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SUMMARY 28 

SARS-CoV-2 is currently causing a devastating pandemic and there is a pressing need to 29 

understand the dynamics, specificity, and neutralizing potency of the humoral immune response 30 

during acute infection. Herein, we report the dynamics of antibody responses to the receptor-31 

binding domain (RBD) of the spike protein and virus neutralization activity in 44 COVID-19 32 

patients. RBD-specific IgG responses were detectable in all patients 6 days after PCR 33 

confirmation. Using a clinical isolate of SARS-CoV-2, neutralizing antibody titers were also 34 

detectable in all patients 6 days after PCR confirmation. The magnitude of RBD-specific IgG 35 

binding titers correlated strongly with viral neutralization. In a clinical setting, the initial analysis of 36 

the dynamics of RBD-specific IgG titers was corroborated in a larger cohort of PCR-confirmed 37 

patients (n=231). These findings have important implications for our understanding of protective 38 

immunity against SARS-CoV-2, the use of immune plasma as a therapy, and the development of 39 

much-needed vaccines. 40 
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INTRODUCTION 45 

COVID-19 is a global pandemic. There is a pressing need to understand the immunological 46 

response that mediates protective immunity to SARS-CoV-2. Antibody responses to the spike (S) 47 

protein are thought to be to the primary target of neutralizing activity during viral infection, 48 

conferring superior protective immunity compared to the membrane (M), envelope (E), and 49 

nucleocapsid proteins (Bolles et al., 2011; Buchholz et al., 2004; Deming et al., 2006). The S 50 

glycoprotein is a class I viral fusion protein that exists as a metastable prefusion homotrimer 51 

consisting of individual polypeptide chains (between 1100-1600 residues in length) responsible 52 

for cell attachment and viral fusion (Bosch et al., 2003; Hoffmann et al., 2020; Wang et al., 2020). 53 

Each of the S protein protomers is divided into two distinct regions, the S1 and S2 subunits (Bosch 54 

et al., 2003; Tortorici and Veesler, 2019). The S1 subunit is a V-shaped polypeptide with four 55 

distinct domains, Domains A, B, C, and D, with Domain B functioning as the receptor-binding 56 

domain (RBD) for most coronaviruses, including the pathogenic β-coronaviruses such as SARS-57 

CoV-2, SARS and MERS (Fig. 1A; Supplementary Fig. 1A) (Li et al., 2005; Lu et al., 2013; 58 

Tortorici and Veesler, 2019; Walls et al., 2020). Recent studies have shown that the SARS-CoV-59 

2 RBD interacts with the ACE2 receptor for cellular attachment (Hoffmann et al., 2020; Walls et 60 

al., 2020; Wang et al., 2020). Sequence analysis of the RBD shows extensive homology in this 61 

region to SARS (73%). In contrast, MERS and other seasonal coronaviruses show minimal 62 

sequence homology to the SARS-CoV-2 RBD (7-18%) (Fig. 1B). Herein, we set out to understand 63 

the dynamics, specificity, and neutralizing potency of the humoral immune response against the 64 

RBD of the SARS-CoV-2 spike protein during acute infection.  65 

 66 

The magnitude of RBD-specific antibody responses in acutely infected COVID-19 patients   67 

To determine the magnitude of antibody responses, Ig isotype, and IgG subclass usage against 68 

the RBD of the SARS-CoV-2 spike protein, we analyzed a cohort of acutely infected COVID-19 69 
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patients (n=44) enrolled at two hospitals in the Emory Healthcare System in Atlanta (Emory 70 

University Hospital and Emory University Hospital Midtown). These patients were recruited from 71 

both the inpatient ward and the ICU (patient details are provided in Table 1). These samples 72 

represent a cross-section of days after patient-reported symptom onset (3-30 days) and PCR 73 

confirmation (2-19 days). As healthy controls, we used plasma samples collected at baseline in a 74 

vaccine study performed in early 2019 (n=12). The RBD protein was cloned and expressed in 75 

mammalian cells (Supplementary Fig. 1B) and was validated by ELISA using CR3022, a SARS-76 

specific human monoclonal antibody that cross-reacts with SARS-CoV-2 (ter Meulen et al., 2006) 77 

(Supplementary Fig. 1C). Size exclusion chromatography shows that the recombinant RBD 78 

protein is homogenous and does not form aggregates (Supplementary Fig. 1D).  We found that a 79 

majority of COVID-19 patients (36 out of 44) developed RBD-specific class-switched IgG 80 

responses (Fig. 1C) (mean titer:18500, range: <100-142765). These patients also showed IgM 81 

and IgA responses of lower magnitude as compared to IgG (IgM mean titer: 3731, range:<100-82 

40197 and IgA mean titer: 973, range: <100-19918). All of the negative controls were below the 83 

limit of detection in the endpoint analysis for binding to the RBD antigen (Fig. 1C, red). A 84 

representative RBD-specific IgG ELISA assay for a subset of these donors is shown in Figure 1D 85 

to illustrate the dynamic range of these measurements. A number of the COVID-19 patient 86 

samples that scored either negative or low in the RBD IgG ELISA had higher titers of IgM (Fig. 87 

1E, green). Finally, IgG subclass analysis showed that the COVID-19 patients exclusively made 88 

RBD-specific IgG1 and IgG3, with no detectable IgG2 or IgG4. Taken together, these findings 89 

illustrate that antibody class-switching to IgG occurs early during acute infection. 90 

 91 

Neutralization potency of antibody responses in COVID-19 patients 92 

We next determined the neutralization capacity of samples from the cohort of acutely infected 93 

COVID-19 patients. We have developed a focus reduction neutralization titer (FRNT) assay for 94 
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SARS-CoV-2. In this assay, COVID-19 patient plasma is incubated with a clinical isolate of SARS-95 

CoV-2 followed by infection of VeroE6 cells (Harcourt et al., 2020). The neutralization potency of 96 

the plasma sample is measured by the reduction in virally-infected foci. We screened plasma from 97 

COVID-19 patients (n=44) and found that a majority of the samples (40/44) showed neutralization 98 

capacity, with titers ranging from 1:5763 to 1:55 (Fig. 2A). A representative example of viral 99 

neutralization is shown in Figure 2b where pre-incubation with control plasma yields about 250 100 

foci whereas the COVID-19 patient sample completely inhibited the formation of infected foci (Fig. 101 

2B). Representative neutralization curves for a subset of samples are shown to illustrate the 102 

dynamic range of the results obtained (Fig. 2C). A plaque reduction neutralization titer (PRNT) 103 

assay is the classic method for determining the neutralization capacity of a plasma sample against 104 

coronavirus infection (Rockx et al., 2008). To confirm the efficiency of these two assays, we 105 

compared the neutralization titers between a standard PRNT assay and an FRNT assay for a 106 

subset of the patient samples (n=9). Overall, we observed a strong positive correlation between 107 

these two assays (Fig. 2D), demonstrating the robustness of the FRNT assay Overall, these 108 

findings demonstrate that neutralizing antibody responses are generated early during acute 109 

COVID-19 infection. 110 

 111 

Kinetics of the antibody responses during acute SARS-CoV-2 infection 112 

The patient samples were collected across a range of days after symptom onset or PCR 113 

confirmation of SARS-CoV-2 infection (Table 1). To understand the relationship between these 114 

variables and RBD-specific IgG antibody titers and viral neutralization potency, we performed 115 

correlation analyses. In all cases, we observed significant correlations between the number of 116 

days elapsed after symptom onset or positive PCR test and the RBD-specific IgG titer or viral 117 

neutralization titer (Fig. 3). Several key points regarding the kinetics of antibody responses can 118 

be made from this correlation analysis. Antibody responses against the RBD (Fig. 3A), as well as 119 
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SARS-CoV-2 virus neutralization titers (Fig. 3B), can be detected in a majority of patients around 120 

day 8 after symptom onset. When the number of days after PCR confirmation is used to assess 121 

the duration of infection, both RBD-binding titers (Fig. 3C) and viral neutralization titers (Fig. 3D) 122 

can be detected in many patients already between days 2-6. Beyond 6 days post-PCR 123 

confirmation, all patients display both antibody binding and neutralization titers. Taken together, 124 

these findings illustrate that both RBD-specific and neutralizing antibody responses occur rapidly 125 

after SARS-CoV-2 infection.  126 

 127 

RBD-specific antibody titers as a surrogate of neutralization potency in acutely infected 128 

COVID-19 patients 129 

We observed a wide range of RBD-specific and neutralizing antibody responses across the cohort 130 

of acutely infected COVID-19 patients. We found that the magnitude of RBD-specific IgG titers 131 

positively correlated with neutralization titers (r2= 0.7; p<0.0001; Fig. 4A). Overall, we observed 132 

viral neutralization activity in 40 out of 44 samples from acutely infected COVID-19 patients.  133 

 134 

We next validated the RBD-specific IgG ELISA for high-throughput testing at the Emory Medical 135 

Laboratories. For these analyses, we collected serum from 231 PCR-confirmed COVID-19 patient 136 

samples within the first 22 days after PCR confirmation (Supplementary Table 1). In addition, 40 137 

samples collected in 2019 were used as negative controls. These samples were grouped from 0-138 

3 days, 4-6 days, and 7 or more days after PCR confirmation and analyzed using a high-139 

throughput clinical RBD ELISA. The cumulative results of these efforts are shown as receiver 140 

operating characteristic (ROC) curves (Fig. 4B). This assay is almost perfectly discriminatory on 141 

day 7 or later after PCR confirmation, with an area under the curve (AUC) of 1.00 (n=83). When 142 

utilized earlier in the disease course, the performance of this diagnostic assay is reduced. When 143 
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the RBD specific IgG ELISA were analyzed for the samples collected closer to the time of 144 

infection, the AUC for the day 4-6 group (n=76) and the day 0-3 group (n=72) fell to 0.93 and 145 

0.80, respectively. Using an OD cut-off of 0.175 resulted in calculated sensitivity and specificity 146 

values of 97.5% and 98%, respectively. Taken together, these findings demonstrate that RBD-147 

specific IgG titers could be used as a surrogate of neutralization activity against SARS-CoV-2 148 

infection and that the RBD assay is highly specific and sensitive. Further, this demonstrates the 149 

necessity of appropriate timing of sample collection when using serologic diagnostic tests of 150 

acutely infected COVID-19 patients (Lee et al., 2020; Okba et al., 2020).  151 
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DISCUSSION 153 

In this study, we show that RBD-specific IgG antibody responses are rapidly induced during 154 

severe and moderate acute COVID-19 infection, with most patients showing RBD-specific 155 

antibody responses by 6 days post-PCR confirmation. Consistently, we found that class-switching 156 

also occurs early during infection and is dominated by RBD-specific IgG1 and IgG3 responses. 157 

We also detected both RBD-specific IgM and IgA responses at relatively lower levels as compared 158 

to IgG. These responses result in neutralizing antibody responses that directly correlated with 159 

RBD-specific IgG antibody titers. These findings strongly indicate that a robust humoral immune 160 

response occurs early during severe or moderate COVID-19 infections.  161 

 162 

The validation of the sensitive and selective RBD based clinical assay at EML and the correlation 163 

with viral neutralization is promising for both diagnostic purposes and ongoing seroprevalence 164 

studies of healthcare workers and the general population. These serology tests could be used for 165 

making informed decisions for convalescent plasma therapy that are currently undergoing clinical 166 

testing as a possible therapeutic or even prophylactic option (Bloch et al., 2020; Shen et al., 2020). 167 

Further, the kinetic findings presented herein are essential for ongoing efforts aimed at applying 168 

antibody testing for clinical diagnostic purposes, highlighting the importance of appropriate timing 169 

of these tests relative to PCR testing and/or symptom onset after infection. A comprehensive 170 

understanding of the dynamics of antibody responses after infection will also be key for 171 

understanding disease pathogenesis, risk assessment in vulnerable populations, evaluation of 172 

novel therapeutics, and development of vaccines. 173 

 174 

The appearance of high titer neutralizing antibody responses early after the infection is promising 175 

and may offer some degree of protection from re-infection. Future studies will need to define the 176 
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neutralizing titer which constitutes a robust correlate of protective immunity and determine the 177 

durability of these responses over time (Liu et al., 2006). This information will be essential for 178 

ongoing vaccine development efforts (Amanat and Krammer, 2020). 179 
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FIGURE LEGENDS 277 

Table 1. COVID-19 patient cohort 278 

Figure 1. Antibody responses against SARS-CoV-2 RBD in PCR-confirmed acutely infected 279 

COVID-19 patients. A) Structure of a SARS-CoV-2 spike protein (single monomer is shown) with 280 

the RBD highlighted in red(Wang et al., 2020) B) Sequence homology analysis of SARS-CoV-2 281 

spike protein RBD compared to SARS, MERS, and seasonal alpha- and beta-CoVs. C) ELISA 282 

endpoint titers for SARS-CoV-2 RBD specific IgG, IgA and IgM in PCR confirmed acute COVID-283 

19 patients (n=44) and healthy controls collected in early 2019. Endpoint cutoff values were 284 

calculated using the mean of the 12 healthy controls at 1/100 dilution, times 3 standard deviations 285 

(shown as a dotted line). D) Representative ELISA assays for 10 patients and 12 healthy controls. 286 

E) Direct comparison of IgM and IgG for individual donors. A number of the IgG negative or low 287 

early samples were IgM positive (shown in green). F) Endpoint titer analysis of IgG subclass 288 

distribution. Each experiment was performed at least twice and a representative data set is 289 

shown. 290 

 291 

Figure 2. COVID-19 patient plasma neutralizes SARS-CoV-2. A) Neutralization activity of 292 

serum samples against SARS-CoV-2. The FRNT50 titers of COVID-19 patients (n=44) and healthy 293 

controls (n=10) sera were determined by a novel FRNT assay using an immunostain to detect 294 

infected foci. Each circle represents one serum sample. The dotted line represents the maximum 295 

concentrations of the serum tested (1/50). B) Representative sample showing a reduction in foci 296 

from a neutralization assay with sera from an infected COVID-19 patient. C) Representative 297 

FRNT50 curves (n=22). The dotted line represents 50% neutralization. D) Comparison of PRNT50 298 

against FRNT50 titers (n=9). Each experiment was performed at least twice and a representative 299 

data set is shown.  300 
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 301 

Figure 3. SARS-CoV-2 antibody responses correlate with the progression of acute SARS-302 

CoV-2 infection. Comparison of RBD-specific IgG titers and neutralization titers with (A-B) days 303 

after symptom onset or (C-D) days after PCR positive confirmation for each patient. Correlation 304 

analysis was performed by log transformation of the endpoint ELISA titers followed by linear 305 

regression analysis. 306 

 307 

Figure 4. RBD-specific antibody titers as a surrogate of neutralization potency in acutely 308 

infected COVID-19 patients. A) Comparison of RBD-specific IgG endpoint titers with SARS-309 

CoV-2-specific FRNT50 titers. Correlation analysis was performed by log transformation of the 310 

endpoint ELISA or FRNT50 titers followed by linear regression analysis. B) The RBD-specific 311 

ELISA was validated for high-throughput clinical testing in Emory Medical Laboratories. Sera 312 

(n=231) were collected from COVID-19 patients within the first 22 days after PCR-confirmation 313 

(Supplementary Table 1). Sera (n=40) collected in 2019 were used as negative controls. ROC 314 

curves are shown comparing the true positive and false negative rates of the ELISA using different 315 

OD cutoffs and sera collected at different times post-infection. Whereas the RBD ELISA produced 316 

an area under the curve (AUC) of 0.80 when samples were collected close to the time of infection 317 

(within 3 days of positive PCR; n=76), longer sampling times resulted in better performance. 318 

Assay performance was nearly perfectly discriminatory (AUC = 1.00) when samples were 319 

collected at least 7 days after the positive PCR (n=83). 320 

 321 

 322 

  323 
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STAR Methods 324 

CONTACT FOR REAGENT AND RESOURCE SHARING 325 

Further information and requests for resources and reagents should be directed to and will be 326 

fulfilled by the corresponding authors Mehul Suthar (msuthar@emory.edu) and Jens Wrammert 327 

(jwramme@emory.edu). 328 

329 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 330 

Ethics statement. The serum and plasma samples used for this study were collected at Emory 331 

University Hospital and Emory University Hospital Midtown in Atlanta. All patients were diagnosed 332 

with acute SARS-CoV-2 infection by PCR, and samples were collected at a range of times post-333 

PCR-confirmation. All collection, processing, and archiving of human specimens was performed 334 

under approval from the University Institutional Review Board (IRB #00000510 and #00022371). 335 

For IRB #00000510, informed consent was obtained prior to patient participation. For #00022371, 336 

an IRB waiver was obtained allowing the use of discarded samples in the clinical laboratory at the 337 

Emory Hospital. 338 

339 

Virus and cells. SARS-CoV-2 (2019-nCoV/USA_WA1/2020) was isolated from the first reported 340 

case in the US (Harcourt et al., 2020). A plaque purified passage 4 stock was kindly provided by 341 

Natalie Thornburg (CDC, Atlanta, GA). Viral titers were determined by plaque assay on Vero cells 342 

(ATCC). Vero cells were cultured in complete DMEM medium consisting of 1x DMEM (Corning 343 

Cellgro), 10% FBS, 25mM HEPES Buffer (Corning Cellgro), 2mM L-glutamine, 1mM sodium 344 

pyruvate, 1x Non-essential Amino Acids, and 1x antibiotics. 345 

346 
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Cloning, expression, and purification of SARS-CoV-2 RDB. A recombinant form of the spike 347 

glycoprotein receptor-binding domain (RBD) from SARS-CoV-2, Wuhan-Hu-1 (GenPept: 348 

QHD43416) was cloned for mammalian expression in human embryonic kidney expi293F cells. 349 

The receptor-binding domain consisting of amino acids 319 (arginine) to 541 (phenylalanine) of 350 

the SARS-Cov-2 S gene was amplified by PCR using a mammalian codon-optimized sequence 351 

as the DNA template (Genscript MC_0101081). PCR amplification appended the first 12 amino 352 

acids of the native S gene signal peptide sequence to the N-terminal end of the protein and, at 353 

the C-terminal end a 6X polyhistidine tag preceded by a short linker sequence (GGGGS).  354 

Forward and Reverse primer sequences consisted were:  355 

5’-AGAGAATTCACCATGTTCGTCTTCCTGGTCCTGCTGCCTCTGGTCTCCAGGGTGCAGC 356 

CACCGAGTCTATC-3’ 357 

 and 5’-CTCTAAGCTTCTATCATTAGTGGTGGTGGTGGTGGTGGCTTCCGCCTCCGCCGAA 358 

GTTCACGCACTTGTTCTTCAC-3’.  25 uL PCR reaction conditions were: 1X Phusion HF Buffer, 359 

0.2 mM dNTP, 0.63 units Phusion DNA polymerase, and 500 nM of each primer. PCR cycling 360 

conditions were: initial denaturation at 98°C, 1 minute; then 25 cycles of: 98°C, 20 seconds,  65°C 361 

30 seconds, 72°C 30 seconds; followed a final extension at 72°C for 5 minutes. Following 362 

amplification, purified PCR products (QIAquick PCR Purification, Qiagen) were digested with 363 

EcoRI-HF (NEB) and HindIII (NEB) and cloned into the EcoRI-HindIII cloning site of a mammalian 364 

expression vector containing a CMV promoter (Genbank Reference ID FJ475055). Plasmid DNA 365 

was prepared using the Qiagen PlasmidPlus Midi purification system and constructs were 366 

sequence verified. Recombinant protein expression was performed in Expi293F cells according 367 

to the manufacturer’s instructions (Thermo Fisher Scientific). Briefly, expression plasmid DNA 368 

was complexed with the expifectamine lipid-based transfection reagent. Complexes were added 369 

to the cell suspensions shaking at 125 RPM and incubated overnight at 37°C in an 8% CO2 370 

humidified incubator. After 20 hours, protein expression supplements and antibiotics were added. 371 

Cultures were then incubated for an additional three days to allow for expression into the 372 
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supernatant. Cell culture supernatants were harvested by centrifugation at 16,000xg for 10 373 

minutes.  Supernatants were sterile filtered through a 0.2 um filter and stored at 4°C for <7 days 374 

before purification. Analytical SDS-PAGE was performed on supernatants and the protein 375 

concentration in solution was determined by densitometry relative to the purified protein. 376 

Recombinant RBD protein levels were between 100 mg and 150 mg per liter. Purification was 377 

performed according to manufacturer’s instructions using 5 mL HisTALON Superflow Cartridges 378 

(Clontech Laboratories). Briefly, an additional 11.7 g/L of sodium chloride and 0.71 g/L of cobalt(II) 379 

chloride hexahydrate were added to culture supernatants, which were adjusted to pH 7.5. The 380 

supernatant was then loaded on to the column equilibrated with 10 column volumes of 50 mM 381 

phosphate 300 mM sodium chloride buffer pH 7.5 (equilibration buffer). The column was washed 382 

with 8 column volumes of equilibration buffer supplemented with 10 mM imidazole.  Protein was 383 

eluted with 6 column volumes of equilibration buffer supplemented with 150 mM imidazole. The 384 

eluted protein was dialyzed overnight against 80 volumes of phosphate-buffered saline pH 7.2. 385 

The protein was filter-sterilized (0.2 µm) and normalized to 1 mg/mL by UV spectrophotometry 386 

using an absorption coefficient of 1.3 AU at 280 nm=1 mg/mL. Proteins were aliquoted and stored 387 

at -80°C prior to use. SDS-PAGE analysis of purified recombinant protein stained with coomassie 388 

blue demonstrated that samples were >90% pure (Fig. 1). The RBD resolves at an apparent 389 

molecular weight of 30 kDa (Fig. 1D) which is slightly larger than the theoretical molecular weight 390 

of 26.5 kDa, presumably caused by glycosylation. 391 

 392 

Preparation of CR3022 monoclonal antibody and biotinylation. The SARS-CoV S 393 

glycoprotein specific antibody CR3022 was generated recombinantly using previously reported 394 

heavy and light variable domain sequences deposited in GenBank under accession numbers 395 

DQ168569 and DQ168570(ter Meulen et al., 2006). Antibody variable domain gene sequences 396 

were synthesized by IDT and cloned into human IgG1 and human kappa expression vectors as 397 

previously described (Smith 2009). Antibodies were produced in Expi293F cells according to the 398 
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manufacturer's recommendations by co-transfecting heavy and light chain plasmids at a ratio of 399 

1:1.5. Antibodies were purified using rProtein A Sepharose Fast Flow antibody purification resin 400 

(GE Healthcare) and buffer exchanged into PBS before use. Biotinylated versions of CR3022 401 

used in viral neutralization assays were produced by combining the antibody with a 20 molar 402 

excess of EZ-Link NHS-PEG4-Biotin (Thermo Fisher Scientific) for 1 hour at room temperatures. 403 

Reactions were stopped by adding Tris pH 8 to a final concentration of 10 mM. The biotinylated 404 

antibody was then buffer exchanged >1000X into PBS using a 10 kDa protein spin-concentrator 405 

(Amicon). 406 

 407 

Sequence analysis and alignment.  408 

The SARS-CoV-2 spike protein structure(Wrapp et al., 2020) was visualized in Pymol 409 

(Schrödinger, LLC). To assess the homology of coronavirus spike proteins, a global protein 410 

alignment was performed in Geneious (Geneious, Inc.) with translations of genome sequences 411 

accessed through NCBI Nucleotide. Sequences used were GenBank MN908947.3 (SARS-CoV-412 

2), RefSeq NC_004718.3 (SARS-CoV), RefSeq NC_019843.3 (MERS-CoV), NC_006577.2 413 

(HCoV-HKU1), RefSeq NC_006213.1 (HCoV-OC43), RefSeq NC_005831.2 (HCoV-NL63), and 414 

RefSeq NC_005831.2 (HCoV-229E). Homology at the RBD was determined by sequence identity 415 

between SARS-CoV-2 RBD residues T302 to L560 (Walls et al., 2020; Wang et al., 2020). 416 

 417 

ELISA assays. Recombinant SARS-CoV-2 RDB was coated on Nunc MaxiSorp plates at a 418 

concentration of 1 µg/mL in 100 uL phosphate-buffered saline (PBS) at 4ºC overnight. Plates 419 

were blocked for two hours at room temperature in PBS/0.05%Tween/1% BSA (ELISA buffer). 420 

Serum or plasma samples were heated to 56ºC for 30 min, aliquoted, and stored at -20°C before 421 

use. Samples were serially diluted 1:3 in dilution buffer (PBS-1% BSA-0.05% Tween-20) starting 422 

at a dilution of 1:100. 100 µL of each dilution was added and incubated for 90 minutes at room 423 
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temperature. 100 uL of horseradish peroxidase-conjugated isotype and subclass specific 424 

secondary antibodies, diluted 1 to 2,000 in ELISA buffer, were added and incubated for 60 425 

minutes at room temperature. Development was performed using 0.4 mg/mL o-phenylenediamine 426 

substrate (Sigma) in 0.05 M phosphate-citrate buffer pH 5.0, supplemented with 0.012% hydrogen 427 

peroxide before use. Reactions were stopped with 1 M HCl and absorbance was measured at 428 

490 nm. Between each step, samples were washed four times with 300 uL of PBS-0.05% Tween. 429 

Prior to development, plates were additionally washed once with 300 uL of PBS. Secondary 430 

antibodies used for development were as follows: anti-hu-IgM-HRP, anti-hu-IgG-HRP, and anti-431 

hu-IgA-HRP (Jackson Immuno Research, and Mouse anti-hu-IgG1 Fc-HRP, Mouse anti-hu-IgG2 432 

Fc-HRP, Mouse anti-hu-IgG3 Fc-HRP, or Mouse anti-hu-IgG4 Fc-HRP (Southern Biotech).  433 

 434 

Clinical RBD ELISA assay. This assay was performed essentially as described above, with the 435 

following modifications to increase throughput: all serum samples were diluted 1:200, and the 436 

incubation times were reduced to 30 minutes after the addition of serum samples and the 437 

secondary antibody conjugate. 438 

 439 

Focus Reduction Neutralization Assays. Serially diluted patient plasma and COVID-19 (100-440 

200 FFU) were combined in DMEM + 1% FBS (Corning Cellgro), and incubated at 37°C for 1 441 

hour. The antibody-virus mixture was aliquoted on a monolayer of VeroE6 cells, gently rocked to 442 

distribute the mixture evenly, and incubated at 37°C for 1 hour.  After 1 hour, the antibody-virus 443 

inoculum was removed and prewarmed DMEM supplemented with 1% FBS (Optima, Atlanta 444 

Biologics), HEPES buffer (Corning Cellgro), 2mM L-glutamine (Corning Cellgro), 1mM sodium 445 

pyruvate (Corning Cellgro), 1x Non-essential Amino Acids (Corning Cellgro), 1x antibiotics 446 

(penicillin, streptomycin, amphotericin B; Corning Cellgro) was mixed with methylcellulose 447 

(DMEM [Corning Cellgro], 1% antibiotic, 2% FBS, 2% methylcellulose [Sigma Aldrich]) at a 1:1 448 

ratio and overlaid on the infected VeroE6 cell layer. Plates were incubated at 37°C for 24 hours. 449 
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After 24 hours, plates were gently washed three times with 1x PBS (Corning Cellgro) and fixed 450 

with 200 µl of 2% paraformaldehyde (Electron Microscopy Sciences) for 30 minutes.  Following 451 

fixation, plates were washed twice with 1x PBS and 100 µl of permeabilization buffer (0.1% BSA-452 

Saponin in PBS) (Sigma Aldrich), was added to the fixated Vero cell monolayer for 20 minutes. 453 

Cells were incubated with an anti-SARS-CoV spike protein primary antibody conjugated to biotin 454 

(CR3022-biotin) for 1-2 hours at room temperature, then with avidin-HRP conjugated secondary 455 

antibody for 1 hour at room temperature. Foci were visualized using True Blue HRP substrate 456 

and imaged on an ELISPOT reader (CTL). Each plate contained three positive neutralization 457 

control wells, three negative control wells containing healthy control serum mixed with COVID-458 

19, and three mock-infected wells.   459 

 460 

QUANTIFICATION AND STATISTICAL ANALYSIS 461 

Statistical analysis. FRNT50 curves were generated by non-linear regression analysis using the 462 

4PL sigmoidal dose curve equation on Prism 8 (Graphpad Software). Maximum neutralization 463 

(100%) was considered the number of foci counted in the wells infected with a virus mixed with 464 

COVID-19 naïve healthy patient serum. Neutralization titers were calculated as 100% x [1-465 

(average number of foci in wells incubated with COVID-19 patient serum) ÷ (average number of 466 

foci in wells incubated with control serum)]. For the clinical data Receiver Operating Characteristic 467 

(ROC) curves were generated separately for each of three cohorts of clinical validation samples 468 

with progressively increasing PCR-to-serum collection intervals (0-3 days, 4-6 days, 7+ days). 469 

Optical densities (OD) for each sample were entered into Microsoft Excel for Office 365 v16, and 470 

a custom software package was used to iteratively compute the false positive rate (1 - specificity) 471 

and true positive rate (sensitivity) at every OD cutoff level for each cohort. The false-positive rates 472 

(x) and true positive rates (y) were then rendered as scatter plots to generate the ROC curves. 473 
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Correlations analyses were done by log transforming RBD binding titers or neutralization titers, 474 

followed by linear regression analysis. The R2 and p-value are reported in each figure. 475 

 476 

 477 

 478 

Supplemental Information 479 

Supplementary Figure 1. Expression and purification of SARS-CoV-2 RBD. A) Sequence 480 

homology analysis of the full-length SARS-CoV-2 spike compared to SARS, MERS, and seasonal 481 

alpha- and beta-CoVs. B) SDS-PAGE gel of purified SARS-CoV-2 RBD, cloned and expressed 482 

in Expi293F cells by transient transfection. C) ELISA validation of the RBD protein using a 483 

monoclonal antibody (CR3022) (ter Meulen et al., 2006) directed against the spike protein RBD. 484 

D) Size exclusion chromatography of the recombinant RBD protein. The figure shows the elution 485 

profile (UV absorption 280 nm) of 1 mg RBD protein analyzed in PBS buffer on a Superdex 75 486 

(10/300) size exclusion column.  487 

 488 

Supplementary Table 1. Emory Medical Laboratories patient cohort (time after PCR-489 

confirmation) 490 
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Table 1. COVID-19 patient cohort 
Patient ID# Age Sex Days after 

symptom onset 
Days after  

+ PCR 
IgG IgM IgA FRNT50 

1 65 M 8 8 1692 507 <100 761 
2 36 F 15 8 86698 664 313 2233 
3 41 M 8 2 259 599 116 245 
4 44 F 9 5 2560 947 442 194 
5 56 M 17 5 10422 1574 4033 3200 
6 80 M 29 7 22219 1242 176 2483 
7 74 M 12 2 <100 <100 <100 <50 
8 66 M 8 3 419 220 85 167 
9 87 M 9 3 <100 <100 <100 124 
10 75 M 18 6 1174 369 131 539 
11 61 M 19 4 445 282 <100 645 
12 80 M 5 5 899 470 316 167 
13 66 M 10 2 4988 795 297 1502 
14 37 F 14 3 202 578 <100 118 
15 64 F 8 3 <100 166 <100 55 
16 76 F 11 2 31205 2906 230 1718 
17 70 F 11 2 1100 246 <100 138 
18 63 F 12 5 <100 <100 <100 <50 
19 70 M 5 4 <100 136 <100 156 
20 66 M 22 7 4269 1207 324 496 
21 33 F 7 3 243 325 <100 174 
22 62 F 12 7 17917 4414 706 603 
23 59 M 11 7 21323 3865 140 2799 
24 58 F 11 3 317 364 258 175 
25 76 M 17 7 28352 1493 6865 2561 
26 49 M 16 3 15772 491 589 126 
27 54 M 30 10 72949 13310 700 3341 
28 73 M 11 15 69902 3412 19918 911 
29 64 F 9 3 <100 119 161 67 
30 37 F 13 3 205 419 <100 126 
31 25 F 3 2 <100 <100 <100 <50 
32 39 F 8 3 814 362 287 262 
33 60 M 10 6 27557 50483 <100 5763 
34 60 F 15 8 43072 443 214 337 
35 56 F 18 8 71204 16298 1754 1177 
36 60 M 17 12 142766 40197 <100 5378 
37 52 M 12 5 <100 317 <100 108 
38 73 M 11 4 683 303 <100 <50 
39 48 M 8 6 9311 1750 884 1068 
40 46 M 20 13 69361 706 1112 408 
41 69 M 18 19 33684 5517 180 1882 
42 55 M 8 4 377 1560 178 79 
43 47 F 9 3 467 1042 <100 158 
44 63 F 10 3 134 186 <100 99 
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Supplementary Table 1. Emory Medical Laboratory patient cohort (time after PCR-confirmation) 

Day post PCR confirmation Number of cases (n) Grouping (Days) Total number 

0 12 0-3 

n=76 
1 14 0-3 
2 20 0-3 
3 30 0-3 
4 21 4-6 

n=72 5 29 4-6 
6 22 4-6 
7 15 7+ 

n=83 

8 14 7+ 
9 7 7+ 
10 4 7+ 
11 4 7+ 
12 4 7+ 
13 3 7+ 
14 2 7+ 
15 4 7+ 
16 4 7+ 
17 4 7+ 
18 6 7+ 
19 3 7+ 
20 5 7+ 
21 2 7+ 
22 2 7+ 
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