (X, N, M, G) ~ max(0,p). Next, Median (X, N, M,G)
is the smallest prior such that set of priors smaller than or equal to it are
responsible for (approximately) half of the simulated hits equal to X.

We interpret CI'=%(X, N, M, G) as our confidence interval among the priors
as that it gives us the set of priors accounting for a proportion of 1 — « of
outcomes yielding X hits in the Monte Carlo simulation. The restriction in
first part of the notion applies to the case that the % exceeds the type I error
rate which intuitively seems a rather convenient turn of events. If the second
part applies, i.e., we have a more extreme case of the relative number of hits
(%) being lower than the type I error rate (mq2), we may obtain with great
likelihood Modus (X, N, M,G) — 0 = max(0,p) < Median (X, N,M,QG).
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2.3 Results for

X =0.064,G =400 and N € {10%10%, 125}
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Figure 1: A histogram of the relative number of simulated hits at X = 640,
N = 10,000 for all values of p in the interval [0, 0.04] showing also the location
of the median and, the interval of values of p in [Lg.o25, Up.975] = [0.0134,0.0271]

responsible for 95% of the simulated hits for X.
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Figure 2: A histogram of the relative number of simulated hits at X = 64,
N = 1,000 for all values of p in the interval [0,0.04]. The interval of values of p
in [Lo.o2s, Uo.975] = [0.0032,0.0377] is responsible for 95% of the simulated hits

at X.
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N =125
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Figure 3: A histogram of the relative number of simulated hits at X = 8,
N =125 for all values of p in the interval [0,0.04]. The interval of values of p in
[Lo.025, Uo.o75] = [0.0012,0,0389] is responsible for 95% of the simulated hits at
X.

Discussion of findings The three histograms depicted in Figures 1, 2 and 3
share a few common qualitative features. First, they appear single peaked and
rather symmetric. Recall furthermore that

X
N 0.064 and p = (0.75 — 0.05)~* (0.064 — 0.05) = 0.02
Observe that the median and the modus change only very slightly over the

three histograms, We obtain the following ranking (for each case studied in this
subsection)

p~ Modus(X,N,M,G) ~ Median (X, N, M,G) <

=]

Furthermore, we find
C1%9(640,10%, M, 400)  CI1%9(64,10%, M, 400) C C1°95(8,125, M, 400).

The effect on the size of the confidence intervals is significant. The size of the
corresponding interval for NV = 1,000 is more than double the size for that for
N = 10,000, whereas the confidence interval for N = 125 is almost three times
the latter size.

10
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2.4 Results for & = 0.048,G =400 and N € {10%, 10%, 125}
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Figure 4: A histogram of the relative number of simulated hits at X = 480,
N = 10,000 for all values of p in the interval [0,0.04]. The interval of values of
p in [0, Up.g5] = [0,0.0047] is responsible for 95% of the simulated hits at X.
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Figure 5: A histogram of the relative number of simulated hits at X = 48,
N = 1,000 for all values of p in the interval [0,0.04]. The interval of values of p
in [0, Up.95] = [0,0195] is responsible for 95% of the simulated hits at X.
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Figure 6: A histogram of the relative number of simulated hits at X = 6,
N =125 for all values of p in the interval [0,0.04]. The interval of values of p in
[0, Up.95] = [0,0.0367] is responsible for 95% of the simulated hits at X.

Discussion of findings Figures 4, 5, and 6 share a few common qualitative
features, but differ strikingly from the three histograms of the previous subsec-
tion. First, these histograms are far from symmetric, they appear single peaked
at zero. Furthermore,

% = 0.048 and p = (0.75 — 0.05) " (0.048 — 0.05) = —0.002857
Observe that the modus changes only very slightly over the three histograms,
if at all, but equals zero. The median for the three cases is positive, it shifts
considerably and the higher N is the closer the median gets to zero. This seems
quite intuitive, as unlikely results in the sense that % < mys, should occur less
and less frequently if the sample size increases. We obtain the following ranking
(for each case studied in this subsection)

X
p < Modus (X,N,M,G) =0 < Median (X,N,M,G) < N

The modus appears to be at zero, which will simply not do as a point estimator
of the prior. It is logically inconsistent to have positives if the prior is truly
equal to zero.

For the confidence interval we find

C1°95(480,10%, M, 400  C1°9°(48,10%, M, 400) c CI1%95(6,125, M, 400).

Again, in line with intuition, we see that for larger NV, keeping the ratio % fixed,
the size of the confidence interval shrinks.
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2.5 Results for & = 0.12,G =400 and N € {10%,10°,125}

N = 10000
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Figure 7: A histogram of the relative number of simulated hits at X = 1200,
N = 10,000 for all values of p in the interval [0,0.02]. The interval of values of p
in [Lo.o25, Uo.975] = [0.0911,0.1093] is responsible for 95% of the simulated hits
at X.
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Figure 8: A histogram of the relative number of simulated hits at X = 120,
N = 1,000 for all values of p in the interval [0,0.02]. The interval of values of p
in [Lo.o25, Uo.975] = [0.0733,0.1309] is responsible for 95% of the simulated hits
at X.
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Figure 9: A histogram of the relative number of simulated hits at X = 15,
N =125 for all values of p in the interval [0, 0.3]. The interval of values of p in
[Lo.025, Uo.o75] = [0.0351,0.1984] is responsible for 95% of the simulated hits at
X.

Discussion of findings The figures in this subsection share a few common
qualitative features, but the first two seemingly share more qualitative features
among them and with the first set of three histograms, than with the third
histogram. Again the histograms appear single peaked, the first two seem rather
symmetric, the last one seems skewed.

The median and the modus appear quite close in the first two figures. Fur-
thermore, we have

X .

~ — 012and p= (0.75 — 0.05)~* (0.12 — 0.05) = 0.1

Observe that the median and the modus change only very slightly among the
three histograms. We obtain the following ranking (for each case studied in this
subsection)

p=0.1~ Modus (X,N,M,G) 5 Median (X,N,M,G) <

=is

Furthermore, we find
C1%9(1200,10%, M, 400) ¢ CT°95(120,10%, M, 400) c CT°95(15,125, M, 400).

Observe that the median again changes only very slightly over the three his-
tograms, but the confidence intervals change tremendously in size.

3 Conclusion

For the first couple of weeks as the Corona crisis developed, we have been
merely bewildered spectators at the side line, wondering how to make sense of
phenomena with relevant data and estimates lacking universally. Frankly, we
questioned the validity of many of the statements made by scientists, politicians
and serious media. Quite recently we found an opportunity to make constructive
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use of our experience in designing Monte Carlo simulations for problems in
which analytical distributions of relevant phenomena are very hard to obtain.
We designed a tool® to find base rates underlying certain tests.

Actually, we set out on a larger idea of which this is the first preliminary
paper.'Y We propose a procedure based on Monte Carlo simulation based anal-
ysis with inputs: a sample of N from a certain population is taken, X is the
number of positives and M is the matrix combining the reliability of the test,
ie.,

m m
M= 11 12|
ma21  M22

This matrix satisfies 1 = mq1 + ma1 = mqi2 + mos, where mq; may be called the
true positive rate, mo; is the false negative rate (or type II error rate), mis is
the false positive rate (or type II error rate) and maoy is the true negative rate.
We may distinguish several point estimators for the base rate p of certain
populations, and the following two are seemingly!'! frequently used:

X

X ~ _
Pu = = andp: (m11 —m12) 1 |:N —m12:| .

N
The subscript w stands for ‘unadjusted.” The first estimator has been used in
recent studies (e.g., Bendavid et al. [2020]) as a quick-fire solution disregarding
test reliabilities, the second should however be considered as a slightly more
precise point estimator incorporating the probabilities of false positives in the
test. We have the following rankings among those two estimators:

p>p, if %> M2

g m172n+m21
< if & < M1z
p<pu if N — miz+ma

So, only by sheer ‘luck’ both estimators coincide in general. Furthermore,
Pu < Mo implies p < 0 if mq7 > mqo.

In this paper we add three new estimators of the base rate in a population.
Two are point estimators, the third is an interval estimator, or confidence in-
terval. We must stress that for the present procedure we assume the matrix M
to be deterministic.

The modus is the smallest prior which yielded the highest number and
hence proportion of positives equal to X in our MC simulation for sample size
N using deterministic reliability matrix M. The median is the upper bound
set of ranked priors starting at the lowest value, responsible for (approximately)
half of the simulated hits equal to X in the MC simulation. We interpret a our

9Due to time pressure, we did a hasty check on literature. So, none of this line of think-
ing/modeling might be new, and we apologize for wasting your time. However, our sincere
intention was to offer some help.

10The second paper, to appear in a couple of days, proceeds on this one, but will take another
hurdle in estimating base rates, namely the real-life problem of test reliability matrices which
are estimates themselves (hence, with all components being stochastic).

11Seemingly, because none of the reports we found use explicit formulas. Recalculating one
of the reported numbers in Bendavid et al. [2020] yields a perfect match. In a report (in
German) by Streeck et al. [2020] only specificity mao2 > 0.99 is mentioned which bounds m12,
but not mi;. Taking both specifity and sensitivity equal to 99% yields an outcome which is
compatible with their estimation.
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(1 — a)-confidence interval among the priors as that it gives us the set of priors
accounting for a proportion of 1 — « of outcomes yielding X hits in the Monte
Carlo simulation.

We focus on the following findings regarding this collection of point and
interval estimators. By elimination of alternatives, the final bullet point gives
the most preferred pair of estimators, in our opinion.

e In many cases the median, modus and p are quite close, and are to be
found rather central in any standard two-sided confidence interval.

e Confidence intervals shrink in size as the number N increases, i.e., the
discriminatory power of the procedure increases in the usual manner.

e The median is always in the range of the most used confidence intervals
(90%, 95%, 99% two-sided).

e The sample size N has negligeable influence on the median, the modus
and p relative to the size of the corresponding two-sided 95%-confidence
intervals generated, provided that the resulting histogram is close to
symmetric. So, rather small samples may provide rather reliable
estimators for cases yielding symmetric histograms.

e It may happen that p, = % does not fall into the two-sided 95%-confidence
interval of the procedure (cf., e.g., Figures 1 — 7). This rules out this
estimator as a universally applicable point estimator, in our opinion.

e It may happen that p is negative, which rules this estimator out as a
universally applicable point estimator by logic.

e It may happen that the modus is equal to zero (cf., e.g., Figures 4 — 6),
which rules out the modus as a universally applicable point estimator by
logic.

e The sample size N is of significant influence on the median and of no
influence on the modus and p (as the latter are smaller than or equal to 0)
for low ratios of % The median decreases considerably if N is increased.

e Both the median and the confidence intervals universally make sense as
concepts, as well as as estimators.

4 Appendix: the procedure applied to two data
points from a recent study

On Saturday April 18, while trying to finalize this preliminary paper, we found
a study reporting on tests in the county of Santa Clara in California (Bendavid
et al. [2020]). We gladly refer to the paper for more details of this interesting
(also) preliminary report.

In a rather precisely described case, the authors found a number of 50 pos-
itives in a test of size 3330. So, for the first two inputs necessary necessary,
we took X = 50 and N = 3330. Determining M, the matrix summarizing the
test reliability was a little bit more problematic for us. The authors provided
a lot of numbers regarding the test validity which are highly relevant to our
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framework, but frankly, we were a quite dazzled by them. We took the liberty
of generating the following matrix of test reliability (the underlying numbers
were found in Bendavid et al. [2020]) under the presumption that this is indeed
what the authors intended for the unadjusted case:

— [ 0803 0.005
M= [ 0.197 0.995 ] '

This matrix was obtained by interpreting the statement:

provides us with a combined sensitivity of 80.3% (95 CI 72.1-
87.0%) and a specificity of 99.5% (95 CI 98.3-99.9).

Following standard practice, we took my; = 0.803 and mi2 = 0.005 which
immediately induces all four entries in the reliability matrix.

4.1 Findings

We ran our procedure!? using these numbers and obtained results visualized in
Figure 10. We interpret the least sophisticated framework, i.e., we do the rough
estimation on total population level, which happens to yield the lowest valued
estimator of all estimators of the base rate presented in Bendavid et al. [2020].

N = 3330
0.016 -
=== Median
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== Lo.ozs
=X Uoars
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o
o
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0.000 4

I
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1
1
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Figure 10: The output of our Monte Carlo simulation based procedure obtained
from our interpretation of the reliability matrix in Bendavid et al. [2020] applied
to the aggregate findings. The median, the modus and the 95%-confidence
interval are indicated.

Figure 10 is rather illustrative on its own, but for the reader’s convenience

12The Python code may be found at https://github.com/abhishtad1/antibody_montecarlo
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we summarize some relevant candidate estimators below.

Median(50, 3330, M, 400) = 1.28%
Modus(50, 3330, M, 400) = 1.22999%

X
pu = = 1.5015%

1 50
p= —0.005 | = 1.2552
P= 0.803 — 0.005 (3330 ) %
C1°95(50, 3330, M, 400) = [0.81%, 1.85%]
Mia 0.005
- — =2.4752
Mis +ma1  0.005 + 0.197 %
77“2
< —0—
Pu mi2 + Moy

Clearly, we have
Modus (50,3330, M, 400) < p < Median(50, 3330, M, 400) < p,,
[Modus(50, 3330, M, 400),pu} C 199 (50, 3330, M, 400).

Hence, all point estimators are in the 95%-confidence interval. The upper bound
of the confidence interval tells us that the priors exceeding this upper bound
account for less than 0.025% (combined) of the hits equal to 50 in the Monte
Carlo simulation.

The modus and median are rather close and located rather centrally in the
95%-confidence interval. Based on our preferences we would recommend using
Median (50,3330, M, G) = 1.28% as the point estimator and C1°-%5(50, 3330, M, G) =
[0.81%,1.85%] as a reasonable confidence interval.

4.2 Comments

On the one hand, the unadjusted point estimator is found to be
pu = 1.5% € CI°9%(50, 3330, M, G) = [0.81%, 1.85%)] .

So, since this estimator is in our 95%-confidence interval, we do not reject the
point estimator p,,.

On the other, this number might be a bit on the high side as we have shown
in the concluding section of this paper. Even without having computed p we
know

X
Pu > Psince = = 1.5015% < — 12— 9.4752%.
N mig + Moy

Indeed, the realization of the latter estimator was p = 1.2552%. If we compare
the latter estimator with the concepts introduced in the body of this paper we
see

Modus (50,3330, M, 400) = 1.23% < p < Median(50, 3330, M, 400) = 1.28%.

This might indicate that we should expect the true value to be closer to the
threesome mentioned than to p,.
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Our confidence interval is obtained directly from the Monte Carlo simulation
with inputs (50,3330, M, 400). Bendavid et al. [2020] report the following two
confidence intervals

[1.11%, 1.97%] and [1.07%, 1.93%).

Under the reservation that we might not be comparing the same objects, our
confidence interval is larger than any of the pair mentioned, located more to
the left, moreover the upper and lower bounds are lower than the corresponding
bounds of the pair they mention.

Note finally, none of the three alternative point estimators can be rejected
for either confidence interval presented by Bendavid et al. [2020] pertaining to
their unadjusted prior either, as clearly the estimators are in the intersection of
both, i.e.,

Modus(50, 3330, M, 400), 5, Median(50, 3330, M, 400) € [1.11%, 1.93%)].
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